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Abstract

Objective: To identify glioma radiomic features associated with proliferation-related Ki-67 anti-

gen and cellular tumour antigen p53 levels, common immunohistochemical markers for differen-

tiating benign from malignant tumours, and to generate radiomic prediction models.

Methods: Patients with glioma, who were scanned before therapy using standard brain magnetic

resonance imaging (MRI) protocols on T1 and T2 weighted imaging, were included. For each

patient, regions-of-interest (ROI) were drawn based on tumour and peritumoral areas (5/10/15/

20 mm), and features were identified using feature calculations, and used to create and assess

logistic regression models for Ki-67 and p53 levels.

Results: A total of 92 patients were included. The best area under the curve (AUC) for the

Ki-67 model was 0.773 for T2 weighted imaging in solid glioma (sensitivity, 0.818; specificity,

0.833), followed by a less reliable AUC of 0.773 (sensitivity, 0.727; specificity 0.667) in 20-mm

peritumoral areas. The highest AUC for the p53 model was 0.709 (sensitivity, 1; specificity, 0.4)

for T2 weighted imaging in 10-mm peritumoral areas.

Conclusion: Using T2-weighted imaging, the prediction model for Ki-67 level in solid glioma

tissue was better than the p53 model. The 20-mm and 10-mm peritumoral areas in the Ki-67 and

p53 model, respectively, showed predictive effects, suggesting value in further research into areas

without conventional MRI features.
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Introduction

Glioma is the most common tumour of the
central nervous system. In clinical practice,
precise tumour classification assists
neuro-oncologists in patient treatment and
in evaluating the entire prognosis.1 Tumour
grade-guided treatment for gliomas is
determined using molecular markers and
histopathological characteristics, and a
series of molecular markers have been
found that are helpful in clinical diagnosis
as well as prognosis.2 To introduce the
concept of using molecular parameters in
constructing diagnoses of central nervous
system tumours, the 2016 World Health
Organisation’s classification of central
nervous system tumours used molecular
parameters in addition to histology to
define several tumour characteristics.3

Diagnoses based on molecular pathological
typing of gliomas are more accurate in
determining clinical prognosis.3,4

Proliferation-related Ki-67 antigen is
closely related to the cell cycle, directly
reflecting cell proliferation, and is closely
related to tumour progression. Ki-67 has
lower expression in normal brain tissues,
compared with high expression levels in
glioma cells.5 Higher positive values for
the Ki-67 marker index relate to higher
degree of malignancy (grade) and worse
prognosis,6 and low levels of Ki-67 protein
are reported to be significantly correlated
with mutation in the isocitrate dehydroge-
nase (NADP(þ))1 (IDH1) gene,7 thus Ki-67
may be used as a prognostic indicator of
glioma.8

The tumour protein p53 (TP53) gene is a
tumour suppressor gene that affects the

occurrence and development of glioma.9

Hence, p53 acts as an indicator of poor

prognosis and malignant transformation,

and has also been shown to be associated

with radiotherapy and chemotherapy

effects in patients with malignancy.10,11

Radiomics is an advanced non-invasive

radiological analysis method. In glioma

research, a series of prediction models are

obtained by establishing the correlation

between key clinical features and image fea-

tures. A series of studies have shown

that radiomics may be used to predict

genome, protein, transcriptome and clinical

prognosis.12–14

Existing research relies on the macro-

scopic features of conventional magnetic

resonance imaging (MRI) to outline regions

of interest (ROI). The aim of the present

study was to outline peritumoral zones in

MR images according to fixed width, and

to explore prediction models established

using ROIs based on these zones, and

levels of Ki-67 and p53.

Patients and methods

Study population

In this retrospective study, patients with

pathologically confirmed glioma, who were

treated at Zhejiang Provincial People’s

Hospital, were sequentially enrolled between

January 2013 and September 2018. Inclusion

criteria comprised: patients who underwent

glioma resection and who had Ki-67 and/or

p53 immunohistochemical results for

resected tissue. The exclusion criteria were

as follows: (1) patients who underwent
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preoperative craniotomy or chemoradiother-
apy prior to scanning; (2) patients with a self
or family history of mental disorders or dis-
eases of the nervous system; and (3) patients
with a history of craniocerebral trauma.
Data regarding patient demographics, MRI
images, and Ki-67 and p53 levels were
obtained from clinical records.

The study was approved by the Ethics
Committee of Zhejiang Provincial People’s
Hospital (No. 2013KY066). All partici-
pants provided written informed consent
prior to commencement of the research,
and the study was conducted according to
the Declaration of Helsinki.

Imaging

All patients received standardized MRI of
the brain using a Discovery MR750 3.0T
MR system (GE Healthcare, Waukesha,
WI, USA). A common MRI protocol in
T2-weighted fast spin-echo images
(T2-FSE) and T1-weighted fluid-attenuated
inversion recovery (T1-FLAIR) images
was used.

Following acquisition, images were pre-
processed using Artificial Intelligence Kit
software (A.K; GE Healthcare Life
Sciences) as follows: (1) Resampling, all
maps were resampled to 1mm3

(Interpolation, Linear); (2) Denoising,
Gaussian 0.50. Bias Correct, MR Bias Field
Correction; (3) Intensity standardization
(Grey level Standardization), Desired mini-
mum of 0.0 and desired maximum of 255.0.

Following preprocessing, the region of
interest (ROI) was drawn using ITK soft-
ware (‘ITK-SNAP’; http: //www.itksnap.
org/). The boundary of the tumour was
determined by the T1 sequence, then the
solid parts of the tumour on the T1 and
T2 sequences were delineated based on
this reference, and using this, the peritu-
moral areas were expanded by 5 mm
steps. A representative image of the solid
tumour components and peritumoral areas

(5/10/15/20mm) is presented in Figure 1.

All segmentations were finished by a radi-

ologist (XS) and checked by a neuroradiol-

ogist (LL). Any disagreements were

resolved by integrating the opinion of a

third neuroradiologist (ZD). Unresolved

disagreements between radiologist and neu-

roradiologist were resolved by taking the

overlapping ROI. All statistical tests were

performed using SPSS software, version

20 (IBM, Armonk, NY, USA).

Feature calculation

First, the original T1-FLAIR and T2-FSE

imaging and ROI images were loaded into

the A.K software, then features were select-

ed in the operation interface, including

Form factor, Histogram, Haralick, grey

level run-length matrix (RLM) and grey

level co-occurrence matrix (GLCM), with

396 features extracted from these data.

Next, a label regarding Ki-67 and p53 was

added for each patient. In the model for Ki-

67 level, a value of �10% of cells express-

ing Ki-67 was labelled 1 and Ki-67 <10%

was labelled 0.15 In the model for p53 level,

p53þ (positive) was labelled 1 and p53–

(negative) was labelled 0.

Feature selection

Preprocessing steps

1. Abnormal values (non-calculated values

or outliers) were replaced by the sample

mean. (2) The ratio of actual data to

training data was 0.7, and for the test

data was 0.3.

Selection steps

1. Feature data were first assessed for nor-

mality of distribution. Differences

between features with normally distrib-

uted data were analysed by Student’s

t-test; and data without normal
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distribution were analysed by rank–sum
U-test. A P value< 0.05 was considered
statistically significant.

2. Correlation analysis was used to reduce
the dimensions as follows: The extracted
features were ordered 1–396. Spearman’s

rank correlation coefficient (filter thresh-
old 0.9) was performed on any of two
feature columns. If the correlation coef-
ficient was >0.9, then the means of two
features were highly correlated, thus, the

previous feature was retained and the
other excluded.

3. The most meaningful features were
chosen by the LASSO regression model
and least absolute shrinkage in the train-
ing data. The sum of squares of residuals
should be minimized, wherein the

absolute sum of the selected characteris-

tic coefficients does not exceed the tuning

parameter (k). In the LASSO model, the

minimum criterion (k) based on 10 cross

validations was chosen. This method was

used for regression analyses of high-

dimensional data.16

Machine learning

First, training and test data were used for

designing and checking the models, then,

the logistic regression process was used to

build the model for predicting Ki-67 and

p53 level. The method was based on linear

function, which was introduced into the sig-

moid function as an independent variable.

The classification was determined according

Figure 1. Representative brain magnetic resonance image of the peritumoral areas (5/10/15/20 mm,
respectively).
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to the probability P of output (the classifi-

cation result being 1).
In the training and test groups, the area

under the curve (AUC) for receiver-

operator characteristic (ROC) curves was

used to quantify the prediction accuracy

of radiology features.

Results

A total of 92 patients were included in the

study, who had the following data avail-

able: Ki-67 data, 55 patients; p53 data,

51 patients; and Ki-67 plus p53 data,

49 patients (Table 1). The ratio of Ki-67
�10% to Ki-67< 10% was 6: 11 in the test
data set, and 7: 12 in the training data set.

Results from testing the models using
ROC curve analyses found that the best
AUC value was shown for the T2 solid
model to classify Ki-67 �10% from
Ki-67< 10%, which produced an AUC of
0.773 (Figure 2) with sensitivity, specificity,
accuracy, and precision values of 0.818,
0.833, 0.824, 0.9, respectively (Table 2).

The AUC value for the T2 20-mm peri-
tumoral area model to classify Ki-67 �10%
from Ki-67<10% was also found to be

Table 1. Clinical and demographic data from 92 patients with pathologically confirmed glioma.

Demographic

Clinical parameter

Ki-67 (label 0,1)a

Statistical

significance

p53 (label 0,1)b

Statistical

significance0 (n¼ 20) 1 (n¼ 35) 0 (n¼ 16) 1 (n¼ 35)

Age, years 42.950� 16.288 51.343� 15.117 NS 52.750� 14.429 51.829� 14.557 NS

Sex,

male/female

12/8 23/12 NS 12/4 23/12 NS

Data presented as n prevalence or mean� SD.
a0¼Ki-67<10% and 1¼Ki-67�10%; b0¼ p53– and 1¼ p53þ.

NS, no statistically significant between-group difference (P> 0.05).

Figure 2. Receiver operating characteristic (ROC) curve analysis of testing and training data for the Ki-67
model in the T2 solid tumour area.
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0.773 (Figure 3), but with sensitivity, specif-

icity, accuracy, and precision values of 0.727,

0.667, 0.706, 0.8, respectively (Table 2).
The lowest AUC value was 0.621 for the

T1 solid model to classify Ki-67�10%

from Ki-67<10% (Figure 4), with sensitiv-

ity, specificity, accuracy, and precision

values of 0.727, 0.5, 0.647, 0.727, respective-

ly (Table 2).
The ratio of p53þ to p53– was 5: 11 in the

test data set, and 11: 24 in the training data set.
Testing the models using ROC curve

analyses showed that the best AUC value

was found for T2 10-mm peritumoral area

model to classify p53þ from p53–, which

produced an AUC of 0.709 (Figure 5),

with sensitivity, specificity, accuracy, and

precision values of 1, 0.4, 0.813, 0.786,

respectively (Table 3).
The AUC value for the T1 solid model

to classify p53þ from p53– was 0.673

(Figure 6), with sensitivity, specificity, accu-

racy, and precision values of 0.636, 0.8,

0.688, 0.875, respectively (Table 3).
Specific features calculations for the dif-

ferent models in different radiographic

Table 2. Receiver operating curve analyses of radiomic models for predicting Ki-67 levels in patients with
glioma using different regions of interest.

MRI region

T1 solid T2 solid T2 5 mm T2 10 mm T2 15 mm T2 20 mm

Accuracy 0.647 0.824 0.588 0.705 0.706 0.706

Sensitivity 0.727 0.818 0.818 0.818 0.727 0.727

Specificity 0.5 0.833 0.167 0.5 0.667 0.667

AUC 0.621 0.773 0.636 0.652 0.651 0.773

Precision 0.727 0.9 0.643 0.75 0.8 0.8

MRI, magnetic resonance imaging; AUC, area under the curve; solid, solid tumour region in T1 or T2 weighted images;

5/10/15/20 mm, peritumoral regions in T2-weighted images.

Figure 3. Receiver operating characteristic (ROC) curve analysis of testing and training data for the ROC
curve of testing and training data for the Ki-67 model in the T2 20-mm peritumoral areas.
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areas are provided as supplemental

material.

Discussion

The present study employed a radiomics

approach to investigate the potential

association between quantitative imaging

features extracted from MR images and

Ki-67 and p53 levels in patients with

glioma. The results showed that a machine

learning-based predictive model extracted

from the imaging features could distinguish

Figure 4. Receiver operating characteristic (ROC) curve analysis of testing and training data for the Ki-67
model in the T1 solid tumour area.

Figure 5. Receiver operating characteristic (ROC) curve analysis of testing and training data for the p53
model in the T2 10-mm peritumoral areas.

Sun et al. 7



between low and high levels of Ki-67
(AUC 0.773). In the p53 model, the best
AUC was 0.709, but with a specificity of
0.4. The results also showed that in the
Ki-67 marker model, the 20-mm peritu-
moral area in the T2-weighted sequence
had predictive efficiency (AUC, 0.773; and
accuracy, 0.706) that was close to the solid
tumour part in T2 sequence imaging.

Levels of p53 and Ki-67 are useful path-
ological molecular biomarkers in the

diagnosis and treatment of glioma, and
are widely used in the clinic.4,17 The present
research suggests a potential non-invasive
method for predicting levels of the Ki-67
marker, and also highlighted that p53 may
have some correlation with radiomics on T2
and T1 sequences.

According to the study conducted by Su
et al.,18 radiomics features are significantly
correlated with the level of Ki-67. The study
showed that the AUC value of a single-

Table 3. Receiver operating curve analyses of radiomic models for predicting p53 levels in patients with
glioma using different regions of interest.

MRI region

T1 solid T2 solid T2 5 mm T2 10 mm T2 15 mm T2 20 mm

Accuracy 0.688 0.562 0.562 0.813 0.5 0.688

Sensitivity 0.636 0.636 0.727 1 0.636 0.909

Specificity 0.8 0.4 0.2 0.4 0.2 0.2

AUC 0.673 0.382 0.527 0.709 0.381 0.4

Precision 0.875 0.7 0.666 0.786 0.636 0.714

MRI, magnetic resonance imaging; AUC, area under the curve; solid, solid tumour region in T1 or T2 weighted images;

5/10/15/20 mm, peritumoral regions in T2-weighted images.

Figure 6. Receiver operating characteristic (ROC) curve analysis of testing and training data for the p53
model in the T1 solid tumour area.
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sequence Ki-67 model can reach 0.745, which
is slightly below the value in the present study
(AUC, 0.773), and the composite sequence
can reach an AUC value of 0.963.18

Another study in low-grade gliomas reported
anAUCvalue for ap53model of 0.763,which
is higher than the present study.19Thismaybe
related to the fact that the present study was
not grouped by level. Previous studies have
shown that imaging histology may be helpful
in predicting the molecular characteristics of
gliomas and useful in targeted and personal-
ized treatment.20,21 Furthermore, the present
study showed that the 20-mm peritumoral
area in T2-weighted imaging had a similar
efficiency in predicting Ki-67 levels as the
solid tumour part in T2-weighted imaging.
Peritumoral oedema is one of the main char-
acteristics ofmalignant glioma and an impor-
tant factor that affects the incidence and
mortality in patients with glioma.22 This
may be related to the infiltration of glioma
cells into the peritumoral area.23 In addition,
according to a recent study, a number of
glioma stem cells were found to have infiltrat-
ed into the region of the peritumoral
oedema,24 and these resistant cells are, in
turn, found to cause tumour recurrence.25–27

The present findings suggested that there was
a correlation between radiomics features and
Ki-67 in the peritumoral areas.

In the present research, the peritumoral
zone was found to have different prediction
capabilities in different ranges. For Ki-67
markers, with the expansion of the peritu-
moral areas, the model prediction accuracy
was found to gradually increase, suggesting
that there are texture features related to Ki-
67 expression in the peritumoral zone. These
results indicate that the peritumoral areas
should be involved in the establishment of
a glioma model. A study of peritumoral
zone perfusion revealed that the peritumoral
area of gliomas has different perfusion
changes from metastatic tumours.28

Research often outlines ROI through solid,
necrosis, and oedema areas,29 but other

research has shown that infiltration of

tumour cells can be found in the peritumoral

areas without changes in conventional MRI

results.30 Therefore, the present study used

the method of extending the tumour edge

outward with a fixed width, to outline and

analyse the peritumoral areas, and revealed

that a valuable model can also be obtained.

In the analysis of glioma texture, in addition

to the ROI delineation through tumour

imaging, attention to the peritumoral areas

without changes in conventional MRI may

be complementary to the current study of

glioma texture. Attention to changes in the

peritumoral zone may provide more infor-

mation about the radiological characteristics

of gliomas.
The present results may be limited by

several factors. Because the sample size is

relatively small, and thus, insufficient, the

performance of the classification models

may have deficiencies. Therefore, a future

large multicentre study is needed to assess

the universalization ability of the radiomics

model. Also, due to the data being relatively

dated, some patients did not have contrast-

enhanced T1-weighted images, diffusion-

weighted images, and apparent diffusion

coefficient sequence checks, and hence, fur-

ther related studies are being conducted to

address these improvements.
In conclusion, Ki-67 was shown to have

a better correlation with radiomic features

than p53 in T2 weighted imaging.

Furthermore, the Ki-67 markers displayed

a good predictive effect in the 20-mm peri-

tumoral areas. These data suggest that there

is further research value in the brain area

without conventional MR features. The

present study also found that p53 markers

may be correlated with radiomics in T2 and

T1-weighted sequences, and more sequence

studies and explorations are warranted in

further studies. With the help of these

models, the tumour can be evaluated prior

to surgery to obtain more information

Sun et al. 9



regarding the extent of surgery required, as

well as the treatment and prognosis.

Declaration of conflicting interest

Peipei Pang is employed by GE Healthcare Life

Sciences, and she participated in software use,

guidance and data analysis.

Funding

This study received funding from the National

Natural Science Foundation of China (No.

81871337).

ORCID iD

Xiaojun Sun https://orcid.org/0000-0002-

6775-7230

Supplemental material

Supplemental material for this article is available

online.

References

1. Louis DN, Holland EC and Cairncross JG.

Glioma classification: a molecular reap-

praisal. Am J Pathol 2001; 159: 779–786.
2. Chen F, Becker AJ and LoTurco JJ.

Contribution of tumor heterogeneity in a

new animal model of CNS tumors. Mol

Cancer Res 2014; 12: 742–753.
3. Louis DN, Perry A, Reifenberger G, et al.

The 2016 world health organization classifi-

cation of tumors of the central nervous

system: a summary. Acta Neuropathol 2016;

131: 803–820.
4. Takano S, Ishikawa E, Sakamoto N, et al.

Immunohistochemistry on IDH 1/2, ATRX,

p53 and Ki-67 substitute molecular genetic

testing and predict patient prognosis in

grade III adult diffuse gliomas. Brain

Tumor Pathol 2016; 33: 107–116.
5. Qu DW, Xu HS, Han XJ, et al. Expression

of cyclinD1 and Ki-67 proteins in gliomas

and its clinical significance. Eur Rev Med

Pharmacol Sci 2014; 18: 516–519.
6. Cai J, Yang P, Zhang C, et al. ATRX

mRNA expression combined with IDH1/2

mutational status and Ki-67 expression

refines the molecular classification of astro-

cytic tumors: evidence from the whole tran-

scriptome sequencing of 169 samples.

Oncotarget 2014; 5: 2551–2561.
7. Wang PF, Liu N, Song HW, et al. IDH-

1R132H mutation status in diffuse glioma

patients: implications for classification.

Oncotarget 2016; 7: 31393–31400.
8. Cahill DP, Sloan AE, Nahed BV, et al. The

role of radiotherapy in the management of

patients with diffuse low grade glioma: a sys-

tematic review and evidence-based clinical

practice guideline. J Neurooncol 2015; 125:

531–549.
9. Yang W, Wang H, Ju H, et al. A study on

the correlation between STAT‑1 and mutant

p53 expression in glioma. Mol Med Rep

2018; 17: 7807–7812.
10. Hur H, Kim NK, Min BS, et al. Can a

biomarker-based scoring system predict

pathologic complete response after preoper-

ative chemoradiotherapy for rectal cancer?

Dis Colon Rectum 2014; 57: 592–601.
11. Jin Y, Xiao W, Song T, et al. Expression and

prognostic significance of p53 in glioma

patients: a meta-analysis. Neurochem Res

2016; 41: 1723–1731.
12. Kong DS, Kim J, Ryu G, et al. Quantitative

radiomic profiling of glioblastoma repre-

sents transcriptomic expression. Oncotarget

2018; 9: 6336–6345.
13. Kickingereder P, Burth S, Wick A, et al.

Radiomic profiling of glioblastoma: identify-

ing an imaging predictor of patient survival

with improved performance over established

clinical and radiologic risk models.

Radiology 2016; 280: 880–889.
14. Zhang B, Tian J, Dong D, et al. Radiomics

features of multiparametric MRI as novel

prognostic factors in advanced nasopharyn-

geal carcinoma. Clin Cancer Res 2017; 23:

4259–4269.
15. Cai J, Zhang C, Zhang W, et al. ATRX,

IDH1-R132H and Ki-67 immunohistochem-

istry as a classification scheme for astrocytic

tumors. Oncoscience 2016; 3: 258–265.

16. Gui J and Li H. Penalized Cox regression

analysis in the high-dimensional and low-

sample size settings, with applications to

microarray gene expression data.

Bioinformatics 2005; 21: 3001–3008.

10 Journal of International Medical Research

https://orcid.org/0000-0002-6775-7230
https://orcid.org/0000-0002-6775-7230
https://orcid.org/0000-0002-6775-7230


17. Hu X, Miao W, Zou Y, et al. Expression of

p53, epidermal growth factor receptor,

Ki-67 and O6-methylguanine-DNA methyl-

transferase in human gliomas. Oncol Lett

2013; 6: 130–134.
18. Su C, Jiang J, Zhang S, et al. Radiomics

based on multicontrast MRI can precisely

differentiate among glioma subtypes and

predict tumour-proliferative behaviour. Eur

Radiol 2019; 29: 1986–1996.
19. Li Y, Qian Z, Xu K, et al. MRI features

predict p53 status in lower-grade gliomas

via a machine-learning approach.

Neuroimage Clin 2018; 17: 306–311.
20. Itakura H, Achrol AS, Mitchell LA, et al.

Magnetic resonance image features identify

glioblastoma phenotypic subtypes with dis-

tinct molecular pathway activities. Sci

Transl Med 2015; 7: 303ra138.
21. Gevaert O, Mitchell LA, Achrol AS, et al.

Glioblastoma multiforme: exploratory

radiogenomic analysis by using quantitative

image features. Radiology 2014; 273:

168–174.
22. Lin ZX. Glioma-related edema: new insight

into molecular mechanisms and their clinical

implications. Chin J Cancer 2013; 32: 49–52.
23. Yamahara T, Numa Y, Oishi T, et al.

Morphological and flow cytometric analysis

of cell infiltration in glioblastoma: a compar-

ison of autopsy brain and neuroimaging.

Brain Tumor Pathol 2010; 27: 81–87.

24. Ruiz-Onta~non P, Orgaz JL, Aldaz B, et al.
Cellular plasticity confers migratory and
invasive advantages to a population of glio-
blastoma-initiating cells that infiltrate peri-
tumoral tissue. Stem Cells 2013; 31: 1075–
1085.

25. Zhang X, Zhang W, Mao XG et al.
Targeting role of glioma stem cells for glio-
bastoma multiforme. Curr Med Chem 2013;
20: 1974–1984.

26. Chen J, Li Y, Yu TS, et al. A restricted cell
population propagates glioblastoma growth
after chemotherapy. Nature 2012; 488:
522–526.

27. Mangiola A, de Bonis P, Maira G, et al.
Invasive tumor cells and prognosis in a
selected population of patients with glioblas-
toma multiforme. Cancer 2008; 113:
841–846.

28. Neiman OH, Sadetzki S, Chetrit A, et al.
Perfusion-weighted imaging of peritumoral
edema can aid in the differential diagnosis
of glioblastoma mulltiforme versus brain
metastasis. Isr Med Assoc J 2013; 15:
103–105.

29. Chaddad A, Kucharczyk MJ, Daniel P,
et al. Radiomics in glioblastoma: current
status and challenges facing clinical imple-

mentation. Front Oncol 2019; 9: 374.
30. Blystad I, Warntjes JBM, Smedby €O, et al.

Quantitative MRI for analysis of peritu-
moral edema in malignant gliomas. PLoS

One 2017; 12: e0177135.

Sun et al. 11


	table-fn1-0300060520914466
	table-fn2-0300060520914466
	table-fn3-0300060520914466
	table-fn4-0300060520914466
	table-fn5-0300060520914466

