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Introduction
Multiple sclerosis (MS) is a chronic inflammatory, 
demyelinating and neurodegenerative disease of the 
central nervous system in which cortical grey matter 
lesions are commonly found.1–3 Due to their specific-
ity for MS, cortical lesions were included in the diag-
nostic criteria.4 However, being highly inconspicuous 
on conventional magnetic resonance imaging (MRI) 
sequences such as T2 and FLAIR,5,6 cortical lesions 
often remain undetected.

Cortical lesions have been found to be better discern-
ible – with 23% sensitivity – when using double 
inversion recovery (DIR).5–8 In DIR imaging, the sig-
nal of the cerebrospinal fluid and white matter are 
suppressed, such that only signal from grey matter 

retains. DIR has also been found to be highly patho-
logically – 91% – specific.5,7,9 However, implementa-
tion of DIR is often not self-evident in peripheral and 
even academic hospitals: the sequence is difficult to 
set up and proper acquisition takes substantial time. 
Consequently, diagnostic and treatment monitoring 
processes might be hampered, such as no evidence of 
disease activity (NEDA) criteria, which are often used 
as outcome measure for clinical trials.10–12

Recent advantages in artificial intelligence enabled med-
ical image-to-image translation, through use of convolu-
tional neural networks and generative adversarial 
networks.13–15 In the current work, we propose to gener-
ate artificial DIR (aDIR) images from conventionally 
acquired 3D-T1 and 2D-proton density (PD)/T2 images. 
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The objective is to evaluate the usability of these aDIR 
images for cortical lesions detection in patients with MS 
compared to conventionally acquired DIR (cDIR) 
images, to broaden availability of DIR in clinical care for 
diagnosis and treatment monitoring and to create the 
opportunity for ex post facto implementation of DIR in 
retrospective image analysis or clinical trials.

Methods

Participants
MRI data of 73 patients with MS and 42 healthy con-
trols were retrospectively included for analysis. 
Radiological, clinical and neuropsychological charac-
teristics of the population were described previ-
ously.16–18 Patients were all diagnosed with MS 
according to the McDonald criteria.19 Exclusion crite-
ria were contraindications for MR imaging, relapses 
and/or steroid treatment ⩽6 weeks prior to participa-
tion, or presence of neurological and/or psychiatric 
diseases (other than MS for patients).

Standard protocol approvals, registrations and 
patient consents
The studies from which data were included were 
approved by the institutional ethics committee of 
Amsterdam UMC, location VUMC, and participants 
gave written informed consent prior to participation.

Magnetic resonance imaging
Imaging was performed using a 1.5 T whole-body sys-
tem (Sonata; Siemens Medical Solutions, Erlangen, 
Germany) with an eight-channel phased-array head-coil 
(In Vivo, Orlando, FL). The protocol included a 3D-T1 
weighted magnetization-prepared rapid gradient echo 
(MPRAGE; repetition time (ms) time (ms) 2700/5.03; 
inversion time (ms) 950; flip angle 8°, sagittal 1.3 mm 
sections; 1.3 × 1.3 mm2 in-plane resolution), a 2D-turbo 
spin-echo PD/T2 weighed (3130/(24/85), axial 3.0 mm; 
1.0 × 1.0) and a 3D-DIR (350/2350, 6500/355; sagittal 
1.3 mm; 1.3 × 1.3) sequence.

Preprocessing
Images were rigidly co-registered with MNI space 
using FLIRT (part of the FMRIB Software Library 
(FSL); http://fsl.fmrib.ox.ac.uk). The 3D-T1 weighted 
sequence of each patient was registered to 1.0 mm 
isotropic Montreal Neurological Institute (MNI) 
standard space using FSL’s linear image registration 
tool (FLIRT) and 12 degrees of freedom (dof). The 
resulting linear transformation matrix was used to 

obtain the corresponding rigid registration. Sub-
sequently, the rigid transformation matrix was applied 
to the 3D-T1 weighted image using spline interpola-
tion to transform the data to MNI standard space, and 
a rough outline of the 3D-T1 brain mask (obtained by 
‘betpremask’) was co-registered to MNI standard 
space. 3D-DIR, PD and T2 weighted sequences were 
first rigidly aligned to the 3D-T1 sequence in subject 
space. Resulting rigid transformations were concate-
nated with the previous transformation matrix to MNI 
standard space in order to map the other sequences to 
MNI standard space. All sequences were Z-score cor-
rected (mean-shifted and variance-scaled), divided by 
four normalized between −1 and 1 and interpolated 
using spline interpolation.

Network
The network followed a fully convolutional 3D condi-
tional adversarial design, combining a competing gen-
erator and discriminator: the generator (see Figure 1) 
was trained to produce artificial 3D-DIR images from 
clinical T1 and PD/T2, while the discriminator (see 
Figure 2) was trained to discriminate between ‘real’ 
(cDIR) and ‘fake’ (aDIR) images.20

The generator is a U-shaped fully convolutional net-
work that utilizes an encoder and decoder pathway 
and has been widely established in biomedical 
imaging tasks.21 The generator uses an encoder 
pathway to encode feature information at decreas-
ing spatial resolutions, and a decoder pathway that 
combines the encoded feature information with 
increasing spatial resolutions. The encoder path 
uses skip-connections to make optimization more 
efficient.22 The network used 128 × 128 × 128 
patches, was five layers deep and used 3 × 3 × 3 
kernels with 32 filters at the base. Convolutions 
were followed by instance normalization and Leaky 
ReLu activations (α = 0.2). A one-strided convolu-
tion layer with sigmoid activation provided the 
validity score.

Patch selection, data augmentation and model 
training
Patches – of which the centre voxel was located within 
the brain mask – were randomly extracted from the 
train set and augmented to enrich the dataset:

•	 Mirroring in x-, y- and/or z-axis, with probabil-
ity of 0.5 for each axis;

•	 In 50% of the samples, rotation and scaling in x-, 
y- and/or z-axis, with angles and scaling factors 
randomly sampled from uniform distributions 
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[–90, 90°] and [0.8, 1.2], respectively. Rotation 
and scaling were combined in a single transfor-
mation and applied using three-order spline 
interpolation (zeroth order for masks).

Predictor only, in 50% of the samples:

•	 Intensity correction with gamma-value (for 
each channel) uniformly sampled from the uni-
form distribution [0.8, 1.5].

Predictor only, in 30% of the samples:

•	 Additive Gaussian noise (SD = 0.05);
•	 Gaussian blurring, the standard deviation of the 

kernel was similar for all channels and randomly 
sampled from the uniform distribution [0.2, 1.5];

•	 One image channel randomly zeroed.

Because predictor augmentation altered intensity dis-
tribution, they were variance-scaled, divided by 4, 

Figure 1. Overview of the 3D fully convolutional generator network. The network consists of an encoder (left) and a 
decoder (right) pathway that generates artificial double inversion recovery images from standard clinical 3D-T1 and 
2D-proton density / T2 weighted images.

Figure 2. Overview of the ‘PatchGAN’ discriminator network, which compares artificially generated double inversion 
recovery images with conventionally acquired images given the corresponding clinical images.
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normalized between −1 and 1 and clipped just before 
feeding to the training algorithm.

Model training was performed on a NVIDIA GeForce 
GTX 1080 TI graphics processing unit using 
TensorFlow 1.9.0, Cuda 9.0 and python 3.6.9. The 
number of samples per epoch was determined by 
floor(sum_of_all_brain_voxels_in_all_train_
subjects/128ˆ3)*8. Mean absolute error and binary 
cross entropy were minimized over 350 epochs with 
Adam optimizers (initial learning rate = 2e−4, ß1 = 
0.5, ß2 = 0.999). Batch size was 2.

Model evaluation
Performance was investigated by blinded scoring of 
cortical lesions (PMB, 3 years of experience and 
acquainted with MRI appearance of histopathology-
validated cortical lesions)5 on the artificially generated 
and conventionally acquired images in the test set (N = 
23) following consensus recommendations: cortical 
lesions were identified as areas that were hyperintense 
compared to normal-appearing grey matter and that 
were at least 3 mm2 in size. Multiple slices were 
assessed in order to determine whether or not a hyper-
intensity should be deemed a cortical lesion, as to dis-
tinguish between cortical lesions and, for example, 
cortical vessels, that are round and traceable, or noise.23 
Furthermore, inter- and intra-rater scores were obtained 
were calculated between PMB and JJGG (>15 years of 
experience in scoring cortical lesions). Chance of rec-
ognition of the images was minimized by presenting 
the cases in random order and using left-right mirror-
ing. An additional, retrospective (vis-à-vis) scoring 
iteration was performed to reduce intra-rater variability 
and record lobular lesion location and type (cortical, 
juxtacortical, mixed). Precision (true positives (TP)/
(TP + false positives (FP)); fraction lesions on aDIR 
matching location on cDIR) and recall (TP/(TP + false 
negatives (FN)); fraction lesions on cDIR detected on 
aDIR) of cortical lesions detected on aDIR images was 
calculated taking the cortical lesions detected on cDIR 
images as reference. Precision and recall measures 
were calculated for prospective as well as retrospective 
scoring iterations.

Statistical analysis
Detection rate (reliability) was measured by calculat-
ing intraclass correlation coefficient (ICC; two-way-
mixed model in absolute agreement) between the 
number of detected cortical and infratentorial lesions 
on aDIR and cDIR images. Inter- and intra-rater 
scores were also calculated with ICC (two way-mixed 
model, absolute agreement) between the two 

scorings. Differences between train and test set were 
assessed using students’ t for normally distributed, 
Mann–Whitney U test for non-normal distributed and 
chi-square tests for categorical variables. Differences 
in location and type were analysed using Kruskal–
Wallis H-tests. Analyses were performed in SPSS 26 
(SPSS, Chicago, IL); p values <0.05 were considered 
statistically significant.

Results

Demographic characteristics at baseline
Patients’ average age was 46.6 ± 8.1 years (mean ± 
SD), median [range] EDSS 4.0 [0–7.5], mean disease 
duration 11.5 ± 6.5 years. Forty-nine patients were 
diagnosed with relapsing-remitting MS, 20 with sec-
ondary progressive MS 4 with primary progressive 
MS. Mean age of the healthy controls was 45.0 ± 
9.1 years.

The dataset was randomly split in train and test set 
using 4:1 ratio, constituting a train set of 92 (MS/con-
trols: 58/34) cases and a test set of 23 (MS/controls: 
15/8) cases. The demographical and clinical character-
istics of the train and test set are described to detail in 
Table 1. Participants in the test set had a shorter disease 
duration than participants in the train set (U = 175.5, p 
= 0.002). Controls in the train set were assessed for 
presence of cortical lesions, and none were detected.

Detection rate (reliability), precision and recall
A typical artificially generated and corresponding 
conventionally acquired DIR image is presented in 
Figure 3.

A total of 626 cortical lesions were prospectively 
detected on aDIR images of the 15 patients in the test 
set, compared to 696 cortical lesions on the corre-
sponding cDIR images. Of the aDIR-detected cortical 
lesions, 528 were also detected on cDIR (i.e. ‘true 
positive’). No cortical lesions were detected in the 
eight healthy controls in the test set. Reliability analy-
sis showed a high agreement in the number of detected 
cortical lesions between aDIR and cDIR (ICC = 
0.917, 95% CI = 0.675–0.975 (F(32.755)), p < 
0.001). Subsequent analysis of infratentorial lesions 
showed high agreement as well (ICC = 0.855, 95% 
CI = 0.589–0.954 (F(11.935)), p < 0.001). Figure 4 
provides an example of an aDIR image and its cDIR 
counterpart with the detected cortical lesions in it. 
Figure 5 highlights an intracortical lesion that was 
detected in the data on both sequences. Intra-rater 
ICC score for aDIR was 0.991, intra-rater ICC score 
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Table 1. Demographic and clinical characteristicsa.

Train set Test set

 HC MS HC MS

N 34 58 8 15

Male sex 12 (35%) 21 (36%) 3 (40%) 3 (20%)

Age (years) 45.0 ± 9.1 49.3 ± 7.6 45.3 ± 9.9 45.6 ± 9.9

Disease duration from diagnosis (years) 12.6 ± 6.1 7.1 ± 6.2*

MS type (RR/SP/PP) 36/18/3 13/2/0
Expanded disability status scale 3.75 (0.0–7.5) 3.5 (2.0–6.0)

HC: healthy controls; MS: multiple sclerosis.
Note. Unless otherwise stated, data are number of participants.
*Indicates statistical significant difference (p = <0.05).
aData are mean ± standard deviation or medians (range).

Figure 3. Typical example of artificially generated (left) and conventionally acquired DIR (right) images.

Figure 4. Cortical lesions prospectively visible on both artificially generated DIR images and conventionally acquired DIR.
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for cDIR was 0.984. Inter-rater scores were 0.890 for 
aDIR and 0.862 for cDIR.

The average precision of the detected cortical lesions 
on aDIR images compared to cDIR images was (mean 
± SD) = 0.85 ± 0.06, ranging from 0.72 to 0.91. The 
average recall of cortical lesions detected on aDIR 
images compared to cDIR images was 0.76 ± 0.09, 
ranging from 0.57 to 0.92.

The unblinded retrospective scoring iteration revealed 
a total of 679 cortical lesions on aDIR images (i.e. 53 
more) and 722 cortical lesions on cDIR images (i.e. 
26 more). Reliability of the retrospective data showed 
an even higher agreement in number of detected corti-
cal lesions between aDIR and cDIR (ICC = 0.936, 
95% CI = 0.817–0.978 (F(33.714)), p < 0.001) as 
well as for the infratentorial lesions (ICC = 0.952, 
95% CI = 0.855–0.985 (F(38.974)), p < 0.001). 
Retrospective precision and recall were measured at 
0.76 ± 0.09, ranging from 0.50 to 0.86, and 0.73 ± 
0.10, ranging from 0.49 to 0.89, respectively. Of the 
168 cortical lesions that were prospectively visible on 
cDIR images, but not on aDIR images, 53 were retro-
spectively discernible (31.5%). Of the 98 cortical 
lesions that were initially visible on aDIR images but 
not on cDIR images, 30 were visible upon retrospec-
tive assessment (30.6%).

Lesion distribution and type
An overview of the (lobular) cortical distribution and 
lesions type (i.e. intracortical, juxtacortical or mixed) 

of the prospectively detected lesions is provided in 
Table 2. The vast majority of lesions that were visible 
on both the aDIR and cDIR images was located in the 
frontal lobe, followed by temporal, parietal and occip-
ital lobes. The vast majority were intracortical, fol-
lowed by juxtacortical and mixed lesions. On the 
contrary, a total of 98 cortical lesions was prospec-
tively detected on aDIR images but not on cDIR 
images. These cortical lesions were predominantly 
situated in the frontal lobe, followed by temporal, 
parietal and occipital lobes.

Discussion
Cortical lesions play a pivotal role in the pathophysi-
ology of multiple sclerosis, while implementation of 
the tools for appropriate assessment (i.e. availability 
of DIR images) is not self-evident in many hospitals, 
since they are not readily available on all clinical sys-
tems and acquisition of the sequence itself is time-
consuming. Heretofore, cortical lesion detection was 
mostly performed using conventional clinical T1, T2 
and FLAIR sequences, which have been found to be 
less sensitive than DIR.5 In this work, we evaluated 
the usability of artificial DIR images, generated from 
conventional clinical 3D-T1 and PD/T2 sequences, 
for cortical lesion detection in multiple sclerosis 
patients set against a conventionally acquired DIR 
sequence.

The main finding of this study is that cortical lesions 
can be detected on aDIR images, with high reliabil-
ity compared to cDIR images. Our results displayed 

Figure 5. Example of an intracortical lesion prospectively visible in both artificially generated (left) and conventionally 
acquired (right) DIR images. The inset demonstrates visibility of the intracortical lesion in the coronal plane.
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a prospective ICC cortical lesion count of >0.9, 
which can be considered excellent.24 In addition, we 
found that 76% of cortical lesions that were detected 
on cDIR are also discernible on aDIR, of which 84% 
also match location with cDIR. Furthermore, there 
were no differences in number of detected lesions 
per lobe and lesion type between aDIR and cDIR, 
underlining the high similarity between the 
sequences. DIR has been found to have the tendency 
of overdiagnosing intracortical lesions when set 
against heavily T1 weighted sequences such as 
PSIR.25 Diagnostic criteria for MS are, however, not 
specific on the cortical lesion subtype (i.e. cortical or 
juxtacortical).4 Hence, this equivocality has no con-
sequences for the usability of aDIR images. The 
relatively high number of detected lesions could be 
attributed to (1) the raters being acquainted with 
MRI-appearance of histopathologically validated 
cortical lesions and (2) lesions in close proximity 
that were counted apart but actually form part of the 
same lesion being only visible at two points. 
Moreover, the vast majority of discernible cortical 
lesions on aDIR were consistent with the literature 
regarding lesion type and location.26 The option to 
generate aDIR images that are comparable to cDIR 
images from conventional MRI sequences is promis-
ing, since two-third of current clinical trials having 
MRI lesions or NEDA criteria as outcome measure 
does not include DIR (www.clinicaltrials.gov). 
Artificial DIR images provide the opportunity to 
enhance the results of these studies by adding a DIR 
sequence based on the (to be) acquired clinical 
sequences. In addition, clinical trials that have 
already been finished and have not had the opportu-

nity for optimal cortical lesion detection could be re-
interpreted with aDIR images.

There were several lesions detected on aDIR but not 
cDIR, as reflected in the precision of 84%. Unclear is, 
whether these are truly false-positives (e.g. hyperin-
tensities that were marked as lesions due to artefacts in 
image generation), or, whether aDIR images have the 
potential to visualize cortical lesions that are not dis-
cernible on cDIR images. The increased cortical lesion 
detection on aDIR might also be a consequence of an 
increased signal-to-noise ratio (SNR) of aDIR com-
pared to cDIR, since SNR has been found to increase 
cortical lesion discernibility.5–7,27 Histopathological 
validation of the aDIR images would provide clarity 
on this issue and should be topic of further studies. 
Furthermore, such would be the final step towards her-
alding aDIR in clinical care, assessing whether or not 
its detection rates could be deemed acceptable. Vice 
versa, analysis of cortical lesions detected on cDIR but 
not on aDIR showed that some cortical lesions were 
systematically incorrectly modelled by the convolu-
tional network algorithm. This concerned juxtacortical 
lesions in close proximity to the dorsal and/or ventral 
surface of the brain and may be attributed to the fine 
morphology and high similarity of intra- and extra-
parenchymal image intensities in these regions.

This work is subject to some limitations. First, all 
MRI data were gathered on a single scanner, which 
may have generated particular detectability rates, 
limiting generalization of the algorithm. Therefore, 
future works should consider multi-centre validation 
to generate cross-scanner robustness. Second, next 

Table 2. Overview of prospectively detected cortical lesions on artificially generated and conventionally acquired DIR 
images.

Sequence Conventionally acquired and 
artificially generated DIR

Artificially 
generated DIRa

Conventionally 
acquired DIRb

N cortical lesions 528 98 168

Lobular location

 Frontal 245 (46.4%) 42 (42.9%) 80 (47.6%)

 Temporal 181 (34.3%) 34 (34.7%) 60 (35.7%)

 Parietal 97 (18.4%) 20 (20.4%) 22 (13.1%)

 Occipital 5 (0.9%) 2 (2.0%) 6 (3.6%)

Lesion type

 Intracortical 393 (74.4%) 81 (82.7%) 121 (72.0%)

 Juxtacortical 103 (19.5%) 10 (10.2%) 36 (21.4%)
 Mixed 32 (6.1%) 7 (7.1%) 11 (6.5%)

DIR: double inversion recovery.
Note. Numbers indicate detected cortical lesions.
aLesions were not detected on conventionally acquired DIR images.
bLesions were not detected on artificially generated DIR images.
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to its acquisition, DIR is difficult to interpret: the 
sequence is a known host to artefacts and there are 
stringent criteria for lesion scoring.23 Nonetheless, 
DIR scorings tend to suffer from high inter-rater 
variability, in particular over different centres. 
Therefore, clinicians and researchers often consult 
other sequences for cortical lesion detection. 
However, many lesions that are discernible on DIR 
might not be discernible on the other sequences – 
even with histopathological feedback at hand.5 
Finally, all aDIR images in the current work were 
generated from T1 and PD/T2 sequences, while in 
many hospitals and clinical trials FLAIR is used 
instead of T2. However, the algorithm is written in 
such a way that it is also feasible to generate aDIR 
images based on T1 and FLAIR sequences.

Our results show that it is possible to generate artifi-
cial DIR images ex post facto from conventional 
clinical sequences, which are readily available on 
any MRI scanner. These artificially generated DIR 
images allow for similar cortical lesion detection 
rates as do conventionally acquired DIR images. 
Further validation of this technique (i.e. histopatho-
logical validation and multi-centre cross-scanner 
robustness) would allow for a wider implementation 
of DIR in clinical care for diagnosis and treatment 
monitoring purposes and would enable ex post facto 
implementation of DIR in retrospective image anal-
ysis or clinical trials.
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