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enhanced orbital adipogenesis in 
a mouse model of t-cell-mediated 
autoimmunity, zymosan A-treated 
SKG mice: implications for Graves’ 
ophthalmopathy
Sera park1,5, Dae-Young park2,5, Jaeryung Kim2, Kyung in Woo2, Yoon-Duck Kim2, Jisang Han3, 
tae-Young chung2, Hoon-Suk cha4 ✉ & Dong Hui Lim2 ✉

Inflammation and remodelling of orbital tissue associated with enhanced adipogenesis commonly 
occur in Graves’ ophthalmopathy (GO), however, the underlying mechanisms that link immune cells and 
adipocytes in orbital inflammation are not well-known. The primary aim of this study was to elucidate 
how a genetically determined shift in the T-cell repertoire toward self-reactive T-cells could drive orbital 
adipogenesis. To induce the T-cell-mediated autoimmune response, SKG mice were intraperitoneally 
injected with zymosan A once at 8 weeks of age. After three months, orbital magnetic resonance 
imaging (MRi), histopathologic studies, and in vitro analyses were performed to evaluate inflammation 
and adipogenesis. The eyes of the zymosan A-treated SKG mice displayed proptosis and blepharitis. 
A detailed analysis of orbital adipose tissue showed enhanced orbital adipogenesis and cellular 
infiltration compared to controls. In addition, increased secretion of adipokines and other cytokines 
in the periorbital tissue was observed, together with elevated serum concentration of inflammatory 
cytokines. Orbital adipogenesis was enhanced in zymosan A-treated SKG mice, a novel mouse model 
for GO-like inflammatory adipose phenotypes most likely induced by T-cell mediated autoimmune 
responses. This mouse model gives us the opportunity to examine the underlying molecular 
mechanisms of enhanced adipogenesis in Go, ultimately providing a potential therapeutic target 
alternative to conventional GO treatment.

Graves’ ophthalmopathy (GO) is defined as autoimmune inflammatory disorder involving the orbit and perior-
bital tissues, related to the systemic autoimmune process underlying Graves’ disease1. Although GO is generally 
characterized by periorbital oedema, lid retraction, lid lag, erythema, conjunctivitis, and exophthalmos, it is a 
potentially vision-threatening eye disease that has perplexed physicians and researchers for a long time2. GO usu-
ally occurs in hyperthyroidism, however, it sometimes develops in patients under eu- or hypothyroid conditions 
with chronic autoimmune thyroiditis. The incidence rate of GO is 16 women and 3 men per 100,000 people per 
year3. Approximately ~5% of patients with GO have extreme clinical manifestations with severe pain, inflam-
mation, and vision-threatening compressive optic neuropathy4. Immunosuppressive agents, including corticos-
teroids and orbital radiotherapy, have been the mainstay of treatment in the severe and active phases based on 
the hypotheses that GO is attributed to the loss of immunological tolerance to the thyroid stimulating hormone 
receptor (TSHR) and other antigenic proteins and GO results from the linked processes of auto-reactivity and 
tissue remodeling5. Nevertheless, glucocorticoids and orbital radiotherapy only reduce inflammatory signs and 
symptoms in patients in active phase of GO, minimally affecting proptosis and occasionally causing dose-limiting 
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side effects6. This unfulfilled medical need is resulting from the poorly understood underlying mechanisms of the 
disease; periorbital tissues in GO patients can be obtained only during the chronic phase of the disease because 
surgical decompression of the orbit is usually performed at that phase.

The SKG mouse line, in which chronic autoimmune responses mediated by CD4+ T-cell and spontaneously 
developed arthritis are induced in a conventional (not clean) environment or by a single zymosan A injection, has 
been used as an experimental animal model of rheumatoid arthritis and spondyloarthritis7,8. The primary cause 
of the disease is a point mutation in a gene that encodes ZAP-70, a key molecule in signal transduction in T-cells9. 
Alteration of T-cell antigen receptor signal transduction through the aberrant ZAP-70 changes thymic selection 
thresholds of T-cells, promoting positive selection of autoimmune T-cells that would otherwise be negatively 
selected7. Meanwhile, a previous study using blood samples of patients with Graves’ disease reported that a single 
nucleotide polymorphism within the lymphoid tyrosine phosphatase (LYP), a potent inhibitor of signal trans-
duction and activation of T-cells, had a highly significant association with Graves’ disease compared to healthy 
controls10. Considering these interesting reports, we decided to evaluate whether zymosan A-treated SKG mice 
exhibited GO phenotypes, and if so, the precise molecular mechanism underlying the enlargement of orbital fat.

Results
Zymosan A treatment in SKG mice leads to blepharitis and proptosis. To investigate whether 
zymosan A-treated SKG mice induce GO phenotypes, we induced an innate immune stimulus by intraperitoneal 
administration of zymosan A into 8-week-old SKG mice and analysed their orbits and ocular adnexa 3 months 
later (Fig. 1a). Normal BALB/c mice among the littermates for each experiment were defined as wild type (WT) 
mice. The data representative of three independent experiments with three mice in each group were shown unless 
otherwise indicated. Consistent with a previous finding11, we observed a prominent blepharitis phenotype in 
SKG mice (Fig. 1b). The thickness of the entire eyelid and Meibomian gland were markedly increased by 11.9% 
and 33.5%, respectively, in SKG mice compared with WT mice (Fig. 1c–e). In addition, increased infiltration of 
inflammatory cells was observed in the eyelids of SKG mice (Fig. 1f,g), implying that those cells led to blepharitis. 
Importantly, analysis of images obtained from magnetic resonance imaging (MRI) revealed that eyes of SKG mice 
displayed significantly greater degree of proptosis by 28.9% in comparison with those of WT mice (Fig. 1h,i). 
Taken together, these findings indicate that zymosan A treatment in SKG mice induces blepharitis and proptosis, 
which are similar to GO phenotypes

Proptosis of eyes in SKG mice is induced by increased inflammation and beige adipogenesis in 
the orbital fat tissues. To elucidate the mechanisms underlying proptosis of eyes in SKG mice, we admin-
istered zymosan A into 8-week-old SKG mice and performed histological analyses of orbital tissues 3 months 
later (Fig. 2a). Intriguingly, compared with WT mice, SKG mice exhibited a markedly increased area of orbital 
fat around the optic nerve by 140.7% (Fig. 2b,c) while the volume of extraocular muscle and glycosaminogly-
can accumulation were not different between zymosan A-treated SKG mice and WT mice (Supplementary 
Fig. S1), suggesting that proptosis in SKG mice is attributed to enlargement of orbital fat. In addition, increased 
inflammatory cells in SKG mice were identified only in the periorbital fat (Fig. 2d) except for extraocular muscle 
(Supplementary Fig. S1). These findings imply that the development of proptosis of the eyes in SKG mice would 
be ascribed to an inflammatory response in orbital fat. Furthermore, considering that T-cell mediated immune 
response has a substantial role in adipose tissue metabolism12,13 and that self-reactive CD4+ T-cells are known to 
be produced in the thymus of SKG mice7, we next investigated the CD4+ T-cell distribution in periorbital tissue 
and the expression of uncoupling protein 1 (Ucp1), a key marker of beige fat14, in periorbital fat tissue around the 
optic nerve. Intriguingly, CD4+ T-cells in SKG mice were significantly increased by 412.2% compared with those 
in WT mice (Fig. 2e,f) and Ucp1+ adipocytes in SKG mice were significantly increased by 46.4% compared with 
those in WT mice (Fig. 2g,h). Together, these findings suggest that increased inflammation and beige adipogene-
sis by T-cell mediated autoimmune response in the orbital fat tissue of SKG mice could induce proptosis of eyes, 
resembling GO in humans.

increased secretion of adipokines in the periorbital tissue and elevated serum concentra-
tion of inflammatory cytokines in SKG mice. These findings led us to ask how T-cell mediated auto-
immune response in zymosan A-treated SKG mice enhances orbital adipogenesis. To answer this question, 
we firstly analysed changes in secretion of adipokines in the periorbital tissue of SKG mice at 3 months after 
zymosan A administration (Fig. 3a). Compared with WT mice, a significantly increased level of several key 
adipokines, including Ucp1, adiponectin, and leptin, was observed in SKG mice (Fig. 3b–d). In addition, type 
2 T-helper (Th2) cytokines, including IL-4, IL-5, and IL-13, were also increased in SKG mice compared with 
WT mice (Fig. 3e–g), consistent with previous reports demonstrating that beige adipogenesis was induced 
by Th2 cytokines15,16. Meanwhile, periorbital tissues in SKG mice also showed higher expressions of typical 
pro-inflammatory cytokines, including IFN-γ, TNF-α, and IL-2, compared with those in WT mice (Fig. 3h–j), 
indicating that pro-inflammatory cytokines also have a certain role in enhanced orbital adipogenesis together 
with adipokines and Th2 cytokines. We next investigated the serum concentration of cytokines, which were ele-
vated in the periorbital tissue of SKG mice at 3 months after zymosan A injection (Fig. 4a). Most of them were sig-
nificantly elevated (Fig. 4b–g), implying that both serum Th2 cytokines and pro-inflammatory cytokines would 
be implicated in the pathogenesis of GO.
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Figure 1. Zymosan A treatment in adult SKG mice encourages blepharitis and proptosis of eyes. (a) Diagram of 
the schedule for an innate immune stimulus by zymosan A administration starting at 8 weeks old and analyses 
3 months later using SKG mice. (b) Gross images of eyes in SKG and WT mice. (c–e) Images and comparisons 
of the thickness of the entire eyelid (red double arrow) and Meibomian gland (blue double arrow). Scale bars: 
200 μm. (f,g) Images and comparison of the number of inflammatory cells in the eyelid. Scale bars: 50 μm. n = 3 
for each group. *P < 0.05 versus WT by unpaired t - test. (h,i) MR images and comparison of orbital protrusion 
measured by the distance (red double arrow) between the corneal apex and the intercanthal line (green double 
arrow) connecting the bony rims of the outer canthi. n = 3 for each group. *P < 0.05 versus WT by unpaired 
t-test. n.s., not significant.
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Figure 2. Proptosis of eyes in SKG mice is induced by increased inflammation and beige adipogenesis in the 
orbital fat tissue. (a) Diagram of the schedule for an innate immune stimulus by zymosan A administration 
starting at 8 weeks old and analyses 3 months later using SKG mice. (b–d) Images and comparisons of the 
area of orbital fat around the optic nerve and inflammatory cells of orbital fat around the optic nerve. The blue 
dashed lines demarcate orbital fat. Scale bars: 200 μm. (e,f) Images and comparison of the intensity of CD4 
immunostaining in periorbital fat. The red dashed boxes are magnified in lower panels. Scale bars: 50 μm. 
(g,h). Images and comparison of the intensity of Ucp1 immunostaining in periorbital fat. n = 3 for each group. 
*P < 0.05 and **P < 0.01 versus WT by unpaired t-test.
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Discussion
In this study, we demonstrate that induction of T-cell-mediated autoimmune response in zymosan A-treated 
SKG mice results in enhanced orbital adipogenesis. The phenotypes in this mouse model, including proptosis and 
blepharitis, are involved in GO. The intriguing characteristics of this mouse model are changes of orbital fat and 
infiltration of inflammatory cells together with increased adipokines and inflammatory cytokines in periorbital 
tissue and serum. Thus, zymosan A-treated SKG mice could be applied to the study of GO, eventually providing 
opportunities for searching novel therapeutic targets for GO.

Previously, several murine models of GO have been suggested17. Among them, plasmid18 or 
adenovirus-induced19 immunization with TSHR in BALB/c mice was known to be the most successfully estab-
lished murine GO model, which demonstrated inflammatory alterations and increased volumes of orbital fat and 

Figure 3. Increased secretion of adipokines in the periorbital tissue of SKG mice. (a) Diagram of the schedule 
for an innate immune stimulus by zymosan A administration starting at 8 weeks old and qPCR analyses of 
adipokines and other cytokines in the periorbital tissue of SKG mice 3 months later. (b–j) Relative levels of 
Ucp1, leptin, adiponectin, IL-4, IL-5, IL-13, IFN-γ, TNF-α, and IL-2. n = 3 for each group. *P < 0.05 versus WT 
by Mann-Whitney U test.
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muscle. However, considering that autoantibodies to TSHR are not the only causes for GO and the underlying 
molecular mechanism of GO is extremely complex, we decided to evaluate whether the CD4+ T-cell-mediated 
chronic autoimmune process in the zymosan A-treated SKG mice is involved in the pathogenesis of GO. In 
this study, compared with a previously established GO mice model, zymosan A-treated SKG mice showed sim-
ilar phenotypes, including inflammatory responses in orbital tissues and an increase in orbital fat, although no 
phenotypical difference was found in extraocular muscle. In particular, when we evaluated the concentration 
of adipokines in the periorbital tissues and serum cytokines in zymosan A-treated SKG mice, elevated levels 
of both periorbital adipokines and serum cytokines were identified, indicating that this mouse model induces 
autoimmune-related adipogenesis in periorbital tissue. Therefore, it is supposed that there would be a more suit-
able, pathogenesis-related murine GO model with more prominent GO phenotypes by combining the TSHR 
immunization model with zymosan A-treated SKG mice. Further research to evaluate the usefulness of the com-
bined model remains to be done.

Enhanced orbital adipogenesis in GO has been attributed to the intracellular Akt/phosphoinositide 3 kinase 
signalling mediated by TSHR and insulin-like growth factor-120. Recently, Schluter et al.21,22 reported that brown 
fat is widely distributed in the retro-orbital fat tissue of mice, and protein expression of Ucp1 was increased in 
the orbital adipose tissue of mice immunized with human TSHR. In this study, we also identified that increased 
protein expression of Ucp1 was identified, solidifying the possibility of browning of adipose tissue as a putative 
mechanism of enhanced orbital adipogenesis in the pathogenesis of GO.

The SKG mice were previously shown to exhibit periocular manifestations, including blepharitis and conjunc-
tivitis, which is induced by an autoimmune, T-cell-intrinsic response11. In this study, we also identified similar 
periocular phenotypes, such as increased infiltration of inflammatory cells and an increase in the thickness of 
both the entire eyelid and Meibomian gland, which can be observed in patients with GO23–25. Therefore, consid-
ering enhanced orbital adipogenesis as well as periocular manifestations, zymosan A-treated SKG mice could be 
a putative model for GO.

Figure 4. Evaluation of serum concentration of cytokines in SKG mice. (a) Diagram of the schedule for an 
innate immune stimulus by zymosan A administration starting at 8 weeks old and serum cytokine analyses 3 
months later using SKG mice. (b–g) Serum levels of IL-4, IL-5, IL-13, IFN-γ, TNF-α, and IL-2. n = 6 for each 
group. *P < 0.05 versus WT by Mann-Whitney U test.
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In spite of the strengths above, this study has some limitations including small sample size inherent to the 
use of littermate controls. In addition, because the titre of autoantibodies and anti-zymosan antibodies was not 
measured due to no commercially-available ELISA kits for mouse serum, our observations does not completely 
exclude the possibility of potential involvement of these antibodies in the phenotypes of our mouse model, sug-
gesting that future studies are warranted to assess their involvement.

In conclusion, we demonstrated that zymosan A-treated SKG mice could be a suitable murine GO model 
because of its autoimmune-related, enhanced orbital adipogenesis. In addition, browning of orbital fat tissue is a 
putative underlying mechanism of increased periorbital fat tissue. Future studies are warranted to evaluate phe-
notypes of a combined model induced by immunization of TSHR and injection of zymosan A in the SKG mice.

Methods
Mice. SKG mice purchased from CLEA Japan were bred in our specific-pathogen-free animal facility in the 
Samsung Biomedical Research Institute under climate-controlled conditions with a 12-h light/dark cycle and fed 
with free access to a standard diet (PMI LabDiet) and water. To induce an innate stimulus in SKG mice, 3 mg of 
zymosan A (Z4250, Sigma-Aldrich) was intraperitoneally injected once into the 8-week-old SKG mice. All mice 
were anesthetized by intramuscular injection of 40 mg/kg ketamine and 12 mg/kg xylazine before any procedures. 
All animal care and experimental procedures were performed in accordance with the guidelines approved by 
the Institutional Animal Care and Use Committee of Samsung Medical Center (No. 20161121001), and mice 
were handled according to the Association for Research in Vision and Ophthalmology Statement for the Use 
of Animals in Ophthalmic and Vision Research and the guidelines and regulations of the Laboratory Animal 
Research Center at Samsung Medical Center, Sungkyunkwan University School of Medicine.

Histological analyses. Mice were anesthetized as described above. After perfusion fixation was performed 
using 4% paraformaldehyde solution, the orbits were removed completely, including adjacent bony structures, 
to leave their contents untouched. Then orbital tissues were decalcified in EDTA for 24 h. After deparaffinization 
and dehydration, sections were subjected to staining for haematoxylin and eosin (H&E) and Alcian blue. For the 
immunohistochemical analysis, sections were treated with 0.5% Triton X-100 solution for 30 min at room temper-
ature. After washing, endogenous peroxidase was quenched with 3% H2O2 (in methanol) and non-specific bind-
ing sites were blocked with 5% normal goat serum in PBS. Then, sections were incubated overnight with anti-CD4 
antibody (rabbit origin, 1:200, Abcam, Cambridge, MA, USA), followed by detection with the VECTASTAIN 
Elite ABS rabbit IgG kit (Vector Laboratories, Burlingame, CA, USA), according to the manufacturer’s protocol, 
and 3, 3-diaminobenzidine (DAB) was adjusted for colour development. The relative area of orbital fat was cal-
culated as a percentage of adipocyte area divided by its control area using ImageJ software (NIH, Bethesda, MD, 
USA). The infiltrated Inflammatory cell were visualized in three random fields at 400-fold magnification using an 
Eclipse E1000 microscope (Nikon, Tokyo, Japan). The cells were counted by using ImagePro-Plus software (Media 
Cybernetics, Silver Spring, MD, USA).

For immunofluorescent staining of sectioned orbits, the orbits with enucleated eyes were fixed with 4% par-
aformaldehyde in PBS at room temperature for 6 hours. Fixed orbits were then dehydrated in 20% sucrose solu-
tion overnight, embedded in tissue-freezing medium (Leica, Nussloch, Germany), and cut into 10 μm sections. 
Samples were blocked with 5% donkey serum in PBST (0.3% Triton X-100 in PBS) and then incubated in block-
ing solution with anti-Ucp1 antibody (rabbit origin, Alpha Diagnostic International, San Antonio, TX, USA) 
at 4 °C overnight. Following several washes, the samples were incubated at room temperature for 4 hours with 
Alexa Fluor 488-conjugated donkey anti-rabbit IgG (Abcam, Cambridge, MA, USA). Slides were counterstained 
with DAPI (1:1000, Abcam, Cambridge, MA, USA) for 5 min. Immunofluorescent imaging procedures were per-
formed using a Zeiss LSM780 confocal microscope equipped with argon and helium-neon lasers (Carl Zeiss, 
Oberkochen, Germany). Morphometric analysis was performed using ImageJ (NIH). To quantify the relative 
expression of Ucp1, intensity was measured in adipocyte area. For statistical analysis, the values from three differ-
ent fields in each orbit were averaged. For comparison of staining intensity, the value was normalized by control 
and presented as percentage.

Magnetic resonance imaging (MRI). In vivo MRI was performed on a horizontal bore 7 T MRI scanner 
(Agilent Technologies Inc., USA). Anaesthesia was induced and maintained in mice by inhalation of a 1-2% 
isoflurane-oxygen mix throughout imaging. The mouse head was located within a 25 mm internal diameter quad-
rature MRI volume coil (PulseTeq Ltd, Surrey, UK). T2-weighted MR images were acquired using a fast spin 
echo (FSE) sequence with repetition time of 4 s; effective echo time (TE) of 60; echo train length of 8, RARE 
factor of 16; field of view (FOV) of 26 mm ×26 mm; matrix size of 256 × 192 (100 µm in-plane resolution); and 4 
averages. Contiguous and coronal 0.61 mm thick slices including the eyes and much of the brain were collected. 
Twenty-four contiguous 0.4 mm thick, 94 µm in-plane resolution MR images were collected from the surface of 
the eye towards the back of the eye (perpendicular to the long axis of the eye, similar to the orientation for histo-
logical processing), using a FSE sequence with TR of 1400; effective TE of 7.84; FOV of 12 mm ×12 mm; matrix 
size of 128 × 128 (94 µm in-plane resolution); and 24 averages. Respiration and temperature were monitored 
throughout MRI, with body temperature maintained at 37 °C using warm air (SA Instruments, Stony Brook, NY, 
USA). The extent of proptosis of the eyes was evaluated by measuring the distance between the corneal apex and 
the intercanthal line, which is an axis connecting the bony rims of the outer canthi as previously described26.

RNA extraction and quantitative real-time RT-PCR. Total RNA of periorbital tissues was extracted 
using TRIzol Reagent (Invitrogen) according to the manufacturer’s instructions. RNA (2 μg) was reverse tran-
scribed into cDNA using a GoScript Reverse Transcription Kit (Promega). Then, quantitative real-time PCR 
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was performed using FastStart SYBR Green Master Mix (Roche) and S1000 Thermocycler (Bio-Rad) with the 
indicated primers (Supplementary Table 1). The real-time PCR data were analysed with Bio-Rad CFX Manager 
Software (Bio-Rad) using the delta-delta Ct methods as previously described27. GAPDH was used as a reference 
gene, and the results were presented as relative expression to control

Assessment of serum cytokine profile. Serum levels of IL-4, IL-5, IL-13, IFN-γ, TNF-α, and IL-2 were 
assessed by a Luminex assay (ProcartaPlex Mouse plex, eBioscience). Specifically, 50 μL magnetic beads were 
added in each well of a 96-well plate for 30 seconds, and the liquid was removed. Next, the plate was incubated in 
serum for 30 minutes and 25 μL of the detection antibody for 30 minutes. Then, 50 μL streptavidin – PE was added 
and incubated for 30 minutes. Finally, plate analysis was performed on a LuminexTM instrument.

Statistics. The investigators were blind to the genotypes of animals during experiments. Animals or samples 
were not randomized during experiments and were not excluded from analyses. All parameters of SKG mice 
were compared with those of littermate controls. Values were presented as the mean ± standard deviation (SD). 
Statistical significance was determined by the unpaired t-test or the Mann-Whitney U test. Statistical analysis 
was performed with Graphpad Prism 5 (GraphPad software, Inc) for. windows. Statistical significance was set at 
p-value <0.05.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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