

Received 17 September 2020 Accepted 12 October 2020

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela

Keywords: crystal structure; flavones; Hirshfeld surface analysis; hydrogen bonding.

CCDC reference: 2036551

Supporting information: this article has supporting information at journals.iucr.org/e

CI2-HI2-03 be

Crystal, molecular structure and Hirshheld surface analysis of 5-hydroxy-3,6,7,8-tetramethoxyflavone

Haji Akber Aisa,^a Lidiya Izotova,^b* Abdurashid Karimov,^c Erkin Botirov,^c Azimjon Mamadrahimov^b and Bahtiyar Ibragimov^b

^aKey Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, People's Republic of China, ^bInstitute of Bioorganic Chemistry, UzAS, M. Ulugbek Str., 83, 100125,Tashkent, Uzbekistan, and ^cInstitute of the Chemistry of Plant Substances, UzAS, M. Ulugbek Str., 77, 100170, Tashkent, Uzbekistan. *Correspondence e-mail: li_izotova@mail.ru

The title compound [systematic name: 8-hydroxy-2,5,6,7-tetramethoxy-3phenylnaphthalen-1(4*H*)-one], $C_{19}H_{18}O_7$, is a flavone that was isolated from a butanol extract of the herb *Scutellaria nepetoides M. Pop.* The flavone molecule is almost planar, with a dihedral angle between the planes of the benzopyran-4one group and the attached phenyl ring of 6.4 (4)°. The 5-hydroxy group forms a strong intramolecular hydrogen bond with the carbonyl group, resulting in a sixmembered hydrogen-bonded ring. The crystal structure has triclinic (*P*1) symmetry. In the crystal, the molecules are linked by $C-H\cdots O$ hydrogen bonds into a two dimensional network parallel to the *ab* plane. The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from $H\cdots H$ (53.9%) and $H\cdots O/O\cdots H$ (20.9%) interactions.

1. Chemical context

Flavonoids are the most numerous class of natural phenolic compounds, which are characterized by structural diversity, high and versatile activity and low toxicity. Plants of the genus *Scutellaria L*. are widespread in Europe, North America, East Asia and are extensively used in traditional Chinese medicine (Shang *et al.*, 2010). Flavonoids isolated from plants of the genus *Scutellaria L*. exhibit antitumor (Yu *et al.*, 2007), hepatoprotective (Jang *et al.*, 2003), antioxidant (Sauvage *et al.*, 2010), anti-inflammatory (Dai *et al.*, 2013), anticonvulsant (Park *et al.*, 2007), antimicrobial (Arituluk *et al.*, 2019) and antiviral activity (Leonova *et al.*, 2020). The creation of drugs based on flavonoids is based on the establishment of the 'chemical structure–pharmacological properties' relationship, and the determination of the structure of a new flavonoid may become a key starting point.

2. Structural commentary

The molecular structure of the title compound is presented in Fig. 1. The benzopyran moieties are practically planar, with

C18-H18C---07

Figure 1

The molecular structure of the title compound with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

r.m.s. deviations of 0.01 Å. The molecular conformation is restricted by the relative positions of the benzopyran unit and the phenyl ring, the dihedral angle between them being $6.4 (4)^{\circ}$. Atoms C3, C6, C7 and C8 of the methoxy substituent have an out-of-plane conformation with the methoxy groups at atoms C3 and C6 pointing in the same direction [C16–

Figure 2

Crystal structure of the title compound in projection on the *ac* plane. Hydrogen bonds are shown as dashed lines.

Table 1			
Hydrogen-bond geometry	(Å,	°).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O4-H4···O3	0.82	1.87	2.599 (2)	147
C16-H16A···O3	0.96	2.51	3.079 (3)	118
$C16-H16B\cdots O3^{i}$	0.96	2.39	3.258 (3)	150
C18−H18B···O5	0.96	2.28	2.897 (4)	121
$C18-H18C \cdot \cdot \cdot O7^{ii}$	0.96	2.53	3.278 (4)	135
C17−H17C···O4	0.96	2.52	3.010 (4)	111

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z.

O2-C3-C2 = 109.3 (2) and $C17-O5-C6-C5 = 66.7(4)^{\circ}$], while the methoxy groups at atoms C7 and C8 point in opposite direction [C18-O6-C7-C6 = -56.3 (3) and C19-O7-C8-C7 = -91.4 (3)°]. The conformation of the molecule is fixed because of the intramolecular O4-H4···O3 hydrogen bond [2.599 (2) Å, 147°], which closes a six-membered ring with graph-set notation S(6) (Etter, 1990).

3. Supramolecular features

In the crystal, the molecules are linked by $C-H\cdots O$ hydrogen bonds into a two dimensional network parallel to the *ab* plane. A perspective view of the crystal packing in the unit cell is depicted in Fig. 2 and numerical details of the hydrogen bonds are presented in Table 1.

4. Hirshfeld surface analysis

In order to visualize the intermolecular interactions in the crystals of the title compound, a Hirshfeld surface analysis was carried out using *Crystal Explorer 17.5* (Turner *et al.*, 2017). The Hirshfeld surface mapped over d_{norm} (Fig. 3) shows the expected bright-red spots near atoms O3, O7, H16*B*, which are involved in the C-H···O hydrogen-bonding interactions. Fingerprint plots (Fig. 4) reveal that H···H and H···O/O···H interactions make the greatest contributions to the surface

Figure 3

The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from $H \cdots H$ (53.9%) and $H \cdots O/O \cdots H$ (20.9%) interactions.

research communications

Figure 4

Full two-dimensional fingerprint plots for the title compound, showing all interactions (*a*), and delineated into (*b*) $H \cdots H$, (*c*) $H \cdots O/O \cdots H$, (*d*) $H \cdots C/C \cdots H$, (*e*) $O \cdots C/C \cdots O$, (*f*) $C \cdots C$ and (*g*) $O \cdots O$ interactions. The d_i and d_e values are the closest internal and external distances (in Å) from a given point on the Hirshfeld surface.

contacts, while $H \cdots C/C \cdots H$, $O \cdots C/C \cdots O$, $C \cdots C$ and $O \cdots O$ contacts are less significant.

5. Database survey

A search of the Cambridge Structural Database (CSD Version 5.41, update of November 2019; Groom *et al.*, 2016) found 311 hits for the term 'flavones'. Among these, nine are tetramethoxyflavones: 3,4',6,7 (DAVREN; Geng *et al.*, 2011), 6,2'3',4'- (JEMGIN; Wallet *et al.*, 1990*a*) and 2',4',5,7- (KEPLEW; Wallet *et al.*, 1990*b*), 3,4',6,7- (MENSII; Meng *et al.*, 2006), 3',4',5,7- (PIQPEK; Shoja, 1997), 3,4'5,7- (PUGKEI; Aree *et al.*, 2009), 3',5,5',6- (TMOFLV10; Ting *et al.*, 1972), 3,7,4',5'- (YASCIF; Etti *et al.*, 2005). The compound FATZOR (Vijayalakshmi *et al.*, 1986) is also a 3,6,7,8 tetramethylflavone, but with two hydroxy substituents at the 5,4'-positions.

6. Synthesis and crystallization

Air-dried whole plants (1.1 kg) of *Scutellaria nepetoides M. Pop.* were extracted three times (each 3 h) with butanol (5 l) at 353 K. The butanol filtrates were collected and concentrated under reduced pressure to provide 10.2 g of butanol extract. The butanol extract (1 g) was subjected to silica gel (60–100 mesh) column (gradient of butanol:water = 0:1, 2:8, 1:1, 8:2, 1:0) as eluent, and five fractions were collected according to TLC analysis. All fractions were concentrated

Crystal data	
Chemical formula	$C_{19}H_{18}O_7$
Mr	358.33
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	293
a, b, c (Å)	5.0789 (4), 8.0801 (6), 20.8682 (19)
α, β, γ (°)	92.481 (7), 91.984 (7), 94.253 (6)
$V(\dot{A}^3)$	852.62 (12)
Z	2
Radiation type	Cu Ka
$\mu (\text{mm}^{-1})$	0.90
Crystal size (mm)	$0.03\times0.02\times0.01$
Data collection	
Diffractometer	Agilent Xcalibur, Ruby
Absorption correction	Multi-scan (CrysAlis PRO;
	Agilent, 2014)
T_{\min}, T_{\max}	0.818, 1.000
No. of measured, independent and	6484, 3458, 2408
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.023
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.630
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.056, 0.174, 1.03
No. of reflections	3458
No. of parameters	240
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.22, -0.18

Computer programs: CrysAlis PRO (Agilent, 2014), XP (Siemens, 1994), SHELXT2018/2 (Sheldrick, 2015a) and SHELXL2018/3 (Sheldrick, 2015b).

under reduced pressure. A crystallization procedure with different solvents at high temperature was used to obtain the pure compounds. Fraction 5 (0.23 g) was eluted with butanol (100%) at 353 K and with ethanol (95%) at 343 K. The obtained polycrystals were removed from the butanol solution by filtration. Yellow prismatic single crystals were prepared by slow evaporation of butanol solution at room temperature.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with C-H = 0.96 Å (CH₃), 0.93 Å (aryl H) and O-H = 0.82 Å and with $U_{iso}(H) =$ $1.2U_{eq}(C)$ (aryl H) and $1.5U_{eq}(C-methyl, O)$.

Acknowledgements

We are especially grateful to Jamshid Ashurov DSc for help in discussing the results.

Funding information

Funding for this research was provided by: Chinese Academy of Sciences Center of Drag Discovery and Development Center of Central Asia (grant No. CAM 201907).

References

- Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
- Aree, T. & Sawasdee, P. (2009). Acta Cryst. E65, o2706.
- Arituluk, Z., Kocak, C., Renda, G., Ekizoglu, M. & Ezer, N. (2019). J Res Pharm. Pract. 23(3), 552–558.
- Dai, Z. J., Lu, W. F., Gao, J., Kang, H. F., Ma, Y. G., Zhang, S. Q., Diao, Y., Lin, S., Wang, X. J. & Wu, W. Y. (2013). BMC Complement. Altern. Med. 13, 240–248.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Etti, S., Shanmugam, G., Ponnuswamy, M. N., Balakrishna, K. & Vasanth, S. (2005). Acta Cryst. E61, 0846-0848.
- Geng, H.-W., Wang, G.-C., Li, G.-Q., Jiang, R.-W. & Li, Y.-L. (2011). *Acta Cryst.* E67, o2733.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Jang, S. I., Kim, H. J., Hwang, K. M., Jekal, S. J., Pae, H. O., Choi, B. M., Yun, Y. G., Kwon, T. O., Chung, H. T. & Kim, Y. C. (2003). *Immunopharmacol. Immunotoxicol.* 25, 585–594.
- Leonova, G. N., Shutikova, A. L., Lubova, V. A. & Maistrovskaya, O. S. (2020). Bull. Exp. Biol. Med. 168, 665–668.
- Meng, Z.-L., Qi, Y.-Y., Liu, R.-M., Sun, A.-L. & Wang, D.-Q. (2006). Acta Cryst. E62, 03831–03832.
- Park, H. G., Yoon, S. Y., Choi, J. Y., Lee, G. S., Choi, J. H., Shin, C. Y., Son, K. H., Lee, Y. S., Kim, W. K., Ryu, J. H., Ko, K. H. & Cheong, J. H. (2007). *Eur. J. Pharmacol.* 574, 112–119.

- Sauvage, S., Granger, M., Samson, E., Majumdar, A., Nigam, P. & Nahar, L. (2010). Oriental Pharmacy Experimental Medicine. 10, 304–309.
- Shang, X. F., He, X. R., He, X. Y., Li, M. X., Zhang, R. X., Fan, P. P., Zhang, Q. L. & Jia, Z. P. (2010). J. Ethnopharmacol. 128, 279– 313.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shoja, M. (1997). Z. Kristallogr. New Cryst. Struct. 212, 385-386.
- Siemens (1994). XP. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.
- Ting, H.-Y., Watson, W. H. & Domínguez, X. A. (1972). *Acta Cryst.* B28, 1046–1051.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17.5. University of Western Australia.* http://hirshfeldsuface.net
- Vijayalakshmi, J., Rajan, S. S., Srinivasan, R. & Ramachandran Nair, A. G. (1986). Acta Cryst. C42, 1752–1754.
- Wallet, J.-C., Gaydou, E., Tinant, B., Declercq, J.-P., Baldy, A. & Bonifassi, P. (1990a). Acta Cryst. C46, 1131–1133.
- Wallet, J.-C., Gaydou, E. M., Jaud, J. & Baldy, A. (1990b). Acta Cryst. C46, 1536–1540.
- Yu, J., Liu, H., Lei, J., Tan, W., Hu, X. & Zou, G. (2007). *Phytother. Res.* 21, 817–822.

supporting information

Acta Cryst. (2020). E76, 1748-1751 [https://doi.org/10.1107/S2056989020013596]

Crystal, molecular structure and Hirshheld surface analysis of 5-hydroxy-3,6,7,8-tetramethoxyflavone

Haji Akber Aisa, Lidiya Izotova, Abdurashid Karimov, Erkin Botirov, Azimjon Mamadrahimov and Bahtiyar Ibragimov

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2014); cell refinement: *CrysAlis PRO* (Agilent, 2014); data reduction: *CrysAlis PRO* (Agilent, 2014); program(s) used to solve structure: *SHELXT2018/2* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *XP* (Siemens, 1994).

5-Hydroxy-3,6,7,8-tetramethoxy-2-phenyl-4H-chromen-4-one

Crystal data

 $C_{19}H_{18}O_7$ $M_r = 358.33$ Triclinic, *P*1 *a* = 5.0789 (4) Å *b* = 8.0801 (6) Å *c* = 20.8682 (19) Å *a* = 92.481 (7)° *β* = 91.984 (7)° *γ* = 94.253 (6)° *V* = 852.62 (12) Å³

Data collection

Agilent Xcalibur, Ruby diffractometer Radiation source: Enhance (Cu) X-ray Source $/\omega$ scans Absorption correction: multi-scan (CrysAlisPro; Agilent, 2014) $T_{\min} = 0.818, T_{\max} = 1.000$ 6484 measured reflections 3458 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.174$ S = 1.033458 reflections 240 parameters 0 restraints Z = 2 F(000) = 376 $D_x = 1.396 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 1498 reflections $\theta = 5.5-75.0^{\circ}$ $\mu = 0.90 \text{ mm}^{-1}$ T = 293 K Prism, yellow $0.03 \times 0.02 \times 0.01 \text{ mm}$

2408 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 76.1^{\circ}, \ \theta_{min} = 4.2^{\circ}$ $h = -6 \rightarrow 4$ $k = -10 \rightarrow 9$ $l = -25 \rightarrow 25$ 3 standard reflections every 100 reflections intensity decay: 2.6%

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0902P)^2 + 0.0534P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.22$ e Å⁻³ $\Delta\rho_{min} = -0.18$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.4105 (3)	0.28804 (17)	0.27044 (7)	0.0575 (4)	
O2	0.3672 (3)	0.59876 (19)	0.39973 (8)	0.0659 (4)	
O7	0.3450 (3)	0.10219 (19)	0.16067 (8)	0.0685 (4)	
O3	0.0122 (3)	0.69625 (19)	0.30889 (9)	0.0714 (5)	
O4	-0.2527 (4)	0.6406 (2)	0.20033 (9)	0.0740 (5)	
H4	-0.209283	0.687910	0.235051	0.111*	
O6	0.0019 (3)	0.1855 (2)	0.06667 (8)	0.0725 (5)	
05	-0.3071 (4)	0.4564 (2)	0.08488 (9)	0.0792 (5)	
C9	0.2302 (4)	0.3341 (2)	0.22626 (10)	0.0532 (5)	
C2	0.4615 (4)	0.3764 (2)	0.32748 (10)	0.0531 (5)	
C1	0.6627 (4)	0.3000 (2)	0.36663 (10)	0.0547 (5)	
C3	0.3289 (4)	0.5145 (2)	0.34102 (10)	0.0559 (5)	
C10	0.0862 (4)	0.4721 (2)	0.23720 (11)	0.0549 (5)	
C8	0.1951 (4)	0.2349 (3)	0.17031 (11)	0.0570 (5)	
C4	0.1327 (4)	0.5696 (3)	0.29666 (11)	0.0576 (5)	
C5	-0.1022 (4)	0.5106 (3)	0.19027 (12)	0.0598 (5)	
C7	0.0153 (4)	0.2777 (3)	0.12324 (11)	0.0591 (5)	
C11	0.7909 (5)	0.1680 (3)	0.33913 (12)	0.0621 (5)	
H11	0.747162	0.131003	0.297010	0.074*	
C6	-0.1322 (4)	0.4180 (3)	0.13258 (12)	0.0620 (5)	
C13	1.0487 (5)	0.1457 (3)	0.43582 (13)	0.0693 (6)	
H13	1.178385	0.095483	0.458888	0.083*	
C12	0.9801 (5)	0.0925 (3)	0.37353 (13)	0.0690 (6)	
H12	1.062501	0.004788	0.354580	0.083*	
C15	0.7318 (5)	0.3509 (3)	0.42988 (11)	0.0676 (6)	
H15	0.648243	0.437172	0.449493	0.081*	
C14	0.9221 (5)	0.2750 (3)	0.46366 (13)	0.0735 (7)	
H14	0.966483	0.310908	0.505855	0.088*	
C16	0.5102 (5)	0.7581 (3)	0.39759 (14)	0.0755 (7)	
H16A	0.429300	0.821692	0.365563	0.113*	
H16B	0.689782	0.743522	0.387050	0.113*	
H16C	0.507312	0.815778	0.438727	0.113*	
C18	-0.2471 (6)	0.1157 (4)	0.04230 (15)	0.0884 (9)	
H18A	-0.223724	0.046870	0.004568	0.133*	
H18B	-0.356737	0.203034	0.031583	0.133*	
H18C	-0.329956	0.049683	0.074221	0.133*	
C19	0.2318 (8)	-0.0502 (3)	0.1815 (2)	0.1081 (11)	
H19A	0.058829	-0.073200	0.161721	0.162*	
H19B	0.218626	-0.043294	0.227342	0.162*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

supporting information

H19C	0.341133	-0.137746	0.169734	0.162*
C17	-0.2436 (9)	0.6092 (4)	0.05619 (19)	0.1199 (14)
H17A	-0.331407	0.608230	0.014676	0.180*
H17B	-0.056050	0.624212	0.051646	0.180*
H17C	-0.300412	0.698631	0.082812	0.180*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
01	0.0628 (8)	0.0517 (7)	0.0575 (8)	0.0094 (6)	-0.0003 (7)	-0.0097 (6)
O2	0.0782 (10)	0.0584 (8)	0.0601 (9)	0.0080 (7)	0.0036 (8)	-0.0145 (7)
O7	0.0779 (10)	0.0586 (9)	0.0692 (10)	0.0145 (7)	0.0065 (8)	-0.0124 (7)
O3	0.0744 (10)	0.0578 (9)	0.0823 (11)	0.0181 (7)	0.0011 (8)	-0.0153 (8)
O4	0.0755 (10)	0.0626 (9)	0.0847 (12)	0.0200 (8)	-0.0046 (9)	-0.0056 (8)
06	0.0745 (10)	0.0820 (11)	0.0589 (9)	0.0029 (8)	0.0009 (8)	-0.0155 (8)
05	0.0868 (11)	0.0719 (10)	0.0773 (12)	0.0038 (9)	-0.0178 (9)	0.0043 (9)
C9	0.0550 (10)	0.0496 (10)	0.0547 (11)	0.0038 (8)	0.0037 (9)	-0.0023 (8)
C2	0.0550 (10)	0.0492 (10)	0.0541 (11)	0.0013 (8)	0.0058 (9)	-0.0070 (8)
C1	0.0545 (10)	0.0497 (10)	0.0591 (12)	0.0011 (8)	0.0036 (9)	-0.0022 (9)
C3	0.0616 (11)	0.0486 (10)	0.0565 (12)	0.0016 (9)	0.0064 (9)	-0.0079 (8)
C10	0.0585 (11)	0.0474 (10)	0.0583 (12)	0.0025 (8)	0.0050 (9)	-0.0016 (9)
C8	0.0612 (11)	0.0510 (10)	0.0585 (12)	0.0047 (9)	0.0063 (9)	-0.0053 (9)
C4	0.0595 (11)	0.0472 (10)	0.0657 (13)	0.0040 (9)	0.0096 (10)	-0.0058 (9)
C5	0.0591 (11)	0.0503 (11)	0.0702 (14)	0.0062 (9)	0.0036 (10)	-0.0006 (10)
C7	0.0628 (12)	0.0570 (11)	0.0560 (12)	-0.0022 (9)	0.0039 (10)	-0.0046 (9)
C11	0.0675 (12)	0.0539 (11)	0.0639 (13)	0.0065 (10)	-0.0025 (10)	-0.0081 (9)
C6	0.0617 (12)	0.0585 (12)	0.0651 (13)	0.0012 (10)	-0.0036 (10)	0.0039 (10)
C13	0.0669 (13)	0.0645 (13)	0.0766 (16)	0.0085 (11)	-0.0065 (12)	0.0067 (11)
C12	0.0695 (13)	0.0565 (12)	0.0816 (16)	0.0148 (10)	-0.0023 (12)	-0.0039 (11)
C15	0.0737 (14)	0.0685 (13)	0.0608 (13)	0.0133 (11)	0.0015 (11)	-0.0085 (11)
C14	0.0782 (15)	0.0806 (16)	0.0610 (14)	0.0112 (13)	-0.0066 (12)	-0.0056 (12)
C16	0.0753 (15)	0.0613 (13)	0.0871 (17)	0.0041 (11)	-0.0025 (13)	-0.0212 (12)
C18	0.0800 (16)	0.0908 (19)	0.090 (2)	-0.0031 (14)	-0.0024 (14)	-0.0297 (15)
C19	0.129 (3)	0.0560 (15)	0.142 (3)	0.0176 (16)	0.020 (2)	0.0052 (17)
C17	0.164 (4)	0.085 (2)	0.107 (3)	-0.005 (2)	-0.047 (3)	0.0312 (19)

Geometric parameters (Å, °)

01—С9	1.360 (3)	C5—C6	1.387 (3)
O1—C2	1.368 (2)	C7—C6	1.414 (3)
O2—C3	1.376 (2)	C11—C12	1.374 (3)
O2—C16	1.434 (3)	C11—H11	0.9300
O7—C8	1.373 (3)	C13—C12	1.376 (4)
O7—C19	1.413 (3)	C13—C14	1.384 (4)
O3—C4	1.252 (3)	C13—H13	0.9300
O4—C5	1.357 (3)	C12—H12	0.9300
O4—H4	0.8200	C15—C14	1.373 (4)
O6—C7	1.365 (3)	C15—H15	0.9300

supporting information

O6—C18	1.415 (3)	C14—H14	0.9300
O5—C6	1.372 (3)	C16—H16A	0.9600
O5—C17	1.416 (4)	C16—H16B	0.9600
С9—С8	1.386 (3)	C16—H16C	0.9600
C9—C10	1.393 (3)	C18—H18A	0.9600
C2—C3	1.370 (3)	C18—H18B	0.9600
C2-C1	1.474 (3)	C18—H18C	0.9600
C1-C15	1 391 (3)	C19—H19A	0.9600
C1-C11	1403(3)	C19—H19B	0.9600
$C_3 - C_4$	1444(3)	C19—H19C	0.9600
C10—C5	1.406(3)	C17—H17A	0.9600
C10—C4	1.443(3)	C17—H17B	0.9600
C_{8}	1 390 (3)	C17—H17C	0.9600
00 07	1.570 (5)		0.9000
C9—O1—C2	121.52 (16)	C5—C6—C7	119.4 (2)
C3—O2—C16	114.26 (18)	C12—C13—C14	119.1 (2)
C8—O7—C19	114.8 (2)	C12—C13—H13	120.4
С5—О4—Н4	109.5	C14—C13—H13	120.4
C7—O6—C18	119.0 (2)	C11—C12—C13	120.5 (2)
C6—O5—C17	115.0 (2)	C11—C12—H12	119.7
01	116.32 (18)	C13—C12—H12	119.7
O1—C9—C10	121.69 (19)	C14—C15—C1	120.7 (2)
C8—C9—C10	122.0 (2)	C14—C15—H15	119.7
O1—C2—C3	119.82 (19)	C1—C15—H15	119.7
01—C2—C1	110.68 (17)	C15—C14—C13	120.9 (2)
C3—C2—C1	129.50 (19)	C15—C14—H14	119.5
C15—C1—C11	117.9 (2)	C13—C14—H14	119.5
C15—C1—C2	123.54 (19)	O2—C16—H16A	109.5
C11—C1—C2	118.60 (19)	O2—C16—H16B	109.5
C2—C3—O2	120.3 (2)	H16A—C16—H16B	109.5
C2—C3—C4	121.67 (19)	O2—C16—H16C	109.5
O2—C3—C4	117.84 (18)	H16A—C16—H16C	109.5
C9—C10—C5	118.9 (2)	H16B—C16—H16C	109.5
C9—C10—C4	119.0 (2)	O6—C18—H18A	109.5
C5—C10—C4	122.2 (2)	O6—C18—H18B	109.5
O7—C8—C9	120.3 (2)	H18A—C18—H18B	109.5
O7—C8—C7	121.05 (19)	O6—C18—H18C	109.5
C9—C8—C7	118.6 (2)	H18A—C18—H18C	109.5
O3—C4—C10	121.9 (2)	H18B—C18—H18C	109.5
O3—C4—C3	121.7 (2)	O7—C19—H19A	109.5
C10-C4-C3	116 34 (18)	07—C19—H19B	109.5
04—C5—C6	119.3 (2)	H19A—C19—H19B	109.5
04-C5-C10	120.4(2)	O7-C19-H19C	109.5
C6-C5-C10	120.1(2) 120.2(2)	H19A-C19-H19C	109.5
06-07-08	1170(2)	H19B-C19-H19C	109.5
06—C7—C6	122.1(2)	05-C17-H17A	109.5
C8—C7—C6	120.8(2)	O5-C17-H17B	109.5
C_{12} C_{11} C_{11} C_{11} C_{11}	120.0(2) 120.9(2)	H17A—C17—H17B	109.5

C12—C11—H11 C1—C11—H11 O5—C6—C5 O5—C6—C7	119.5 119.5 121.6 (2) 119.0 (2)	O5—C17—H17C H17A—C17—H17C H17B—C17—H17C	109.5 109.5 109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 119.0 (2) \\ -179.93 (18) \\ -0.8 (3) \\ 0.1 (3) \\ 179.66 (17) \\ -172.2 (2) \\ 7.3 (4) \\ 7.3 (3) \\ -173.2 (2) \\ 176.21 (17) \\ -3.2 (3) \\ 0.6 (3) \\ -178.9 (2) \\ 109.3 (2) \\ -74.9 (2) \\ -178.38 (18) \\ 0.7 (3) \\ 0.8 (3) \\ 179.88 (19) \\ 91.8 (3) \\ -91.4 (3) \\ -2.4 (3) \\ 178.53 (19) \\ -179.25 (18) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.5 (3) \\ -176.28 (18) \\ 177.6 (2) \\ -1.6 (3) \\ -3.7 (3) \\ 177.1 (2) \\ 128.1 (3) \\ -56.3 (3) \\ -2.2 (3) \\ 174.70 (19) \\ -177.85 (19) \\ -10 (3) \\ -0.5 (3) \\ 180.0 (2) \\ 66.7 (4) \\ -115.1 (3) \\ 1.2 (4) \\ -177.50 (19) \\ -177.0 (2) \\ 4.4 (3) \\ 4.3 (3) \\ 179.8 (2) \\ -177.5 (2) \end{array}$
$\begin{array}{c} C10-C9-C8-C7\\ C9-C10-C4-O3\\ C5-C10-C4-O3\\ C9-C10-C4-C3\\ C5-C10-C4-C3\\ C5-C10-C4-C3\\ C2-C3-C4-O3\\ O2-C3-C4-O3\\ \end{array}$	1.7 (3) 179.0 (2) -1.8 (3) -0.2 (3) 179.03 (19) -179.7 (2) 4.6 (3)	C8-C7-C6-C5 C1-C11-C12-C13 C14-C13-C12-C11 C11-C1-C15-C14 C2-C1-C15-C14 C1-C15-C14-C13 C12-C13-C14-C15	$\begin{array}{c} -2.0 (3) \\ -0.3 (4) \\ 0.8 (4) \\ 0.8 (4) \\ -179.7 (2) \\ -0.3 (4) \\ -0.5 (4) \end{array}$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
O4—H4…O3	0.82	1.87	2.599 (2)	147
C16—H16A···O3	0.96	2.51	3.079 (3)	118
C16—H16B····O3 ⁱ	0.96	2.39	3.258 (3)	150
C18—H18 <i>B</i> ···O5	0.96	2.28	2.897 (4)	121
C18—H18C····O7 ⁱⁱ	0.96	2.53	3.278 (4)	135
С17—Н17С…О4	0.96	2.52	3.010 (4)	111

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*-1, *y*, *z*.