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Simple Summary: The detection of DNA methylation changes in blood has emerged as a promising
approach for cancer diagnosis and management. Our group has previously optimized a blood DNA
methylation profiling technology that is based on affinity capture of methylated DNA, termed cfMBD-
seq. The aim of this study was to assess the potential clinical feasibility of cfMBD-seq. We applied
cfMBD-seq to the blood samples of cancer patients and identified methylation signatures that can not
only discriminate cancer patients from cancer-free individuals but can also enable accurate multi-
cancer classification. Our findings will help to expand on existing blood-based molecular diagnostic
tests and identify novel methylation biomarkers for early cancer detection and classification.

Abstract: Cell-free DNA (cfDNA) methylation has emerged as a promising biomarker for early cancer
detection, tumor type classification, and treatment response monitoring. Enrichment-based cfDNA
methylation profiling methods such as cfMeDIP-seq have shown high accuracy in the classification
of multiple cancer types. We have previously optimized another enrichment-based approach for
ultra-low input cfDNA methylome profiling, termed cfMBD-seq. We reported that cfMBD-seq
outperforms cfMeDIP-seq in the enrichment of high-CpG-density regions, such as CpG islands.
However, the clinical feasibility of cfMBD-seq is unknown. In this study, we applied cfMBD-seq to
profiling the cfDNA methylome using plasma samples from cancer patients and non-cancer controls.
We identified 1759, 1783, and 1548 differentially hypermethylated CpG islands (DMCGIs) in lung,
colorectal, and pancreatic cancer patients, respectively. Interestingly, the vast majority of DMCGIs
were overlapped with aberrant methylation changes in corresponding tumor tissues, indicating
that DMCGIs detected by cfMBD-seq were mainly driven by tumor-specific DNA methylation
patterns. From the overlapping DMCGIs, we carried out machine learning analyses and identified
a set of discriminating methylation signatures that had robust performance in cancer detection
and classification. Overall, our study demonstrates that cfMBD-seq is a powerful tool for sensitive
detection of tumor-derived epigenomic signals in cfDNA.

Keywords: liquid biopsies; cfDNA; cfMBD-seq; methylation; next-generation sequencing; lung
cancer; colorectal cancer; pancreatic cancer
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1. Introduction

Lung and colorectal cancer are among the most common causes of cancer-related
deaths in the US, whereas pancreatic cancer is the deadliest form of solid malignancy with
an alarming 10% five-year survival rate [1]. The dismal mortality rates seen in patients
with these malignancies are associated with advanced stage at the time of diagnosis. To
improve the outcomes of this patient population, many technologies and assays that
enable cancer detection at its early stage have been investigated. Among those, the use
of liquid biopsies is rapidly gaining prominence for minimally invasive cancer detection
and management [2–4]. Specifically, the detection of tumor-specific circulating cell-free
DNA (cfDNA) methylation aberrations holds great promise as a blood-based test for
cancer diagnosis for several reasons: First, aberrant DNA methylation occurs early during
tumorigenesis and is abundantly present in the entire cancer process [5]. Second, in contrast
to the highly heterogeneous nature of gene mutations, tumors of the same histological type
tend to exhibit similar DNA methylation changes among different individuals [6]. Third,
circulating components are shed from multiple body sites, and the methylation patterns of
cfDNA are consistent with the tissues they originated from [7]. In this context, systemic
analysis of cfDNA methylation profiles is under development for early cancer detection,
minimal residual disease monitoring, treatment response and prognosis assessment, and
to determine the tissue of origin [8,9].

DNA methylation is one of the best-studied epigenetic modifications, occurring fre-
quently at cytosine in a 5′-C-phosphate-G-3′ (CpG) dinucleotide context [10]. In the mam-
malian genome, the majority of CpGs are methylated, except for unmethylated CpG-rich
regions called CpG islands [11]. In contrast, the cancer methylome is characterized by
global hypomethylation and CpG-island-specific hypermethylation [12]. Hypermethyla-
tion of CpG island can affect the cell cycle, DNA repair, metabolism, cell-to-cell interaction,
apoptosis, and angiogenesis, all of which are involved in tumorigenesis and cancer pro-
gression [13]. CpG island hypermethylation has been described in almost every tumor
type [12]. One of the most well-studied DNA methylation signatures is the methylation
of the SEPT9 promoter, which is an FDA-approved biomarker for colorectal cancer (CRC)
detection [14]. A blood-based test for methylated SEPT9 (Epi proColon) has been applied
to plasma cfDNA in patients undergoing CRC screening; however, this test has low sen-
sitivity for early-stage CRC detection [15]. Nonetheless, CpG island hypermethylation
has demonstrated its great versatility and potential for the detection and management of
cancer [16].

Enrichment-based methylation profiling methods such as methyl-CpG-binding do-
main sequencing (MBD-seq) and methylated DNA immunoprecipitation sequencing
(MeDIP-seq) have shown similar sensitivity and specificity for the detection of differentially
methylated regions (DMRs) when compared to bisulfite conversion-based methods [17].
Nonetheless, such technologies are restricted to tumor tissue applications due to the need
for high amounts of DNA input. To address this issue, Shen et al. optimized the MeDIP-seq
protocol to allow methylome analysis of small quantities of cfDNA, termed cfMeDIP-
seq [18,19]. cfMeDIP-seq has shown high accuracy in the classification of a wide variety
of cancer types [18] and the characterization of renal cell carcinoma patients across all
stages [20,21]. To expand the use of enrichment-based methods in cfDNA, we optimized
the MBD-seq protocol for low-input cfDNA methylation profiling, termed cfMBD-seq [22].
We previously showed that cfMBD-seq provides higher sequencing data quality with more
sequenced reads passing through the filter and a lower duplicate rate than cfMeDIP-seq.
cfMBD-seq also outperforms cfMeDIP-seq in the enrichment of high CpG density regions
(i.e., CpG islands) [22]. However, the clinical feasibility of cfMBD-seq is unknown. Based
on our previous findings, we hypothesized that cfMBD-seq can identify hypermethylated
CpG islands as biomarkers for cancer detection and classification. In this study, we applied
cfMBD-seq to the plasma samples of patients with advanced lung, colorectal, and pan-
creatic cancer, and cancer-free individuals to determine whether cfMBD-seq can reliably
identify differentially methylated regions (DMRs) between cases and controls. We also
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investigated whether these DMRs enable the accurate discrimination between different
cancer types (Figure 1).
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Figure 1. Workflow chart of data generation and analysis. BH-FDR, Benjamini–Hochberg false
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islands; LASSO, least absolute shrinkage and selection operator.

2. Materials and Methods
2.1. Sample Acquisition and Clinical Cohort

The study subjects were recruited at the Moffitt Cancer Center, following Total Can-
cer Care protocol (https://moffitt.org/research-science/total-cancer-care/, accessed on
6 November 2021). A total of 53 subjects, including colorectal (N = 13), lung (N = 12),
pancreatic (N = 12) cancer patients, and non-cancer controls (N = 16), were used in this
study (clinical demographic characteristics are shown in Table S1). All cancer patients had
metastatic disease at the time of sample collection. Most cancer patients had adenocarci-
noma histology: 11 of 13 had colorectal adenocarcinoma; 9 of 12 had lung adenocarcinoma;
and 10 of 12 had pancreatic adenocarcinoma. Subjects in the non-cancer cohort were
specifically negative for any form of cancer. Samples were randomized and blinded during
cfDNA extraction, library preparation, and sequencing. Samples were unblinded during
data analysis. All patients provided written informed consent. The study was approved by
Institutional Review Boards (IRB# 00000971) of H. Lee Moffitt Cancer Center and Research
Institute (MCC 20563).

2.2. Plasma Sample Collection

The Moffitt Cancer Center Total Cancer Care followed standard operating procedure
for blood sampling. Whole blood specimens were obtained by means of a routine venous
phlebotomy and collected in purple-top EDTA blood tubes. Plasma was isolated from
whole blood at the time of subject enrollment. Centrifugation of whole blood was per-
formed at 1300× g for 10 min at room temperature. The plasma layer was transferred
into 1.5 mL cryovials and stored as three 1 mL aliquots. Plasma samples were frozen
immediately at −80 °C after isolation.

2.3. cfDNA Extraction

Plasma samples were thawed and centrifuged at 3000× g for 15 min to ensure complete
depletion of cell debris. cfDNA was extracted using a QIAamp Circulating Nucleic Acid Kit

https://moffitt.org/research-science/total-cancer-care/
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(Qiagen, Hilden, Germany) following the manufacturer’s protocol, except for the addition
of carrier RNA in Buffer AVE. All cfDNA eluates were quantified using a Qubit Fluorometer
with an iQuant™ NGS-HS dsDNA Assay Kit (Genecopoeia, Rockville, MD, USA) and then
submitted to the Moffitt Cancer Center Molecular Genomics Core for D1000 ScreenTape
Assay (Agilent, Santa Clara, CA, USA) to ensure the absence of high-molecular-weight
DNA contamination from white blood cell lysis.

2.4. Filler DNA Generation

To generate filler DNA, enterobacteria phage λ DNA was polymerase chain reaction
(PCR) amplified with GoTaq Master Mix (Promega, Madison, WI, USA). The primer
sequences were as follows: forward primer 5′- CGATGGGTTAATTCGCTCGTTGTGG-
3′, reverse primer 5′-GCACAACGGAAAGAGCACTG-3′. The 274-bp amplicons were
treated with CpG methyltransferase (M.SssI, Thermo Fisher Scientific, Waltham, MA,
USA) to methylate amplicons. Methylated amplicons were purified using a DNA Clean
and Concentrator-5 Kit (ZYMO Research, Irvine, CA, USA) and quantified using a Qubit
Fluorometer. CpG methylation-sensitive restriction enzyme HpyCH4IV (New England
BioLabs, Ipswitch, MA, USA) digestion, followed by agarose gel electrophoresis, was
performed to ensure the complete methylation of filler DNA.

2.5. Library Preparation

cfDNA was subjected to end repair/A-tailing and adapter ligation using a KAPA
Hyper Prep Kit (Kapa Biosystems, Wilmington, MA, USA) with the sequencing adapter
from NEBNext Multiplex Oligos for Illumina (New England BioLabs). The amount of
adapter was adjusted to an adapter:insert molar ratio of 200:1. Adapter ligated DNA were
purified with 0.8× SPRI Beads (Beckman Coulter, Pasadena, CA, USA) and digested with
the USER enzyme (New England BioLabs), followed by purification by means of a DNA
Clean and Concentrator-5 Kit. Adapter ligated DNA was first combined with methylated
filler DNA to ensure that the total amount of input for methylation enrichment was 100 ng,
which was further mixed with 0.2 ng of methylated and 0.2 ng of unmethylated spike-in A.
thaliana DNA from the DNA Methylation control package (Diagenode, Seraing, Belgium).

2.6. cfMBD Methylation Capture

The DNA mixture was subjected to methylation enrichment using a MethylCap
Kit (Diagenode), following the manufacturer’s protocol with some modifications. The
total volume brought up by Buffer B was reduced from 141.8 µL to 136 µL to minimize
DNA waste. The amounts of MethylCap protein and magnetic beads were decreased
proportionally according to the recommended input DNA-to-protein and beads ratio
(0.2 µg protein and 3 µL beads per 100 ng DNA input). MethylCap protein was 10-fold
diluted to 0.2 µg/µL using Buffer B. Single fraction elution with High Elution Buffer was
applied. The eluted fraction was purified using a DNA Clean and Concentrator-5 Kit. The
purified DNA was divided into two parts, one for qPCR (PowerUp™ SYBR™ Green Master
Mix, Thermo Fisher) amplification of spiked-in DNA for methylation enrichment quality
control, and another for library amplification. The recovery of the spiked-in methylated
and unmethylated controls can be calculated based on the cycle threshold (Ct) value of the
enriched and unenriched samples. The specificity of the capture reaction can be calculated
as (1− (recovery of unmethylated control DNA over recovery of methylated control DNA))
× 100). The specificity of the reaction should be ≥99% before proceeding to the next step.

2.7. DNA Sequencing and Alignment

Methylation-enriched DNA libraries were amplified as follows: 95 ◦C for 3 min,
followed by 12 cycles of 98 ◦C for 20 s, 65 ◦C for 15 s, and 72 ◦C for 30 s, and a final
extension of 72 ◦C for 1 min. During the amplification, unique indexes from primers
(NEBNext Multiplex Oligos for Illumina) were added to the sequencing adapter of each
sample. The amplified libraries were purified using 1× SPRI Beads, followed by a dual size
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selection (0.6× followed by 1.2×) to remove any adapter dimers. All final libraries were
first quantified using the Qubit assay and NEBNext® Library Quant Kit for Illumina® (New
England BioLabs) and then submitted to the Moffitt Cancer Center Molecular Genomics
Core for a D1000 ScreenTape Assay for the measurement of fragment size. Libraries were
sequenced on the NextSeq 550 platform (Illumina, San Diego, CA, USA), with a high-
output 75 bp single-end read, multiplexed as 12 samples per run. After sequencing, quality
control for raw sequence reads was performed using fastp (Version 0.20.1) [23] with the
default settings. The sequence reads were then aligned to the human genome (hg19) using
Bowtie-2 (Version 2.4.2) [24] with default settings. After the alignment, the generated sam
files were converted into bam files, followed by sorting, indexing, the removal of duplicate
reads, and the extraction of the read count on chr1–chr22 using the ‘view’, ‘sort’, ‘index’,
and ‘markdup’ command lines in SAMtools (Version 1.11) [25].

2.8. Quality Control of Methylation Enrichment

The R (Version 4.0.3 or greater) package RaMWAS (Version 1.12.0) [26] with default
parameters was used for the quality control of overall mapping quality and the calculation
of the non-CpG reads percentage, the average non-CpG/CpG coverage (noise), and the
CpG density at peak. The CpG annotation reference was obtained from the R package an-
notatr (Version 1.16.0): annots = ‘hg19_cpgs’. The BEDtools (Version 2.28.0) [27] ‘coverage’
command line was used to call the number of sequenced reads on each CpG feature. The
CpG feature coverage of each sample was combined as a count matrix. Transcripts per
kilobase million (TPM) normalization was performed before comparing the percentage of
CpG feature coverage between different groups.

2.9. Differential Methylation Analysis of cfMBD-Seq Data

Rows with inter-CpG regions and a 0 read count among all samples were filtered
out from the CpG feature raw count matrix. The filtered matrix was further subdivided
according to single cancer types and non-cancer controls and fitted to a negative binomial
model to call DMRs at BH-FDR < 0.1 (Wald test) using the R package DESeq2 (Version
1.32.0) [28]. The R package EnhancedVolcano (Version 1.10.0) [29] was used for the visual-
ization of fold changes and BH-FDR (q value) for all CpG islands and extended CpG islands.
Unsupervised hierarchical clustering was performed in Partek genomics suite (Version
7.0) for the visualization of DMCGIs, using log-transformed DESeq2 normalized values,
z-scores, Euclidean distance, and Ward Clustering. The R package pcaExplorer (Version
2.18.0) [30] was used for principal component analysis of DESeq2 normalized values of the
top 1000 differentially hypermethylated CpG islands (DMCGIs) selected according to the
highest row variance. The 95% confidence ellipses for the case and control were displayed.
DMCGIs with a fold change > 2 were used for intersection with tissue-derived DMCs.

2.10. Methylation Analyses for Tumor-Tissue-Specific DMCGIs

HM450K data of primary tumors and adjacent normal tissues from patients with
colon adenocarcinoma (COAD) (35 pairs), lung adenocarcinoma (LUAD) (21 pairs), and
pancreatic adenocarcinoma (PAAD) (10 pairs) were acquired from TCGA (TCGA manifest
is shown in Table S2). HM450K data of non-cancer individuals’ PBMCs (N = 61) from GEO
(non-smoker controls in GSE53045) were also used to deconvolute clonal hematopoiesis
effects. The R package minfi (Version 1.36.0) [31] was used to call DMCs (the mean of the ∆
beta value > 0.2 and BH-FDR < 0.1) between primary tumors and normal tissue/non-cancer
PBMCs. The R package EnhancedVolcano was used for the visualization of the ∆ beta
value and q-value for all HM450K CpG sites. To make tissue-derived DMCs comparable
with plasma-derived DMRs, all DMCs were annotated to an hg19 HM450K annotation
file and their corresponding CpG islands were identified for intersection. Tissue-derived
DMCGIs were identified by intersecting plasma case vs. control, primary tumor vs. normal
tissue, and primary tumor vs. PBMCs DMCGIs. Tissue-specific DMCGIs were identified
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by intersecting colorectal, lung, and pancreas-derived DMCGIs. Venn diagrams were used
for the visualization of intersections.

2.11. Machine Learning Analyses

Two independent cohorts were used for machine learning analyses: the cfMeDIP-seq
cohort and the HM450K cohort. cfMeDIP-seq data of lung cancer patients (N = 80) and
non-cancer individuals (N = 86) were used for the evaluation of early cancer detection in
plasma cfDNA. The cfMeDIP-seq data of colorectal cancer and pancreatic cancer patients
are not available based on the data sharing agreement. An independent HM450K cohort,
including primary tumors from TCGA (N = 210 for COAD, N = 385 for LUAD, and N = 162
for PAAD) (TCGA manifest shown in Table S2), was used for the evaluation of cancer
classification performance. HM450K data were converted to a CpG island beta value
matrix by calculating the mean beta values of CpG sites annotated to the same CpG island.
The R package Caret (Version 6.0-88) [32] was used to partition the discovery cohort data
into 100 class-balanced independent training and testing sets in an 80%–20% manner.
The top overlapping DMCGIs between cfMBD-seq and HM450K datasets were selected
for predictive modeling analyses. The R package glmnet (Version 4.1–2) [33] was used
to perform the regularized logistic regression model on the training sets. The LASSO
regularization method (alpha = 1) with 10-fold cross validation was applied to determine
the minimum lambda penalty value. The entire process was repeated 100 times to prevent
training-set biases. DMCGIs with non-zero coefficients across all repeats were determined
as cancer classifiers. The classification performance of predictive models was evaluated on
the held-out testing set using ROC statistics. The R package Rtsne (Version 0.15) [34] was
used for the t-sne plot to visualize cancer classifications in the cfMBD-seq, cfMeDIP-seq,
and HM450K datasets.

3. Results
3.1. Significant Enrichment of Methylated CpG Islands in cfDNA

To study the clinical feasibility of cfMBD-seq, we retrospectively profiled the cfDNA
methylome of 53 blood samples from patients with metastatic carcinoma of the colon/rectum,
lung, and pancreas, and from cancer-free individuals. We quantified cfDNA concentra-
tions from plasma samples and showed that cancer patients had higher cfDNA yields
than non-cancer controls (Figure S1a, Table S3). To investigate the methylation capture
efficiency of cfMBD-seq, we compared spiked-in controls between methylated and un-
methylated A. thaliana DNA in the capture reaction and observed a median specificity of
99.3% (99.16% (Q1)–99.43% (Q3)) across all samples (Figure 2a). Based on the sequenc-
ing data, we filtered out duplicate reads and reads with low alignment scores from total
sequence reads (41.62 (38.75–44.43) million) and obtained 35.33 (32.77–37.37) million high-
quality reads (Figure S1b). We then investigated genome-wide methylation enrichment
and found that the number of captured fragments without any CpG tandem accounted
for only 1.47% (1.33%–1.59%) of high-quality reads (Figure 2b). The average coverage
ratio of fragments without any CpG tandem to fragments with at least one CpG, known
as noise, was 0.15 (0.13–0.17) (Figure 2c). The median CpG density of fragments with
the highest read coverage was 25.2 (24.2–25.7) (Figure 2d), corresponding to high CpG
density regions—CpG islands. Intrigued by the high sequencing coverage on CpG islands,
we further studied the distribution of sequence reads by calculating the percentage of
normalized reads on different CpG annotation features (i.e., CpG islands, CpG shores,
CpG shelves, and inter-CpG regions). We found a median of 42.16% (39.47–45.15) of reads
mapped to CpG islands, whereas CpG islands only accounted for 0.7% of the hg19 refer-
ence genome (Figure 2e,f and Figure S1c). Since methylation alterations may occur a short
distance away from the CpG islands [35], we also calculated the sum of reads mapped
to extended CpG islands (i.e., CpG islands, CpG shores, and CpG shelves). A median
of 91.46% (90.89%–92.13%) of reads were mapped to the extended CpG islands, which
accounts for only 6.72% of the reference genome (Figure 2e,f and Figure S1d). These results
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demonstrate that most of the sequence reads captured by cfMBD-seq were significantly
enriched on CpG island-centered regions, illustrating successful cfMBD-seq methylation
enrichment and library construction across all samples.
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capture reactions across different groups (i.e., Healthy, non-cancer individuals; Colorectal, colorectal cancer patients; Lung,
lung cancer patients; Pancreas, pancreatic cancer patients) calculated using qPCR Ct values of methylated and unmethylated
spiked-in A. thaliana DNA. (b) Percentage of sequence reads that did not contain any CpG tandems across different groups.
(c) Ratio of average non-CpG coverage to average CpG coverage across different groups. Non-CpG coverage is defined
as the average coverage of fragments without any CpG tandems. CpG coverage is defined as the average coverage of
fragments with no less than one CpG tandem. (d) CpG density at peak across different groups. CpG density is defined as
number of CpG tandems per fragment. Peak is defined as fragments with the highest coverage. (e) Percentage of sequencing
coverage across different CpG annotation features (i.e., CpG islands, CpG shores, CpG shelves, and inter-CpG regions) for
all samples. (f) Percentage of different CpG annotation features in base pair size in hg19 human genome. For all box plots,
the extremes of the boxes represent the upper and lower quartiles, and the center lines define the median. Whiskers indicate
1.5× interquartile range.

3.2. Differential Methylation Analyses between Cancer Patients and Non-Cancer Controls

To identify differences in methylation patterns between cases and controls, we gener-
ated a read count matrix for each cancer type versus non-cancer controls. In this matrix,
each row represents a different CpG feature, and each column represents a unique indi-
vidual sample. We then removed rows annotated as inter CpG and rows with a 0 read
count across all samples and obtained 115,459 genomic regions. Next, we performed
differential methylation analysis based on a negative binomial model of feature counts at
a significance level of 0.1 using the Benjamini–Hochberg false discovery rate (BH-FDR)
and identified 2722, 3033, and 2831 DMRs for colorectal, lung, and pancreatic cancer, re-
spectively (Figures 3a and S2a,b). We further filtered these DMRs using a more stringent
criterion: absolute fold change >2, which resulted in 2009 DMRs (2007 hypermethylated
and two hypomethylated) in colorectal cancer, 1818 DMRs (1814 hypermethylated and
four hypomethylated) in lung cancer, and 1488 DMRs (1482 hypermethylated and six
hypomethylated) in pancreatic cancer. As the majority of the remaining DMRs were hy-
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permethylated, and most of them were CpG islands (97%, 85%, and 93% in colorectal,
lung, and pancreatic cancer patients, respectively). To enhance computational efficiency,
we reduced our dataset to 26,441 CpG islands (Table S4) and applied the same criteria for
differential methylation analysis (BH-FDR < 0.1 and fold change >2). This optimized analy-
sis identified 1759, 1783, and 1548 differentially hypermethylated CpG islands (DMCGIs)
in colorectal, lung, and pancreatic cancer, respectively (Figures 3b and S2c,d, Table S5).
Unsupervised hierarchical clustering of the top 100 hypermethylated CpG islands ranked
by p-value well distinguished cancer patients from non-cancer individuals by dividing
these groups into two clusters (Figures 3c and S2e,f). Principal component analysis (PCA)
using the top 1000 DMCGIs revealed the partitioning of cancer patients from the non-cancer
controls (Figures 3d and S3a–e). In the PCA plots, non-cancer samples clustered tightly
together, whereas cancer samples were not clustered, which may be attributed to tumor
heterogeneity. These combined findings suggest that cfMBD-seq can identify DMCGIs in
the plasma cfDNA of cancer patients and non-cancer controls.
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Figure 3. Differentially methylated regions between cases and controls detected by cfMBD-seq. (a) Volcano plots of
differentially methylated regions (DMRs) at extended CpG islands (CGI) (i.e., CpG islands, CpG shores, and CpG shelves)
between lung cancer patients (N = 12) and non-cancer controls (N = 16). Black dots indicate non-significant regions.
Blue and red dots indicate statistical significance at a Benjamini–Hochberg false discovery rate (FDR) < 0.1 (negative
binomial model, Wald test). Red dots also indicate regions with absolute fold change (FC) >2. (b) Volcano plots of
DMRs at CpG islands between lung cancer patients and non-cancer controls. (c) Unsupervised hierarchical clustering
(z-score normalization of DESeq2-normalized counts, Euclidean distance, and Ward Clustering) of the top 100 differentially
hypermethylated CpG islands between lung cancer patients and non-cancer controls. (d) Principal component (PC) analysis
using DESeq2-normalized counts of the top 1000 differentially hypermethylated CpG islands between lung cancer patients
and non-cancer controls.
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3.3. Significant Overlap between Tumor Tissue-Derived and cfDNA-Derived Differentially
Methylated CpG Islands

To explore whether DMCGIs detected by means of cfMBD-seq originated from tumor
tissues, we acquired the Infinium HumanMethylation450 BeadChip (HM450K) data from
primary tumors and matched adjacent normal tissues from the same patients, including
colon adenocarcinoma (COAD, 35 pairs), lung adenocarcinoma (LUAD, 21 pairs), and
pancreatic adenocarcinoma (PAAD, 10 pairs) from The Cancer Genome Atlas (TCGA)
(Figure S4a). We identified 21,274, 7635, and 7458 hypermethylated differentially methy-
lated CpG sites (DMCs) (mean of ∆ beta value > 0.2, BH-FDR < 0.1, F-test) between
primary tumors and matched normal tissues of COAD, LUAD, and PADD, respectively
(Figures 4a and S4b,c, Table S6). To make HM450K results comparable to cfMBD-seq, we
excluded the DMCs that were not annotated to CpG islands and kept the remaining 94.05%,
84.44%, and 90.73% of DMCs in the three cancer types. After further removal of duplicated
CpG islands, we obtained 4630, 2588, and 2478 unique DMCGIs for COAD, LUAD, and
PAAD, respectively. As non-tumor-derived cfDNA is mostly released from peripheral
blood mononuclear cells (PBMCs), we conducted an analysis to determine whether the
DMCGIs identified via cfMBD-seq were not derived from clonal hematopoiesis differ-
ences between cases and controls. For this purpose, we performed similar differential
methylation analyses between HM450K data from primary tumors and cancer-free indi-
viduals’ PBMCs (N = 61 from the Gene Expression Omnibus (GEO), non-smoker controls
in GSE53045) and identified a set of DMCs for each cancer type (Figure S4d–f, Table S6).
After the annotation and exclusion of DMCs, we obtained 7838, 4906, and 5613 unique
DMCGIs for COAD, LUAD, and PAAD, respectively. Intersection analyses of three sets
of DMCGIs showed that 84.5% of colorectal (1486/1759), 52.7% of lung (939/1783), and
57.9% of pancreatic (896/1548) cancer DMCGIs detected using cfMBD-seq overlapped
not only with DMCGIs between primary tumor and adjacent normal tissue, but also with
DMCGIs between primary tumor and PBMCs (Figure 4b). These findings suggest that
plasma-derived DMCGIs detected via cfMBD-seq were mainly driven by tumor-specific
DNA methylation patterns rather than by the background noise of the cell composition in
the tumor microenvironment.

3.4. Differentially Methylated CpG Islands for Early Lung Cancer Detection

Since most of the HM450K data originated from early-stage cancer tumor tissue sam-
ples, we hypothesized that the identified overlapping DMCGIs could be used for the early
cancer detection. To test this hypothesis, we acquired an additional cohort of 166 plasma
samples, including 80 lung cancer patients (N = 22 with early-stage disease) and 86 non-
cancer individuals from a previous cfMeDIP-seq study [18] (Figure S5a). A t-distributed
stochastic neighbor embedding (t-sne) plot using the 939 overlapping lung cancer DM-
CGIs identified a clear separation between lung cancer and non-cancer individuals in the
cfMeDIP-seq cohort, and only five individuals were misclassified (Figure S5b). To rigor-
ously evaluate the utility of these overlapping DMCGIs for cancer detection, we selected
the top 300 lung cancer DMCGIs based on their rank in terms of the fold change in the
cfMBD-seq results and carried out a set of machine learning analyses on the cfMeDIP-seq
cohort. We randomly split these samples into balanced training (80%) and testing (20%)
sets. To select the most discriminative markers, we trained a series of case-versus-control
binomial generalized linear models (logistic regression) with least absolute shrinkage and
selection operator (LASSO) regularization using these top features on the training sets. The
process was repeated 100 times to prevent training-set biases. Eventually, we identified
three DMCGIs (chr1:243646395-243646888, chr8:99985734-99986983, and chr21:38068194-
38073891) that had non-zero coefficients across all repeats and selected those as cancer
classifiers. The normalized read counts of these classifiers are higher in cancer patients than
in non-cancer controls (Figure S5c). To evaluate the performance of these classifiers, we fit
the predictive model on the testing dataset and used receiver operating characteristic (ROC)
statistics to calculate area under the ROC curve (AUC) for evaluation. The results showed
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that the model can predict lung cancer in the testing set with high accuracy (AUC = 0.949
(0.929–0.982)) (Figure 4c). Using only the three classifiers for the t-sne plot, all samples
were correctly classified (Figure 4d). These results suggest that early cancer detection is
possible when using tissue-specific DMCGIs identified by cfMBD-seq.
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Figure 4. Differentially methylated CpG islands are mainly driven by tumor-specific DNA methylation patterns. (a) Volcano
plots of differentially methylated CpG sites between lung adenocarcinoma (LUAD) primary tumors and matched adjacent
normal tissues from 21 patients from Infinium HumanMethylation450 BeadChip (HM450K) data. Black dots indicate non-
significant regions. Blue and red dots indicate regions significant at Benjamini–Hochberg false discovery rates (FDR) < 0.1
(F-test). Red dots also indicate regions with mean of ∆ beta values (DBV) >0.2. (b) Venn diagram showing the number of
overlapping regions between plasma-derived differentially hypermethylated CpG islands (DMCGIs) from cfMBD-seq and
tissue-derived DMCGIs from HM450K in three cancer types (i.e., C, colorectal cancer; L, lung cancer; P, pancreatic cancer).
(c) Predictive modeling using LASSO regularized logistic regression case-versus-control models on the cfMeDIP-seq cohort
including lung cancer patients (N = 80) and non-cancer controls (N = 86). ROC curve for 20% of held-out testing set is shown.
AUC values represent the median and interquartile ranges for 100 repeats of the model. (d) t-distributed stochastic neighbor
embedding (t-sne) plot using 3 classifiers (chr1:243646395-243646888, chr8:99985734-99986983, and chr21:38068194-38073891)
identified from the training set for the plasma samples of the entire cfMeDIP-seq cohort (N = 166).
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3.5. Differentially Methylated CpG Islands for Cancer Classification

To further investigate the candidate DMCGIs shared between cfDNA and tumor
tissue, we intersected the three sets of selected DMCGIs for colorectal (N = 1486), lung
(N = 939), and pancreatic (N = 896) cancer. We identified a total of 1271 cancer-type-specific
DMCGIs, including 738 for colorectal cancer, 370 for lung cancer, and 163 for pancreatic
cancer. Furthermore, a total of 266 DMCGIs were shared by these three cancer types
(Figure 5a). To rigorously evaluate the performance of these cancer-type-specific DMCGIs
in cancer classification, we acquired an additional independent TCGA HM450K data cohort,
including primary tumors for COAD (N = 210), LUAD (N = 385), and PAAD (N = 162)
(Figure S6a). To convert HM450K data to CpG-island-based beta values, we filtered out
CpG sites that were not annotated to CpG islands from 485,577 HM450K loci and used
the remaining 309,465 CpG sites for subsequent analysis. Given the methylation level
between neighboring CpG sites are positively correlated, we calculated the mean beta
values of CpG sites annotated to the same CpG island and generated a beta value matrix
for all CpG islands. We then performed similar machine learning analyses on the HM450K
cohort using the top 100 cancer-type-specific DMCGIs. The analyses consisted of a 4:1
sample partition, LASSO regularization, and logistic regression modeling. Rather than
a case-versus-control model, here we built a one-versus-all-others model for each cancer
type. After 100 repeats of the training process, we identified three colorectal, 16 lung, six
pancreatic specific DMCGIs (non-zero coefficients) as classifiers. Again, we fit the predictive
model on the held-out testing set and applied ROC statistics for evaluation. The results
showed great performance in the prediction of cancer type (median AUC = 1 for COAD,
1 for LUAD, and 0.989 for PAAD) (Figure 5b). The methylation levels of cancer classifiers
in its specific cancer type are higher than those of other cancer types (Figure S6b). To better
visualize the classification performance, we generated the t-sne plot using these classifiers
and observed clear separation by tumor type in the cfMBD-seq plasma cohort (Figure 5c).
This separation was notably reproduced in the HM450K cohort of 757 cancer tissue and 61
blood cell samples (Figure 5d). These results indicate the robust ability of cfMBD-seq to
recover tumor-tissue-derived methylation profiles in cfDNA across a range of cancer types
and to enable cancer type classification.

3.6. Gene Annotation of Differentially Methylated CpG Islands

To gain an understanding of the biological process behind cancer-type-specific DM-
CGIs, we linked these DMCGIs to their associated genes (Table 1). Some DMCGIs were
annotated to gene promoter regions. We found that several genes with promoter hyper-
methylation are implicated in the immune response, which is generally downregulated in
cancer [36]. For example, the protein encoded by PTGER4 is a member of the G-protein
coupled receptor family that can activate T-cell factor signaling [37]. We not only identified
DMCGIs in gene promoter regions, but also found DMCGIs in gene bodies and intergenic
regions (Table 1). In contrast to the hypermethylation of promoter CpG islands, which
prevents gene expression, hypermethylation in gene body CpG islands can enhance gene
expression levels [38]. Consistently with our findings, several genes with gene body hyper-
methylation were associated with the regulation of developmental processes. For example,
the protein encoded by WNT6 and HOXB8 has been implicated in oncogenesis and in
several developmental processes, such as embryogenesis. Overexpression of both WNT6
and HOXB8 play key roles in carcinogenesis [39,40]. These results suggest that cfMBD-seq
can capture tumor-relevant biological signals in the plasma cfDNA methylome. Taken
together, our results indicate that DMCGIs in cfDNA are useful in cancer detection and
classification, suggesting that tumor-derived epigenomic signals are retained in the cfDNA
methylome profiled by cfMBD-seq.
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(b) Predictive modeling using LASSO regularized logistic regression one-versus-all-others models on the HM450K cohort,
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(N = 757 primary tumor and N = 61 non-cancer PBMCs) (d).
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Table 1. Annotation of cancer-type-specific classifiers.

CpG Islands Size Coefficients Gene Location

Colorectal cancer
chr2:29337984-29338909 926 −9.83 CLIP4 Promoter

chr2:100937780-100939059 1280 −29.19 LONRF2 Promoter
chr6:125283125-125284389 1265 7.04 RNF217 Promoter

Lung cancer
chr2:66672432-66673636 1205 −9.04 MEIS1 Gene body
chr2:71503548-71504233 686 −5.54 ZNF638 Promoter

chr2:219736133-219736592 460 5.80 WNT6 Gene body
chr4:140655963-140657135 1173 13.48 MGST2 Gene body
chr4:174427892-174428192 301 7.82 \ Intergenic
chr5:40679503-40682081 2579 −43.06 PTGER4 Promoter
chr7:27265159-27265493 335 −7.47 \ Intergenic
chr7:65037625-65037864 240 −14.04 \ Intergenic

chr8:124172801-124173541 741 −14.47 \ Intergenic
chr9:96108467-96108992 526 12.82 C9orf129 Promoter

chr12:54408427-54408713 287 −5.11 \ Intergenic
chr12:58021295-58022037 743 15.82 B4GALNT1 Gene body
chr13:28549840-28550246 407 5.60 \ Intergenic
chr17:46691521-46692097 577 −4.75 HOXB8 Gene body
chr17:59539363-59539834 472 −12.18 TBX4 Gene body
chr17:70112825-70114271 1447 9.87 SOX9 Promoter

Pancreatic cancer
chr1:44883137-44884272 1136 −10.54 RNF220 Gene body
chr1:50798668-50799536 869 8.22 \ Intergenic
chr5:92939796-92940216 421 7.85 \ Intergenic

chr10:11059443-11060524 1082 10.34 CELF2 Promoter
chr11:20177609-20178824 1216 6.63 DBX1 Gene body

chr12:114881650-114881937 288 −27.52 \ Intergenic

4. Discussion

Blood-based assays that can identify the tissue of origin associated with cfDNA
fragments could be instrumental in detecting and classifying malignancies based on his-
tological subtypes. Currently, cfDNA-based approaches that focus on the detection of
cancer-associated single-nucleotide variants (SNVs) and somatic copy number variants
(CNVs) have been applied in clinical settings [41]. However, SNV assays have limitations
associated with confounding signals from blood cells due to clonal hematopoiesis [42].
Similarly, CNV assays are limited by minor differences between cases and controls, result-
ing in a need for increased sequencing depths, which translates into higher costs [43]. More
importantly, these genetic variations have not yet demonstrated robust tissue-of-origin
classification across a broad range of tumor types. In contrast, given the inherited ability of
tracing the tissue of origin, cfDNA methylation is a promising biomarker in liquid biopsies.
Therefore, the detection of tumor-specific cfDNA methylation signatures is believed to be a
more robust approach. In this study, we highlight the potential of hypermethylated CpG
islands in cancer detection and classification.

Currently, most cfDNA methylation profiling technologies are based on chemical
treatment using sodium bisulfite [44]. Although whole-genome bisulfite sequencing of
cfDNA has been attempted, this approach is not feasible for clinical applications because
of its high cost and limited information recovery due to the low abundance of CpG
in the human genome [45,46]. To address this issue, highly sensitive targeted assays
such as targeted bisulfite sequencing and digital methylation-specific PCR have been
developed [47,48]. Targeted bisulfite sequencing of cfDNA has demonstrated high accuracy
for the detection of hepatocellular carcinoma and CRC in a large cohort of cancer patients
and non-cancer controls [49,50]. However, the target methylation markers of these studies
were selected from HM450K data. It is known that the methylation array has poor genome-
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wide coverage of all CpG sites, which may result in the omission of important targets [51].
Alternatively, enrichment-based approaches such as cfMeDIP-seq and cfMBD-seq have
also shown great potential in profiling the cfDNA methylome [18,22]. These discovery
assays enable the identification of novel blood-based methylation signatures, expanding
on the existing biomarkers selected from tumor tissue. Our study focused on the feasibility
of cfMBD-seq in identifying hypermethylated CpG islands in plasma cfDNA, which may
facilitate the development of blood-based molecular diagnostic tests.

Generally, sequencing data from methylation enrichment-based methods are analyzed
by comparing the relative abundance of captured fragments. The genome is divided
into non-overlapping adjacent genomic windows of a specified width and the number of
sequence read counts is called for each window. Taking the 300-bp window as an example,
there will be more than 10 million genomic regions, which requires a significant amount
of computing memory. In this study, instead of genomic windows, we called read counts
according to CpG annotation features. This is because MBD methylation enrichment has
bias toward hypermethylation on high-CpG-density regions [52]. We found that 42.16%
of the sequence reads in this study were mapped to CpG islands, and that 91.46% of the
reads were mapped to the extended CpG islands, which account for only a small fraction
of the human genome (Figure 2e,f). Therefore, by excluding the large fraction of low-value
inter-CpG regions, the computational efficiency was significantly enhanced. Additionally,
well established RNA-seq data analysis packages such as DESeq2 can be directly applied
to the CpG features’ read count matrix. Together, this CpG island-centered strategy is a
preferred data analysis method for cfMBD-seq.

Differential methylation analysis, based on a negative binomial model of CpG island
read counts, identified overwhelming differentially hypermethylated CpG islands (DM-
CGIs) (Figure 3b). This is consistent with the fact that the tumor methylome is characterized
by DNA methylation alterations with CpG-island-specific hypermethylation. Unlike ge-
nomic DNA from primary tumor tissue that can perfectly discriminate cancer specimens
from non-cancer specimens, cfDNA in blood has much lower tumor-derived signals and
much higher confounding signals from normal cells. Additionally, pre-analytical factors
such as plasma collection and cfDNA library preparation can also affect the identification
of methylation signatures. These factors may partially explain why both clustering and
principal component analysis did not perfectly segregate cancer and non-cancer specimens
(Figure 3c,d). In this study, confounding factors such as age and gender were not well
matched between the case and control cohorts, which may result in false-positive DMCGIs.
To assess whether the DMCGIs identified via cfMBD-seq represented tumor-derived DNA
methylation changes, we compared our findings against the HM450K tumor tissue data.
We first identified a set of DMCGIs between paired primary tumor tissues and adjacent
normal tissues. Since non-tumor-derived cfDNA released from blood cells can also lead to
false positive results, we then identified a set of DMCGIs between primary tumor tissues
and non-cancer PBMCs to deconvolute the effect of clonal hematopoiesis. In the inter-
section analysis, the majority of the DMCGIs identified in plasma using cfMBD-seq were
consistent with tumor tissue-derived DMCGIs across all analyzed cancer types (Figure 4b).

The main limitation of this study was the small sample size, which prevented us from
building prediction models using the cfMBD-seq dataset. Instead, we decided to use the
cfMeDIP-seq and HM450K datasets for predictive modeling. In the LASSO-regularized
logistic regression analysis using overlapping lung cancer DMCGIs in the cfMeDIP-seq
dataset, the model was able to discriminate between lung cancer patients and non-cancer
controls in the testing set with high accuracy (Figure 4c,d). However, when we tried to fit
the model to our cfMBD-seq dataset for validation purposes, the prediction performance
was relatively poor (data not shown). Although the methylation capture principle and
data analysis pipeline of these two technologies are similar, the capture efficiency on
fragments with different CpG density is different. cfMeDIP-seq preferentially enriches
methylated regions with a modest CpG density, whereas cfMBD-seq captures a broad
range of CpG densities and identifies a larger proportion of CpG islands [22]. These
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differences may explain the impaired performance of these classifiers in our study cohort.
Additionally, it is important to note that HM450K and cfMBD-seq are completely different
technological platforms. Unlike bisulfite conversion-based methods, cfMBD-seq is an
enrichment-based method that cannot provide the absolute methylation level at each CpG
site. Taking advantage of the fact that the methylation level between neighboring CpG
sites is positively correlated, we transformed the CpG sites beta value matrix into a CpG
island beta value matrix. This transformation not only mitigates the disadvantage that
HM450K has poor coverage of all CpG sites, but also makes HM450K data comparable with
cfMBD-seq DMCGIs. However, since HM450K data are derived from tumor tissue genomic
DNA, cancer type classifiers identified from HM450K predictive models (Figure 5b–d)
cannot be directly applied for cancer classifications on plasma-based methylation data.
Future studies with larger patient cohorts are needed to validate our findings.

In summary, in this proof-of-principle study we provide important insights into
the possible future clinical applications of cfMBD-seq. Highlights of the study include:
(1) cfMBD-seq enables the identification of cancer-associated DMCGIs from plasma cfDNA
in cancer patients; (2) the identified DMCGIs are mainly driven by tumor-specific DNA
methylation patterns and demonstrate promise for future studies, using this technology
for cancer detection and classification; (3) the most discriminating DMCGIs selected by
our prediction models are associated with important biological processes that contribute
to carcinogenesis.

5. Conclusions

cfMBD-seq is a non-invasive, cost-effective, bisulfite-free, and sensitive methylation
profiling method for the capture of hypermethylated CpG islands in cfDNA. Our study
demonstrates the potential clinical feasibility of cfMBD-seq. Our current results provide
considerably strong justification for future biomarker discovery and validation in large-
scale patient populations. Our findings underscore the utility of differentially hypermethy-
lated CpG islands in cfDNA for accurate cancer detection and multi-cancer classification.
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