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Atrial Fibrillation (AF) is the most common supraventricular tachyarrhythmia that
is typically associated with cardiovascular disease (CVD) and poor cardiovascular
health. Paradoxically, endurance athletes are also at risk for AF. While it is well-
established that persistent AF is associated with atrial fibrosis, hypertrophy and
inflammation, intensely exercised mice showed similar adverse atrial changes and
increased AF vulnerability, which required tumor necrosis factor (TNF) signaling, even
though ventricular structure and function improved. To identify some of the molecular
factors underlying the chamber-specific and TNF-dependent atrial changes induced
by exercise, we performed transcriptome analyses of hearts from wild-type and TNF-
knockout mice following exercise for 2 days, 2 or 6 weeks of exercise. Consistent with
the central role of atrial stretch arising from elevated venous pressure in AF promotion,
all 3 time points were associated with differential regulation of genes in atria linked
to mechanosensing (focal adhesion kinase, integrins and cell-cell communications),
extracellular matrix (ECM) and TNF pathways, with TNF appearing to play a permissive,
rather than causal, role in gene changes. Importantly, mechanosensing/ECM genes
were only enriched, along with tubulin- and hypertrophy-related genes after 2 days of
exercise while being downregulated at 2 and 6 weeks, suggesting that early reactive
strain-dependent remodeling with exercise yields to compensatory adjustments.
Moreover, at the later time points, there was also downregulation of both collagen
genes and genes involved in collagen turnover, a pattern mirroring aging-related fibrosis.
By comparison, twofold fewer genes were differentially regulated in ventricles vs.
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atria, independently of TNF. Our findings reveal that exercise promotes TNF-dependent
atrial transcriptome remodeling of ECM/mechanosensing pathways, consistent with
increased preload and atrial stretch seen with exercise. We propose that similar preload-
dependent mechanisms are responsible for atrial changes and AF in both CVD patients
and athletes.

Keywords: atrial fibrillation (AF), RNA sequencing (RNA-seq), tumor necrosis factor, inflammation, collagen,
mechanotransduction, heart, exercise

INTRODUCTION

Atrial fibrillation (AF) is the most common supraventricular
tachyarrhythmia seen in clinical practice (Calkins et al., 2018),
with its prevalence predicted to double by 2060 (Krijthe et al.,
2013). AF is easily identified in electrocardiographic (ECG)
recordings by the presence of rapid rates (typically > 110
beats/min) coupled with regular-irregular QRS complexes and
is associated with impaired cardiac output regulation, non-
pumping “quivering” atria, and an increased risk of stroke.
The etiology of AF is complex, with most patients being
elderly and also suffering from cardiovascular diseases (esp.,
hypertension, heart failure, valve disease) or having increased
risk for cardiovascular disease (sleep apnea, hyperthyroidism,
obesity, and diabetes) (Odutayo et al., 2016; Staerk et al.,
2017). A common physiological feature of all these conditions,
including aging, is increased filling pressures (De Jong et al.,
2011; Park et al., 2014) which is believed to drive the atrial
fibrosis, inflammation and hypertrophy invariably seen in AF
patients. The importance of addressing the AF epidemic is
highlighted by the > twofold increase in all-cause mortality seen
in patients with AF.

Paradoxically, the risk of AF is also increased in veteran
endurance athletes (Mont et al., 2002; Redpath and Backx, 2015),
despite well-established evidence of beneficial physiological
remodeling of the ventricles. Although the underlying basis for
exercise-induced AF and its differential effects on the atria and
ventricles are unclear, it is well known that intense exercise is
associated with marked elevations in filling pressure (Reeves
et al., 1990). Moreover, rodent models have established that
endurance exercise causes atrial fibrosis, inflammation, and
hypertrophy (Guasch et al., 2013; Aschar-Sobbi et al., 2015),
as seen in persistent AF patients (Oakes et al., 2009; Qu
et al., 2009; Gramley et al., 2010). We previously demonstrated
that the exercise-induced atrial changes were prevented by
pharmacological and genetic blockade of tumor necrosis factor
(TNF), a mechanosensitive and pro-inflammatory cytokine
(Aschar-Sobbi et al., 2015; Lakin et al., 2019). However, when
TNF blockade was introduced 3 weeks after the beginning
of intense exercise, cardioprotection was lost, suggesting that
pathways linked to exercise-induced adverse atrial remodeling
occur early in the response to exercise.

In this study, we performed bioinformatic analyses of
transcriptomic changes in atria and ventricles induced by
endurance exercise in wild-type and TNF knockout mice.
Our results demonstrate that exercise induces TNF-dependent
differential activation (enrichment) of pathways associated with

mechanosensitive ECM remodeling that are time-dependent
and differ between atria and ventricles, in a manner consistent
with preferential stretch of atria in response to exercise-induced
elevations in venous pressure. Our findings provide insight into
the chamber-specific roles of TNF and mechanical strain in
cardiac changes induced by exercise and support the general
conclusion that exercise-induced adverse atrial remodeling is
preload-dependent as seen in AF associated with aging and poor
cardiovascular health.

MATERIALS AND METHODS

Experimental Animals and Endurance
Exercise Training Models
This study was carried out in accordance with the
recommendations of the Canadian Council of Animal Care. The
protocol was approved by the Division of Comparative Medicine
at the University of Toronto and York University Animal Care
Committee. Mice swam for 2 days (4-sessions), 2 or 6 weeks
against water currents in containers, as described previously
(Aschar-Sobbi et al., 2015). For the 6 week group, 6 week old CD1
male mice (body weight = 28–34 g, Charles River Laboratories)
were acclimatized by swimming twice daily for 30 min (separated
by 4 h) after which the duration of the swims was increased
by 10 min per day until the duration reach 90 min per swim.
Thereafter, the mice swam 2 times per day for 90 min/session
for 6 weeks. The swim protocol was similar for the 2 week
group, except mice only swam for 2 weeks after acclimatization.
These 2 week mice were bred in-house after backcrossing TNF
knockout (TNF-KO) mice (c57b, Taconic model #1921) into a
CD1 background a minimum of 8 times. After reaching 10 weeks
of age, wild-type (WT) mice and their TNF-KO littermates were
acclimatized as described for the 6 week mice and swam for 2
weeks. The breeding and housing for the 2 day group were as
described for the 2 week group. At 10–12 weeks of age, these
mice were familiarized for 3 days with a 10 min swim per day,
followed by two consecutive days of twice daily, 90 min swims.
The sedentary mice for all groups consisted of the age-matched
animals who were placed in swim containers without a water
current for 5 min each session to ensure similar handling.

Tissue Harvesting
Prior to harvesting of atrial and ventricular tissue, 0.2 ml of
heparin was injected intraperitoneally to prevent blood clotting.
After 5 min, mice were anesthetized using 2.5% isoflurane and
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sacrificed via cervical dislocation. Hearts were quickly excised
and placed into cold phosphate-buffered saline (PBS) to prevent
protein or RNA degradation as well as cell apoptosis. In cold
PBS, the left atrial appendage (LAA) and left ventricular (LV) free
wall were separated and collected for RNA extraction. For our
2 day swim protocol, tissue was harvested 2 h after last swim.
For 2 and 6 week studies, tissue was harvested 24 h after the
last swim session.

RNA Extraction
Total RNA was extracted for both atria and ventricles
using RNeasy Mini Kit (Qiagen), where the silica membrane
used for this protocol removes RNA shorter than 200
nucleotides, including 5S/5.8S rRNAs, microRNAs and all
tRNAs. All RNA samples were stored at −80◦C until use.
Initial RNA quantity and quality analyses were done using the
Nanodrop2000 spectrophotometer (Thermo Fisher Scientific).
The integrity and concentration of the RNA was determined with
capillary electrophoresis by Agilent 2100 (Bioanalyzer, Agilent
Technologies, Santa Clara, CA, United States) and was performed
by the UHN Princess Margaret Genomics Centre (MaRS Centre,
TMDT, Toronto, ON, Canada).

RNA Library Preparation and Sequencing
(RNAseq)
Both cDNA library generation and RNA sequencing were
performed by the Donnelly Sequencing Centre at the University
of Toronto (Toronto, ON, Canada) using Illumina’s TruSeq
stranded mRNA enrichment for library preparation. cDNA was
generated from amplified mRNA, which was purified from
total RNA. To purify mRNA, oligoT and 3′ poly A tails were
hybridized to mRNA only during transcription in the nucleus.
Magnetic beads linked to poly T oligo were used to selectively
isolate mRNA. The purified mRNA was then fragmented by
chemical shear and size selection was performed to generate
mRNA fragments > 100 bps. Fragmented mRNA was reversed
transcribed by reverse transcriptase and random primers to
generate first strand cDNA. Second strand cDNA generated using
DNA polymerase I and RNase H. Adapters were ligated on cDNA
fragments, followed by enrichment using PCR to generate the
final mRNA-derived cDNA library. For 2 week study samples,
HiSeq2500 single-end sequencing was performed at 51 cycles.
For 2 day study samples, NextSeq500 single-end sequencing
was performed at 75 cycles. Technical replicates were generated
by running each sample across 2 lanes to ensure there is no
technical variability.

Analysis of RNA-Sequencing and
Microarray Data
For RNA sequencing (RNA-seq), raw sequencing data were
processed using the UseGalaxy server (Afgan et al., 2016). Quality
control assessments were performed using FastQC version
0.11.7 (Wingett and Andrews, 2018). Technical replicates were
concatenated, then aligned to the mus musculus 10 (mm10)
reference genome and quantified using Salmon 0.9.1 with default
options (Kim et al., 2015; Patro et al., 2017; Srivastava et al., 2019).

A gene was considered differentially expressed if the p-value
was less than 0.05 using Student’s t-test. Principal component
analysis (PCA) was performed to identify the variance that
lies between samples. R script was used for PCA analysis
(Ringner, 2008; Jolliffe and Cadima, 2016). An example analysis is
shown in Supplementary Figure 1. For our microarray analysis,
normalized and processed microarray datasets from sedentary
and 6 week exercise left atrial appendages (LAA) were acquired
from ArrayExpress (E-MTAB-3106) (Aschar-Sobbi et al., 2015).

Gene Set Enrichment Analysis (GSEA 4.0.3) was used
to identify differentially expressed gene sets (p < 0.05 and
FDR < 0.20) (Subramanian et al., 2005). The C2 curated gene
sets (c2 Canonical pathways) and C5 GO gene sets were used
for the GSEA analysis. Weighted enrichment statistic was used
and Signal2Noise metric was used for ranking genes. Nominal
P-values of each gene set were given using 10,000 and 1,000
permutations of gene sets for analysis using c2 canonical pathway
database and c5 GO database, respectively. Gene sets with fewer
than 15 genes or more than 500 genes were excluded. Enrichment
maps were generated to visually identify clusters of gene sets on
Cytoscape 3.4.0 using the gene sets that were statistically different
(p < 0.05 and FDR < 0.20) between two groups. Edge and node
cut-off values were set to 0.375 (default) and 0.1, respectively.
Wordcloud version 3.1.3 was used to annotate clusters. The
“difference-of-the-difference” analysis was conducted to identify
TNF-dependent pathways by subtracting the gene sets that
were significantly differentially regulated between sedentary and
swim in WT samples from those differentially regulated between
sedentary and swim in KO samples.

Heat maps and hierarchal clustering of genes were performed
with MATLAB (version 2016a), using all genes belonging to
ECM, focal adhesion, integrin and cell-cell communication-
related gene sets. Comparisons of transcripts per kilobase million
(TPM) expression for individual genes from RNA-seq between
two groups utilized unpaired (two-tailed) t-test, and genes with
P-values of less than 0.05 were considered significant. All genes
in the heat maps are significantly different between sedentary and
swim WT (p < 0.05).

Telemetric Hemodynamics
Radiofrequency emitting hemodynamic telemetry devices (Data
Sciences International, Inc.) were implanted sub-dermally into
the interscapularis region. A fluid-filled catheter was inserted
into the right common carotid artery and advanced into the left
ventricle. After 7 days of recovery, a 30 min baseline recording
preceded an acute, 90 min swim exercise bout. Left ventricular
end-diastolic pressure (LVEDP) was used as an index of left
atrial pressure. Data were analyzed using Ponemah Physiological
Platform analysis software (Data Sciences International, Inc.).

Cardiac Electrical Remodeling and
Arrhythmia Vulnerability
Electrical properties and arrhythmia inducibility were assessed
as previously described (Aschar-Sobbi et al., 2015). For these
measurements, mice were anesthetized (1.5% isoflurane and
oxygen mixture) followed by isolation of the right jugular
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vein and insertion of a 2.0F octapolar recording/stimulation
EP catheter (CI’BER Mouse, Numed), which was subsequently
advanced into the right ventricle. Programmed electrical
stimulations were delivered to the right atria or right ventricle
to assess arrhythmia inducibility. All stimulations were delivered
at a magnitude of 1.5 times capture threshold and 1 ms pulse
duration. Effective refractory periods (ERPs) were determined
by delivering nine pulses at 20 ms below the R-R interval
followed by an extra stimulation. The S2 coupling interval was
initially delivered above capture (∼40 ms) and reduced by 5
ms increments and adjusted until capture was achieved. For
arrhythmia induction, 27 pulses at 40 ms intervals were applied
to each chamber and reduced at 2 ms decrements to 20 ms. In
the absence of inducibility, a second protocol of 20 trains (every
1.5 s) of 20 pulses (2 ms duration) at a 20 ms interpulse interval
were applied. Only reproducible episodes of rapid, chaotic, and
continuous atrial or ventricular activity of more than 10 s were
defined as a sustained arrhythmic event.

Histology and Macrophage Infiltration
For histology, hearts were perfused with PBS containing 1%
KCl followed by 4% paraformaldehyde (PFA) in 0.01 M PBS
and stored overnight in 4% PFA in 0.01 M PBS at 4◦C. Hearts
were then embedded in paraffin and 5 µm thin sections were
stained with Picrosirius red (PSR) for collagen visualization and
quantification. Collagen expression was quantified using ImageJ
software as the ratio of positively stained tissue area to total tissue
area of each section using the threshold method (Hadi et al.,
2011). To quantify macrophage infiltration, antibodies against
mouse Mac-3 (1:200, BD Pharminogen, Cat.#553322) were
used with the streptavidin-biotin diaminobenzidine chromogen
detection method (Vector Laboratories). Mac-3-positive cells
were counted in at least three different left atrial appendage
sections (100 µm apart) in each replicate and normalized to
the total tissue area of each slice. Images were acquired using
Metamorph software (Molecular Devices) and analyzed using
ImageJ software.

In vitro ADAM17 Enzymatic Activity
Assay
In vitro ADAM17 enzymatic activity was measured, as previously
described (Shen et al., 2018). Briefly, atrial protein was
extracted using a lysis buffer with a high yield of membrane-
bound proteins (Cacodylic acid 10mM, NaCl 150 nM, ZnCl2
1 µM, CaCl2 20 mM, NaN3 1.5 mM, Triton X-100 1%,
pH 5.0). Mca-Pro-Leu-Ala-Gln-Ala-Val-Dpa-Arg-Ser-Ser-Ser-
Arg-NH2 fluorogenic peptide substrate III (R&D Systems,
ES003) was used as the substrate for ADAM17. Mca-Pro-Leu-
OH (Bachem, M-1975) calibration standard was used to calculate
the conversion factor, and recombinant mouse ADAM17 (R&D
Systems, 2978-AD) served as a positive control. The ADAM17
activity assay was carried out per the R&D systems protocol.
A total amount of 5 µg protein was used for ADAM17 enzymatic
activity assay, which was run as a kinetic assay mode for 2 h. Each
sample was run in triplicates. ADAM17 activity is expressed as
pmol/min/µg tissue protein.

Gelatin Zymography
MMP2 and MMP9 activity levels were assessed by in vitro gelatin
zymography, as previously described (Jana et al., 2020). In brief,
equal amounts (20 µg) of non-reduced atrial tissue lysate were
run on 8% SDS-PAGE gel containing 1 mg/ml gelatin. Following
electrophoresis, gels were renatured with 2.5% Triton X-100
buffer for 60 min (room temperature). The gels were then put
in calcium assay buffer (50 mM Tris-Cl, pH 7.5, 5 mM CaCl2,
150 mM NaCl) and incubated overnight (37◦C). Gels were then
stained with 0.05% Coomassie Blue G-250, and grayscale images
were scanned and inverted for densitometric quantification.
Band intensity was quantified using the inbuilt ImageQuant
TL software (Version 7.0 GE Healthcare) and normalized to a
loading control.

Immunofluorescent Analyses
Left atrial tissue from each heart was flash-frozen in mounting
compound (OCT). Immunohistochemical staining was
performed on 5 µm sections (all other staining). Immunostaining
for OPN (ab8448; Abcam), SPARC (MAB941, R&D Systems),
and GAPDH (#2118. Cell Signaling Technology) were
performed on frozen OCT sections, as previously described
(Sakamuri et al., 2016).

Protein Extraction and Western Blot
Analyses
Flash-frozen atria were freeze-crushed in tissue lysis buffer
containing EDTA-free protease inhibitor cocktails and
processed for protein extraction and immunoblotting as
previously described (Sakamuri et al., 2016). Antibodies used
for immunoblotting were as follows: OPN (ab8448; Abcam),
SPARC (MAB941, R&D Systems), and GAPDH (#2118, Cell
Signaling Technology). Band intensities were quantified using
densitometry analysis software (ImageQuant TL 7.0; GE) and
values were normalized to GAPDH expressions for each sample.

Statistics
Statistical analyses of transcriptional changes are described above.
Unpaired (two-tailed) t-test was used to assess differences in
ADAM17 activity, gel zymography, and western blot analyses.
P-values of less than 0.05 were considered significant.

RESULTS

Consistent with previous work (Aschar-Sobbi et al., 2015),
6 weeks of swimming increased (P < 0.001) AF inducibility
(Figure 1A), which was associated with increased (P < 0.003)
left atrial (LA) inflammatory (Mac-3+) cell infiltrations
(Figures 1B,C) and fibrotic remodeling (Figures 1D,E), as well
as hypertrophy (not shown) in left atrial appendages (LAA).
By contrast, the left ventricle (LV) showed enhanced function
without fibrosis (Figures 1D,E), inflammation (data not shown)
nor increased arrhythmia vulnerability in response to exercise,
consistent with a chamber-specific effect of intense exercise.
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FIGURE 1 | Intense exercise-induced adverse atrial remodeling and atrial fibrillation (AF) vulnerability. (A) 6 week swim exercise training is associated with increased
atrial fibrillation (AF) inducibility, with no evidence of left ventricular (LV) arrhythmia vulnerability, compared to sedentary mice. (B,C) Swim exercise was associated
with increased inflammatory cell infiltration (macrophage, Mac-3+) compared to sedentary mice. (D,E) Increased fibrosis (%tissue collagen) was observed in the left
atrial appendage (LAA) with 6 week swim exercise compared to sedentary mice, with no elevations in fibrosis observed in the LV. Data presented as mean ± SEM.
*P < 0.05.

Our previous microarray data from atria of mice after
6 weeks (Aschar-Sobbi et al., 2015) revealed exercise-
induced transcriptional changes consistent with increases
in inflammatory genes. As shown in Supplementary Figures 2,3,
additional bioinformatics analyses verified enrichment in
exercised atria of gene sets/clusters associated with inflammation
(P < 0.05, FDR < 0.2) along with pathways involved in cell cycle
regulation, mitochondrial fatty acid, and biological oxidation
as well as metabolism/processing of DNA, RNA, and amino
acids. Additionally, gene sets linked to mechanosensitive
pathways (i.e., focal adhesion kinases (FAK), integrins, cell-
cell communication) as well as extracellular matrix (ECM)
remodeling (i.e., collagen formation, degradation, biosynthesis,
assembly, cross-linking, and matrisome enzymes) were also
differentially regulated between WT exercised and sedentary
atria. However, despite the elevations in atrial fibrosis after 6
week of exercise, transcriptional levels of individual collagen
genes (i.e., Col1a1, Col3a1, and Col4a1) were paradoxically
reduced in WT exercised atria.

The unexpected lack of transcriptional elevations in collagen
genes, combined with the inability of TNF blockade to prevent
atrial fibrosis when started 3 weeks after exercise initiation
(Aschar-Sobbi et al., 2015), suggests that pathways driving
fibrosis are engaged early following exercise initiation. Therefore,
we investigated the transcriptome responses after 2 weeks
of exercise. In order to get greater gene coverage, we used

deep RNA sequencing (RNA-seq) for these studies. Since TNF
gene disruption prevented adverse atrial changes and exercise-
induced AF in a chamber-dependent manner, RNA-seq was
performed on atria and ventricles from both WT and TNF-
KO mice. We first present the transcriptome changes with
exercise in atria and discuss the ventricular results thereafter.
For clarity, we illustrate our bioinformatic results by displaying
each differentially regulated gene set as an individual dot (blue
for enriched in swim and red enriched in sedentary). All closely
related gene sets were represented by lines using Cytoscape
3.4.0 which allowed gene sets to be grouped into “gene clusters”
with common and overlapping function and/or genes. To help
focus our discussion, our graphic representations did not include
clusters of gene sets with 2 or fewer related gene sets. The total
number of differentially regulated gene sets and the number of
gene sets in each cluster are presented in each figure.

Transcriptional Responses in Atria After
2 Weeks of Exercise
Principal component analysis (PCA) showed (an expected)
distinct separation between atria and ventricles (Supplementary
Figure 1). Surprisingly, there was little separation between
WT and TNF-KO, regardless of chamber or exercise status.
A remarkable feature of PCA results is the much larger effect
of exercise on atrial vs. ventricular transcriptomes, for either
genotype. These findings establish that exercise has a far greater
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impact on atrial vs. ventricular transcriptomes while TNF
ablation has a relatively minor impact on exercise-induced
changes in either chamber.

The specific gene sets that were differentially affected in WT
atria by 2 weeks of exercise are represented in Figure 2 and
Supplementary Table 1. The 2 week results in the TNF-KO mice
are presented later. These analyses identified 112 differentially
regulated (P < 0.05 and FDR < 0.2) gene sets, with 64 of these
falling into clusters with common function (Figure 2A). Of these,
gene sets linked to ATP synthesis and oxidative phosphorylation
were enriched with swimming, which is not unexpected given
the known cardiac bioenergetic adaptations to exercise (Vega
et al., 2017). More interesting perhaps, was the finding that
∼28% of the differentially regulated gene sets were linked to
mechanosensing (i.e., integrin/focal adhesion signaling), cell-cell
communication, and ECM (i.e., collagen turnover, cross-linking,
and matrisome remodeling), compared to only 15% after 6 weeks
of exercise. As discussed later, differential regulation of these
gene sets seems highly relevant because atrial stretch is central
to AF pathogenesis (Vranka et al., 2007; Remes et al., 2008).
Nevertheless, these gene sets were enriched in sedentary atria of
WT mice (see Supplementary Table 2 for separation of these
gene sets into different functional categories). Importantly, the
expression levels of the major cardiac collagen types did not vary
between the groups, suggesting that fibrotic responses to exercise
after 2 weeks are limited to collagen turnover and stability
(discussed below). Consistent with this notion, notch as well as
the closely related Ephrin-related pathways were also enriched in
the atria of WT sedentary compared to swim mice, which both
play central roles in early embryogenesis (Sanz-Ezquerro et al.,
2017) and are associated with hypertrophy and fibrosis in the
heart as well as other tissues (Su et al., 2017).

Despite the protective effects of TNF blockade on the atrial
changes induced by exercise, the 2 week WT exercised atria
did not show clear evidence of differential regulation of genes
related to inflammation or TNF signaling, although several TNF-
related pathways were just beyond our cut off criteria [NFκB-IKK
(P = 0.04, FDR = 0.327), RelA (P = 0.06, FDR = 0.329), TNFR1
(P = 0.08, FDR = 0.384), and IL1R (P = 0.10, FDR = 0.384)].
By contrast, TNF-related gene sets [e.g., Toll-like receptor,
interleukin, and TNF-related pathways (NF-κB and p38 MAPK)]
were differentially regulated between swim and sedentary atria
from TNF-KO mice, with enrichment in the sedentary group
(Figure 2B and Supplementary Table 1). It is important to note
that the number of gene sets related to ECM/mechanosensing
was far less (i.e., 2 vs. 30) and did not form clusters in TNF-
KO compared to WT mice, which aligns with the absence
of exercised-induced atrial fibrosis when TNF is inhibited.
Although at first glance this pattern of differential regulation
with exercise in TNF-KO atria seems unexpected, we provide
additional data below supporting the conclusion that TNF plays
a permissive, rather than a primary role, in exercise-mediated
atrial remodeling.

The TNF-dependence of the gene sets that are differentially
regulated with exercise are summarized in Figure 2C as
the “difference-of-the-difference” results (see section “Materials
and Methods”). These analyses reveal, not unexpectedly, that

exercise induces TNF-dependent changes in gene sets involved
with ECM/mechanosensing, collagen production/turnover, fatty
acid metabolism, oxidative phosphorylation as well as notch
and ephrin signaling, with all these gene sets being enriched
in the atria of WT compared to TNF-KO mice. To better
understand the involvement of TNF in exercise-induced atrial
remodeling, we further assessed the TNF-dependence of specific
differentially regulated genes by generating heat maps of genes
related to mechanotransduction and ECM (Figure 3). For these
purposes, genes were separated into TNF-dependent (cluster
1 genes, whose expression differed in WT only) vs. TNF-
independent genes (cluster 2 genes whose expression differ
in both genotypes). As shown in Figure 3, far more genes
were regulated in a TNF-dependent than a TNF-independent
manner. Since TNF-KO abrogates atrial fibrosis as well as AF
inducibility, we focused our attention initially on TNF-dependent
collagen/ECM/mechanosensing genes (Supplementary Table 2).
Of these, Mmp2 and Mrc2 are reduced in atria after 2 weeks
of exercise which is of particular interest because these genes
are also reduced in the age-related fibrosis of multiple tissues
(Podolsky et al., 2020) and AF is strongly linked to aging
(Heeringa et al., 2006).

It is also worth stating that many specific
ECM/mechanosensing-related genes whose expression was
downregulated in TNF-dependent manner with exercise have
been linked previously to AF and ECM remodeling, including
Comp (Zou et al., 2018; Thomas et al., 2019), Thbs2 (Yang et al.,
2000), Ltbp1 and Fbn1 (Zhang et al., 2020; Figure 3 and Table 1).
On the other hand, most genes linked to collagen production (i.e.,
Col1a1, Col1a2, Col3a1) were TNF-independent. Since TNF-KO
abrogates fibrosis and AF inducibility, these results suggest (see
section “Discussion”) that the cluster 2 genes are not central to
the adverse atrial changes induced by exercise. In light of the
impact of TNF on atria induced by exercise, it is worth pointing
out that only two genes, Comp (TNF-dependent) and PIK3R2
(TNF-independent) are upregulated with exercise in swim WT
vs. swim TNF-KO atria (see Discussion). Additional gene sets
and individual genes linked to ECM/mechanosensing and/or AF
are listed in Table 1 and Supplementary Tables 1–3, respectively.

Transcriptional Responses in Atria After
2 Days of Exercise
The observation that ECM/FAK/integrin gene sets pathways
were generally enriched in sedentary atria at 2 and 6 weeks,
despite atrial fibrosis at 6 weeks in exercised mice, prompted
us to perform RNAseq measurements in hearts after only 2
days of exercise (i.e., 4-sessions of 90 min swims). Consistent
with 2 week data, PCA showed the expected separation between
atria and ventricles (Supplementary Figure 1). Surprisingly,
while there were distinct separations between exercise and
sedentary atrial samples, this was not true in ventricles,
suggesting a much smaller effect of exercise on ventricular
transcriptomic remodeling. Moreover, there was overlap between
WT and TNF-KO, regardless of chamber or exercise status,
suggesting TNF ablation may have a minor impact on acute
exercise-induced changes.
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FIGURE 2 | Differentially regulated pathways in the atria of 2 week swim exercised wild-type (WT) and tumor necrosis factor (TNF) knockout (KO) mice. (A) Gene set
enrichment analysis (GSEA) and enrichment mapping showing clusters of differentially regulated pathways in the left atrial appendage (LAA) between WT 2 week
swim (blue dots) and sedentary (red dots) mice. (B) Enrichment map showing clusters of differentially regulated pathways in the left atrial appendage (LAA) of
TNF-KO 2 week swim and sedentary mice. (C) Enrichment map of the difference of the difference analysis revealing clusters of exercise-induced differentially
regulated pathways in WT (blue dots) vs. TNF-KO (orange dots) mice. Only gene sets that form clusters are shown for clarity, with connecting lines indicating gene
set overlap. Nominal P-value < 0.05, false discovery rate (FDR) < 0.20.
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FIGURE 3 | Heat map and clustering analysis of the tumor necrosis factor (TNF)-dependence of extracellular matrix (ECM)-, integrin-, and cell-cell
communication-associated genes in 2 week swim exercised mice. Heat map and cluster analysis of individual genes belonging to ECM-, integrin-, and/or cell-cell
communication-associated gene sets that are TNF-dependent (cluster 1) or TNF-independent (cluster 2). Note that all individual genes were enriched in sedentary
(Sed) vs. swim mice. TNF-dependent (cluster 1) is: SedWT vs. SwimWT (P < 0.05) and SedKO vs. Swim KO (not P < 0.05). TNF-independent (cluster 2) is: SedWT
vs. SwimWT (P < 0.05) and SedKO vs. SwimKO (P < 0.05).

The results of our GSEA analyses for mice after 2 days
of exercise are summarized in Figure 4 and Supplementary
Table 4. The data reveals that 101 gene sets were differentially
regulated (P < 0.05, FDR < 0.2) between swim (total of 61
differentially regulated gene sets) vs. sedentary (40 gene sets)
atria in WT mice, with 60 sets clustering into common pathways
(Figure 4A). Importantly, unlike what was seen after 2 and 6
weeks of exercise, ECM/mechanosensing gene sets were now
more enriched in exercise vs. sedentary atria (Supplementary
Table 4). Acute exercise also induced enrichment in gene sets
related to actin/tubulin folding, which cross-talks to many
hypertrophic signaling pathways (i.e., MAPK/FGFR1/2) linked
to dilated and hypertrophic cardiomyopathy (Caporizzo et al.,
2019), as well as IQGAPs, PAKs, and AMPK activation (see
section “Discussion”) (Hedman et al., 2015; Daskalopoulos et al.,
2016). On the other hand, TNF-related gene sets in acute
exercise were only differentially regulated in TNF-KO atria
(Figure 4B) with reductions in many specific pro-inflammatory
genes in exercised mice [i.e., toll-like receptor 10 (p < 0.008,
FDR = 0.178), IL-2 (p = 0.018, FDR = 0.187), IL-2-STAT5
(p = 0.018, FDR = 0.240), TAK1 (P < 0.037, FDR = 0.278), and
NFκB (P < 0.005, FDR = 0.124)].

The difference-of-the-difference analyses after 2 day exercise
clearly establish that gene sets involved in mechanosensitive
pathways are uniquely differentially enriched in exercised WT

atria, while TNF-related signaling and DNA replication/repair
pathways are uniquely enriched in sedentary KO mice
(Figure 4C). Heat maps of differentially (P < 0.05) regulated
genes revealed (Figure 5) a distinct pattern after 2 days of
exercise compared to 2 weeks. Now, many TNF-dependent genes
linked to ECM remodeling as well as AF are upregulated with
exercise in WT atria compared to sedentary, including Mmp14
(Simmers et al., 2016), Fgf2 (i.e., fibroblast growth factor 2,
which activates p38 and induces cardiac hypertrophy as well
as fibrosis) (Itoh and Ohta, 2013), Gsk3β (Sugden et al., 2008),
and Tln1 (Manso et al., 2013). On the other hand, only Fgf2 was
upregulated (P = 0.0142) in WT vs. KO exercised atria, suggesting
TNF-dependent activation of FGF signaling pathways may be
important early responses that regulate exercise-induced atrial
remodeling. Nonetheless, these results suggest that acute exercise
leads to TNF-dependent and TNF-independent transcriptome
changes affecting ECM remodeling. Additional genes and their
links to ECM/mechanosensing and/or AF are listed in Table 2.

Transcriptional Changes in Ventricles
With Exercise
As mentioned, after 2 weeks of exercise, PCA showed
relatively small effects of exercise on ventricles (compared
to atria) at all-time points. Before directly comparing LV
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TABLE 1 | Differentially regulated genes with 2 weeks exercise of the ECM-receptor, integrin, and cell-cell communication pathways associated with hypertrophic
remodeling and/or atrial fibrillation (AF).

Gene Gene product Directional change with
swim exercise

Tumor necrosis factor
(TNF) dependent?

Link(s) to fibrotic and/or hypertrophic
remodeling and AF vulnerability

Adam10 A disintegrin and
metalloprotease (ADAM) 10

↓ No Processes membrane bound TNF to a
soluble form, which in turn can induce
MMPs and drive ECM remodeling (Manso
et al., 2006; Murphy, 2008)

Adam12 A disintegrin and
metalloprotease (ADAM) 12

↓ Yes Regulator of MMPs and linked to prevention
of cardiac hypertrophic and fibrotic
remodeling through reductions in TGF-β-
and integrinβ1-mediated FAK/Akt, ERK, and
Smad signaling (Frangogiannis, 2012;
Nakamura et al., 2020)

Adam17 A disintegrin and
metalloprotease (ADAM) 17

↓ No A metalloprotease and disintegrin, also
known as TNF-α converting enzyme (TACE),
that cleaves TNF to its soluble form and has
been implicated in pressure
overload-induced hypertrophic and fibrotic
remodeling (Xu et al., 2016) and AF
vulnerability (Weeke et al., 2014)

Adamts2 Adamts2 ↓ Yes Extracellular enzyme that activates
pro-collagens I, II, III, and V (Wang et al.,
2017b), and is a regulator of MMPs linked to
cardiac hypertrophic and fibrotic remodeling
in pressure-overload (Dong et al., 2013)

Bcl2 B-cell lymphoma 2 ↓ No Increased expression of
BCL-2/BCL-2-associated X protein (BAX)
linked to fibrosis and apoptosis in AF (Xu
et al., 2013; Diao et al., 2016)

Bmp1 Bone morphogenetic protein 1 ↓ Yes A peptidase that cleaves the C-terminal
pro-peptides of procollagen I, II, and III and
mediates the proteolytic activation of lysyl
oxidase LOX (Rodriguez and
Martinez-Gonzalez, 2019)

Col4a4, Col5a1, and Col5a3 Collagen type IV, alpha 4 chain;
collagen type V, alpha 1 chain;
and collagen type V, alpha 3

chain

↓ No Collagen transcripts linked to AF and rhythm
outcome following ablation (Husser et al.,
2016)

Col6a6 Collagen type VI Alpha 6 Chain ↓ No Collagen protein encoding gene containing
multiple von Willebrand factor (vWF)
domains. Linked to extracellular matrix
(ECM)-receptor interactions and is
upregulated in AF (Zou et al., 2018)

Ctsb Cathepsin B ↓ Yes Lysosomal cysteine proteases localized in
lysosomes and endosomes that function to
degrade cellular substrates (Turk et al.,
2000). Stimulated by TNF and linked to
hypertrophic and fibrotic cardiac remodeling
(Cheng et al., 2012b). Upregulated in AF
(Thomas et al., 2019)

Erbb2 HER-2; receptor tyrosine kinase ↓ No A receptor involved in physiological cardiac
adaptations and hypertrophic remodeling
through the activation of MAPK, PI3K/Akt
and Src/FAK signaling pathways (Vermeulen
et al., 2016)

Fbln2 Fibulin-2 ↓ Yes ECM glycoprotein involved in
angiotensin-II-mediated TGF-β signaling and
cardiac hypertrophy (Zhang et al., 2014)

Fbn1 Fibrillin 1 ↓ Yes Large ECM glycoprotein and constituent of
the myocardial ECM that is linked to reactive
and reparative fibrotic remodeling
(Bouzeghrane et al., 2005) and is
upregulated in AF (Zhang et al., 2020)

Igf1 Insulin-like growth factor-1 ↓ Yes A hormone that has pleiotropic actions in the
heart and mediated eccentric hypertrophy
through PI3K- and MAPK-dependent
mechanisms (Lavandero et al., 1998)

(Continued)
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TABLE 1 | Continued

Gene Gene product Directional change with
swim exercise

Tumor necrosis factor
(TNF) dependent?

Link(s) to fibrotic and/or hypertrophic
remodeling and AF vulnerability

Itga4, Itgb1, Itgb6 Integrin alpha-4, beta-1, and
beta-6 precursors

↓ No ECM proteins involved in mechanotransduction
linked to AF incidence and rhythm outcome
following ablation (Husser et al., 2016)

Ltbp1, Ltbp3, and Ltbp4 Latent transforming growth factor
(TGF)- β binding proteins

↓ Yes Family of secreted multidomain proteins that bind
to and regulate TGFβ-dependent activation and
pro-fibrotic remodeling (Goumans and Ten Dijke,
2018) as well as AF (Thomas et al., 2019; Zhang
et al., 2020)

Mfap4 Microfibril-associated protein 4 ↓ Yes A matricellular protein associated with AF and
atrial fibrotic remodeling (Zhang et al., 2019)

Pgf Placental growth factor ↓ Yes A member of the VEGF (vascular endothelial
growth factor) family known to induce cardiac
fibroblasts to secrete TNF and other
pro-hypertrophic factors (Accornero and
Molkentin, 2011)

Pdgfb Platelet-derived growth factor
subunit B

↓ No Increased PDGF-B expression linked to focal
cardiac fibrosis and moderate cardiac hypertrophy
(Gallini et al., 2016)

Pdgfra Platelet-derived growth factor α

receptor
↓ Yes Cardiac mast cells synthesize and release

PDGF-A and mediates both fibrosis and AF in
pressure-overloaded hearts (Liao et al., 2010;
Wang et al., 2017a)

Plod2 Procollagen-lysine,
2-oxoglutarate 5-dioxygenase 2

(PLOD2)

↓ No Lysyl hydroxylase linked to both TNF- and
TGFβ1-mediated pyridinoline cross-linking
inherent to fibrotic cardiac remodeling (van der
Slot et al., 2005)

Pten Phosphatase and tensin
homolog (PTEN)

↓ No A protein linked to increased pathological
hypertrophy and progression to heart failure in
response to biomechanical stress (Oudit et al.,
2008)

Reln Reelin ↓ No A large secreted ECM glycoprotein that regulates
pathways associated with ECM-receptor
interaction and focal adhesion and its expression
is linked to AF (Husser et al., 2016; Zhao et al.,
2018; Zou et al., 2018)

Sdc4 Syndecan-4 ↓ Yes A transmembrane (type I) heparan sulfate
proteoglycan that interacts with the ECM and is a
primary determinant in collagen cross-linking and
LOX induction in pressure-overload hearts (Herum
et al., 2015)

Serpinh1 Heat shock protein 47 (HSP47) ↓ Yes A chaperone protein for collagen involved in
cardiac injury-induced fibrosis and reductions in
hypertrophy in cardiac pressure-overload (Khalil
et al., 2019)

Sparc Secreted protein acidic and
cysteine rich (Sparc)

↓ Yes A matricellular protein that is activated by several
MMPs (i.e., MMP-2) and is elevated in cardiac
hypertrophy and fibrosis in pressure-overload
(Bradshaw et al., 2009) and aging (Bradshaw
et al., 2010)

Src Proto-ongogene tyrosine-protein
kinase Src

↓ No A tyrosine kinase that phosphorylates FAK (Frame
et al., 2010) and is activated in response to
integrin clustering and activation as well as
LOX-mediated ECM remodeling (Schneider et al.,
2008)

Thbs2 Thrombospondin-2 ↓ Yes A matricellular protein involved in myocardial
matrix integrity (Schroen et al., 2004) and linked to
protection against inflammatory-induced cardiac
injury and dysfunction (Papageorgiou et al., 2012)

Tln1 Talin-1 ↓ Yes A ubiquitously expressed protein localized to
costameres that become more prominent during
mechanical stress-induced cardiac hypertrophy
and fibrosis (Manso et al., 2013) and is
upregulated in AF (Weeke et al., 2014)

Vwf von Willebrand factor ↓ Yes A prothrombotic plasma marker and index of
endothelial damage and dysfunction that is
prominently linked to AF incidence, rhythm
outcome following ablation (Husser et al., 2016)
and stroke risk (Zhong et al., 2018; Ye et al., 2020)
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FIGURE 4 | Differentially regulated pathways in the atria of 2 day swim exercised wild-type (WT) and tumor necrosis factor (TNF) knockout (KO) mice. (A) Gene set
enrichment analysis (GSEA) and enrichment mapping showing clusters of differentially regulated pathways in the left atrial appendage (LAA) between WT 2 day swim
(blue dots) and sedentary (red dots) mice. (B) Enrichment map showing clusters of differentially regulated pathways in the LAA of TNF-KO 2 day swim (blue dots)
and sedentary (red dots) mice. (C) Enrichment map of the difference of the difference analysis revealing clusters of exercise-induced differentially regulated pathways
in WT (blue dots) vs. TNF-KO (orange dots) mice. Only gene sets that form clusters are shown for clarity, with connecting lines indicating gene set overlap. Nominal
P-value < 0.05, false discovery rate (FDR) < 0.20.
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FIGURE 5 | Heat map and clustering analysis of the tumor necrosis factor (TNF)-dependence of extracellular matrix (ECM)-, integrin-, and cell-cell
communication-associated genes in 2 day swim exercised mice. Heat map and cluster analysis of up- or down-regulation of individual genes belonging to ECM-,
integrin-, and/or cell-cell communication-associated gene sets that are TNF-dependent (cluster 1) or TNF-independent (cluster 2) in 2 day swim mice.
TNF-dependent (cluster 1) is: SedWT vs. SwimWT (P < 0.05) and SedKO vs. Swim KO (not P < 0.05). TNF-independent (cluster 2) is: SedWT vs. SwimWT
(P < 0.05) and SedKO vs. SwimKO (P < 0.05).

and LA transcriptomic remodeling, we present the effects
of exercise on LV genetic plasticity. After 2 weeks, genes
sets associated with oxidative phosphorylation and ribosome
translation were enriched in exercised WT mice while the
genes sets related to ECM/mechanosensing (as in atria)
and cardiomyopathy (i.e., HCM, DCM, ARVC), as well
as notch, ephrin/Rho GTPases, and MAPK signaling were
enriched in sedentary atria (Supplementary Figure 4A).
By comparison, TNF-KO mice showed enrichment of gene
sets linked to amino acid metabolism and TCA cycle with
exercise while gene sets associated with ECM/mechanosensing,
chemokine, interleukin, and T-cell/B-cell receptor pathways were
enriched in the sedentary group (Supplementary Figure 4B).
Interestingly, after performing the difference-of-the-difference
analyses (Supplementary Figure 4C) the majority of gene
sets that remained were related to TNF-mediated signaling
with differential regulation in TNF-KO mice, suggesting that
TNF also serves a role in LV remodeling with exercise, albeit
less than in LA.

The results above establish that the gene sets inked to
ECM/mechanosensitive pathways are quite similar after 2 weeks
of exercise between the LA and LV (i.e., Figure 2C and
Supplementary Figure 4C), even though the exercise-induced
remodeling is different between the chambers. To more directly
assess the differential effects of exercise and TNF on chamber-
specific transcriptomic remodeling at 2 weeks, a modified
difference-of-the-difference analysis was performed in which
TNF-dependent pathways were determined by subtracting the
gene sets that were significantly differentially regulated between
swim in WT and KO samples within each chamber from

those differentially regulated between LA and LV samples.
As shown in Figure 6A, the number of TNF-dependent
differentially regulated gene sets with exercise is far smaller
for LVs (i.e., 4) vs. LAs (i.e., 43) at 2 weeks, with little
overlap between the gene sets between chambers (i.e., 12).
Indeed, while ECM/mechanosensitive pathways were enriched
in both the LAs and LVs of sedentary mice at 2 weeks, direct
comparisons between chambers highlight the predominance of
TNF-dependent differentially gene sets (Figure 6B), including
ECM/integrin signaling, dilated/hypertrophic cardiomyopathy,
and actin/tubulin folding, in the atria, which reinforces
the chamber-specific effects of both exercise and TNF on
transcriptome remodeling.

The differential impact of exercise on the LA and LV is
also apparent in 2 day acutely exercised mice. Indeed, while
we found clear evidence of ECM/mechanosensitive pathway
enrichment in WT mice at 2 days in the atria (discussed
above), when we assessed ventricular changes after 2 day acute
exercise, only 16 gene sets were differentially regulated in WT
LVs with most of the pathways linked to cell cycle and DNA
replication processes (Supplementary Figure 5A). By contrast,
exercised LV from TNF-KO mice had far greater numbers (211)
of differentially regulated gene sets, including ECM/integrin, gap
junction and actin/tubulin folding, as well as cell cycle and DNA
repair/replication (Supplementary Figure 5B), all of which were
enriched in sedentary mice. The difference-of-the-difference
analysis (Supplementary Figure 5C) confirmed enrichment
of the above pathways in TNF-KO compared to WT mice.
Indeed, heat map and cluster analysis (Supplementary Figure 6)
identified only three genes linked to ECM/mechanosensing,
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TABLE 2 | Differentially regulated genes with acute (2 day) exercise of the ECM-receptor, integrin, and cell-cell communication pathways associated with hypertrophic
remodeling and/or atrial fibrillation (AF).

Gene Gene product Directional change with
swim exercise

Tumor necrosis factor
(TNF) dependent?

Link(s) to fibrotic and/or hypertrophic
remodeling and atrial fibrillation

Ccnd3 Cyclin D3 ↓ No A protein shown to be upregulated during
hypertrophic growth (Busk et al., 2002) and
linked to the pathogenesis of AF (Li et al.,
2019)

Elk1 Elk-1 ↓ No A transcription factor that is phosphorylated
via MEK/ERK kinases and plays a role in
cardiac hypertrophy (Babu et al., 2000) as
well as regulating stretch-mediated atrial
natriuretic factor (ANF) expression (Mahida,
2013)

Fgf2 Fibroblast growth factor 2 ↑ Yes A multifunctional polypeptide that is
upregulated by stress (Kardami et al., 2004)
and involved in p38 MAPK-mediated
cardiac hypertrophy (Tanaka et al., 1999) as
well as fibrosis (Itoh and Ohta, 2013)

Gsk3β Glycogen synthase kinase 3
beta

↑ Yes An enzyme that serves as a hub for the
regulation of both physiological and
pathological hypertrophic and fibrotic
remodeling (Lal et al., 2015) via TNF-related
pathways (Sugden et al., 2008)

Itga1 Integrin, alpha 1 ↑ Yes Cell-cell and cell-matrix adhesion
(ECM-receptor interactions), upregulated in
AF and linked to rhythm outcome of AF
catheter ablation (Husser et al., 2016)

Lama5 Laminin subunit alpha-5 ↑ Yes A component of the ECM, specifically
basement membranes, that is upregulated
in AF (Husser et al., 2016)

Mmp13 Matrix metalloproteinase 13 ↓ Yes A matrix metalloproteinase and collagenase
that targets collagens I and III and is linked
to cardiac hypertrophy and fibrosis in
pressure overload hearts (Spinale, 2002)

Plod2 Procollagen-lysine,
2-oxoglutarate 5-dioxygenase

2 (PLOD2)

↓ No Lysyl hydroxylase linked to both TNF- and
TGFβ1-mediated pyridinoline cross-linking
inherent to fibrotic cardiac remodeling (van
der Slot et al., 2005)

Tln1 Talin-1 ↑ Yes A protein mediating cell-cell adhesion linked
to AF (Weeke et al., 2014) and becomes
more prominent at costameres during
mechanical stress and modulates
hypertrophic and fibrotic remodeling
(Manso et al., 2013)

Mmp16, Dst, and Reln, that were upregulated in a TNF-
dependent manner with acute swim, compared to the 14 genes
identified in the LA. The absence of enrichment of gene sets
linked to ECM/mechanosensitive pathways in the LV and their
upregulation in the LA with 2 day acute exercise supports our
contention that strain-dependent signaling mediates exercise-
induced atrial remodeling.

Acute Effects of Exercise on Atrial
Pressures and Collagen
Metabolism/Remodeling
Since AF is primarily observed in cardiovascular conditions
associated with elevated diastolic filling pressures (De Jong et al.,
2011), we previously postulated (Aschar-Sobbi et al., 2015) that

elevated filling pressures seen with exercise may explain the
increased incidence of AF in endurance athletes. Consistent
with this conjecture, we found that diastolic filling pressures
increase from 10 mmHg to ∼45 mmHg within the first 10 min
after mice begin swimming exercise (Figure 7). Thereafter the
pressure falls to∼20 mmHg over the next 30–50 min after which
the filling pressure steadily rise to 40–45 mmHg after 90 min.
Such increases in venous filling pressures would be expected
to preferentially stretch the thin-walled and compliant atria,
which may explain our observation of mechanosensitive and
compensatory hypertrophic pathways being disproportionately
activated in LAs compared to LVs.

Taken together, our findings demonstrate prominent
time-dependent transcriptional changes in genes related to
strain-dependent pathways in response to exercise. However,
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FIGURE 6 | Differential roles of TNF in exercise-induced transcriptomic remodeling with 2 week swim exercise in the left atrial appendage (LAA) vs. left ventricle (LV).
(A) Venn diagram of exercise- and TNF-dependent (i.e., Swim WT vs. swim KO) differentially regulated gene sets in the LAA vs. LV. (B) Gene set enrichment analysis
(GSEA) and enrichment mapping showing clusters of TNF-dependent differentially regulated gene sets in the LAA (red dots) and LV (green dots). Gene sets that were
TNF-dependent and differentially regulated in both LAA and LV are indicated by yellow dots. Only gene sets that form clusters are shown for clarity. Nominal
P-value < 0.05, false discovery rate (FDR) < 0.20.

despite the induction of fibrosis by exercise, the absence of
increased collagen expression at all-time points following
exercise led us to explore the potential contribution of factors
that have previously been shown to mediate post-translational
changes in collagen maturation and deposition in the heart.
For these studies, we used the 2 day mice and made the
measurements 2 h following the final 90 min exercise bout,
consistent with our RNA-seq measurements. Given that soluble
TNF is required for exercise-induced atrial changes (Lakin et al.,
2019), we first measured the activity of TNF-converting enzyme
(TACE, or ADAM17), which is upregulated with mechanical
stretch and releases active (soluble) TNF (Zhan et al., 2007).
Indeed, TACE activity tended to be increased (P = 0.211) with

swim (142 ± 4 pmol/min/µg, n = 5) compared to sedentary
mice (129 ± 8 pmol/min/µg, n = 6), suggesting activation. It is
conceivable that earlier assessment would have displayed even
greater TACE activity since we previously found upregulation
of TNF-dependent p38 MAPK signaling within 10 min post-
exercise (Aschar-Sobbi et al., 2015). We also measured MMP2
and MMP9 activity since these are increased with atrial stretch
as well as in CV disease (Yabluchanskiy et al., 2013). We found
that pro-MMP2 activity was increased (P = 0.0003) while
pro-MMP9 activity tended (P = 0.098) to be increased in atria
after swim completion in 2 day swim compared to sedentary mice
(Supplementary Figure 7A), establishing increased collagen
turnover with acute exercise.
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FIGURE 7 | Representative left ventricular (LV) hemodynamic changes measured by implantable pressure-telemetry during an acute swim bout in mice. During a
90 min swim bout, LV diastolic filling pressures (red) increase rapidly from a baseline of ∼10 mmHg to ∼45 mmHg within the first 10 min. Thereafter, the pressure
falls to ∼20 mmHg, only to rise steadily to ∼40–45 mmHg by the end of the 90 min swim.

Since previous studies reported increases in matricellular
proteins that mediate post-synthetic collagen turnover in several
models (Frangogiannis, 2012; McDonald et al., 2018), we also
measured osteopontin (OPN) and SPARC expression levels.
Although SPARC expression in atria was unaffected by acute
exercise (P = 0.562), OPN was decreased (P = 0.006), suggesting
these matricellular proteins contribute minimally to adverse atrial
remodeling in the early response to exercise.

A schematic overview of the time-dependent and atrial-
specific exercise-induced TNF-dependent transcriptomic
changes mediating adverse atrial remodeling and AF
vulnerability in response to increased filling pressures and
atrial stretch are shown in Figure 8.

DISCUSSION

The transcriptional changes in WT atria were generally similar
after 2 vs. 6 weeks of exercise, with about 50% of the differentially
regulated gene sets related to ECM and mechanosensing enriched
in sedentary mice. We believe that changes in gene sets associated
with ECM/mechanosensitive pathways at these time points are
relevant because elevated venous filling pressures (i.e., preloads)
are seen invariably in virtually all AF conditions (Vranka
et al., 2007; Remes et al., 2008), including intense exercise
(Reeves et al., 1990; Aschar-Sobbi et al., 2015). Such elevations
in filling pressure are expected to favor atrial vs. ventricular
stretch and thereby preferentially driving stretch-dependent
atrial remodeling (De Jong et al., 2011). This would help explain
the appearance of fibrosis in atria but not ventricles. Moreover,
the number of differentially regulated genes/gene sets related
to ECM/mechanosensing were ∼twofold greater after 2 weeks
vs. 6 weeks of exercise suggesting that the atrial responses to
exercise adapt and diminish with time, as expected with the
appearance of fibrosis. A puzzling finding, however, is the absence

of increased collagen mRNA levels in exercised atria at either
time point, despite the fibrosis after 6 weeks of exercise. This was
surprising because fibrosis seen in most cardiac conditions (i.e.,
heart failure, hypertension, and cardiomyopathies) is associated
with elevated collagen mRNA (Frangogiannis, 2019). The absence
of elevated collagen mRNA in fibrotic exercised atria is similar
to the discordant pattern seen with age- (Horn and Trafford,
2016; Podolsky et al., 2020) and stress-related (Kandalam et al.,
2011) fibrosis in several tissues. As discussed below, we believe
these findings have important implications on the mechanisms
underlying adverse atrial changes and AF, regardless of the
inciting factors.

Consistent with the TNF-dependence of adverse atrial changes
with exercise, TNF- and inflammation-related gene sets were
differentially regulated after 2 weeks of exercise (similar to 6
weeks of exercise) with the number of differentially regulated
gene sets being ∼twofold less in TNF-KO vs. WT atria. On the
other hand, after 2 weeks of exercise atria from sedentary TNF-
KO mice, but not WT mice, showed enrichment in TNF-related
inflammatory gene sets. Since adverse atrial changes do not occur
in TNF-KO mice, it appears that TNF plays a permissive role
in exercise-induced inflammation rather than being a primary
factor. By contrast, the primary exercise-induced gene changes
in TNF-KO atria are related to DNA replication and repair,
whose significance will require further studies. Collectively, the
differences in atrial transcriptome remodeling after 2 weeks
of exercise are consistent with the pleiotropic actions of TNF
(Tracey and Cerami, 1994).

To gain insight into possible mechanisms underlying
the TNF-dependent atrial changes induced by 2 weeks of
exercise, we examined transcript levels of individual genes
between the 4 groups. Consistent with our enrichment maps,
the bulk of the differentially regulated genes related to
ECM/mechanotransduction had lower expression levels in
exercised atria of both WT and KO mice. Moreover, most
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FIGURE 8 | Schematic overview of the time-dependent and atrial-specific exercise-induced tumor necrosis factor (TNF)-dependent transcriptional responses to
elevated venous filling pressures and atrial stretch mediating adverse atrial remodeling (inflammation, fibrosis, hypertrophy) and atrial fibrillation (AF) vulnerability.

of these genes have been linked to increased tissue fibrosis,
despite the absence of atrial fibrosis and AF inducibility in
exercised TNF-KO mice, which suggests that many of these
gene changes are likely of limited relevance in driving exercise-
induced fibrosis (Chou et al., 1996; Sivasubramanian et al., 2001).
However, it is noted in previous studies that reductions in the
metalloproteinase, Mmp2, and the canonical collagen endocytic
receptor (Engelholm et al., 2003), Mrc2 (which are both TNF-
dependent genes that are reduced in WT exercised atria), are
linked to age-dependent fibrosis (Podolsky et al., 2020). These
TNF-dependent changes are particularly interesting since atrial
fibrosis and AF are generally seen with aging (Gramley et al.,
2009; Ravassa et al., 2019), and AF is especially prevalent in
veteran endurance athletes (Karjalainen et al., 1998; Mont et al.,
2002). Also, these Mmp2 reductions paralleled reductions in
Mmp14, albeit independently of TNF, which has been associated
with AF (Simmers et al., 2016) and shown to activate MMP-
2 (Jr and Nagase, 2000). On the other hand, when we directly
compared WT and TNF-KO swim atria, the majority of genes
were increased in exercised atria from TNF-KO relative to WT,
with the only gene that was increased in a TNF-dependent
manner after 2 weeks of exercise in WT atria was Comp, which
is a biomarker for cardiac fibrosis and hypertrophic remodeling
(Huang et al., 2013; Zhao et al., 2018). Comp is involved in non-
collagen ECM-receptor interaction (Rosenberg et al., 1998) and
appears from multiple studies to contribute to the pathogenesis
of AF (Zou et al., 2018; Thomas et al., 2019).

As the ECM/mechanosensitive pathways did not show
enrichment at 2 and 6 weeks in our exercised mice, we
also performed RNAseq measurements after only 2 days of
exercise. Importantly, at this time point gene sets associated
with ECM/mechanosensitive as well as hypertrophic signaling
pathways were enriched in exercised atria from WT mice,
which would appear to align with the elevated filling pressures

seen in exercise and AF-related conditions (Reeves et al.,
1990; De Jong et al., 2011; Aschar-Sobbi et al., 2015). Of
particular note is the enrichment of tubulin folding and
MAPK pathways in exercised WT (but not TNK-KO) atria.
Tubulin assembly/disassembly in microtubules is involved in
mechanosensing (White, 2011) in a number of cell types
and is interdependent on MAPKs (Samaj et al., 2004),
particularly p38 kinases (Ramkumar et al., 2018). These
results suggest that strain-dependent signaling via microtubule
assembly/disassembly may play a role in driving early atrial
responses to atrial stretch occurring during exercise, possibly in
concert with the recruitment of TNF-dependent transduction,
consistent with TNF’s mechanosensing properties (Kroetsch
et al., 2017). Microtubule involvement is consistent with the
pioneering studies by George Cooper (4th) who showed that p21-
activated kinase-1 (Pak1)-dependent microtubule assembly plays
a central role in the early response to pressure overload and
mechanical stretch in right ventricular cardiomyocytes (Cheng
et al., 2012a). Indeed, Pak1 regulates exercise-induced cardiac
hypertrophy (Davis et al., 2015), which aligns nicely with our
2 day atrial analyses showing exercise-induced upregulation of
Flna (filamen A), a cytoprotective protein that is upregulated
with mechanical stress (D’Addario et al., 2003) and is essential
for actin/cytoskeletal dynamics (Vadlamudi et al., 2002) through
interdependent p38- (D’Addario et al., 2002) and Pak1-mediated
signaling (Zhang et al., 1995; Shifrin et al., 2012). We also found
enrichment of other pathways, including IQGAPs and AMPKs,
in acutely exercised WT atria which are involved in the early
compensatory responses to pressure overload stimuli that may
be harbingers of fibrotic remodeling in the long-term (Hermida
et al., 2013; Hedman et al., 2015; Daskalopoulos et al., 2016).
Taken together, these observations suggest that the loss of TNF
leads to an inhibitory modulation of mechanosensitive signaling
pathways which is consistent with the stretch-dependence of TNF
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activation (Kroetsch et al., 2017) and the regulation of FAK by
TNF (Funakoshi-Tago et al., 2003; Murphy et al., 2019) via MAPK
signaling and IL-6 expression (Schlaepfer et al., 2007). Given
the absence of exercise-induced adverse atrial remodeling and
AF with TNF inhibition, our results suggest stretch-activation
of TNF may tip the scales toward maladaptive compensatory
remodeling that is unique to the atria.

As in the 2 week group, far fewer gene sets (61 vs. 101)
were differentially regulated with 2 day exercise in TNF-
KO vs. WT mice. In particular, TNF-KO mice again showed
enrichment of NF-κB, toll-like receptor, and interleukin pathways
in the sedentary group, further supporting a permissive role
for TNF in regulating exercise-induced atrial changes. With
regards to individual genes, our analyses showed that fewer
atrial genes were differentially regulated between swim WT and
KO mice. Of these, the differentially regulated genes related to
ECM/mechanosensitive include Mmp14, Tln1, Lox, and Gsk3β

as well as Fgf2, the latter being the only gene upregulated in a
TNF-dependent manner exclusively in exercised WT mice. The
presence of only one TNF-dependent differentially regulated gene
in the WT compared to TNF-KO exercise group is unexpected
given the increased filling pressures we observed with swim.
However, exercise is an intermittent hemodynamic overload
stimulus (Moreira-Goncalves et al., 2015), and the nature and
time course of cardiac transcriptomic remodeling in response to
mechanical stretch is highly dependent on stretch duration (Rysa
et al., 2018). Therefore, as we only looked at atrial transcriptomic
remodeling 2 h following the last acute swim bout, and focused
our analysis on genes linked to mechanotransduction and ECM
remodeling, a larger window is likely necessary to capture the
full impact of swim exercise on stretch-induced transcriptomic
remodeling and enzyme activity (i.e., TACE/ADAM17, pro-
MMP2).

Relative to atria, the number of genes sets in ventricles
that were differentially regulated in response to exercise was
much smaller. This is not unexpected because ventricles are
far less compliant than atria due to differences in ECM as
well as wall thickness (La Gerche et al., 2011) in agreement
with our previous studies showing that exercise activates
p38 in atria but not ventricles (Aschar-Sobbi et al., 2015).
Presumably, preferential atrial stretch underlies prominent bi-
atrial enlargement in athletes (D’Andrea et al., 2010; D’Ascenzi
et al., 2016, 2018) as well as pronounced atrial hypertrophy
and fibrosis in our exercised mice. These responses would
be expected to normalize atrial wall stress which explains
nicely the evolving pattern of time-dependent exercised-induced
atrial changes in stretch-dependent signaling pathways in
the current study.

Given the link between TNF and mechanical stress, it is
tempting to speculate that the degree of TNF elevation with
elevated filling pressures and its effects on mechanosensitive
signaling cascades may determine the threshold between
compensatory (i.e., physiological) or maladaptive transcriptomic
activation early in the response to exercise training. This would
be consistent with the pleiotropic functions of TNF (Tracey and
Cerami, 1994). Indeed, TNF and its downstream factors such as
NFκB and p38 can promote protective and pathophysiological

responses (Schumacher and Naga Prasad, 2018). Moreover, time-
dependent adaptations (i.e., hypertrophy and fibrosis) may serve
to blunt or normalize acute elevations in wall stress with exercise,
which would explain enrichment in ECM/mechanosensitive
genes in sedentary mice over time and compensatory deactivation
of stretch-mediated remodeling. This would further promote an
early transition to reduced collagen transcription, mimicking
fibrotic processes seen in aging wherein collagen expression is
also not increased (Podolsky et al., 2020).

Implications
AF increases strongly with age, CVD and conditions associated
with poor cardiovascular health (i.e., diabetes, obesity, and
metabolic syndrome). Even though physical activity reduces
AF risk (Drca et al., 2014; Malmo et al., 2016), endurance
athletes, especially elite veteran athletes, have AF risks rivaling
that seen with hypertension and other CVD conditions (Mont
et al., 2002; Redpath and Backx, 2015; Goodman et al.,
2018). In CVD patients, persistent AF is invariably associated
with atrial fibrosis, inflammation and hypertrophy, along with
variable electrical changes (Daoud et al., 1996; Xu et al.,
2004; Nattel and Harada, 2014). Although historically AF in
athletes has often been referred to as “lone AF” (Calvo et al.,
2016) because of the absence of CVD, the term is no longer
considered appropriate since AF is associated with a multitude
of conditions (Wyse et al., 2014). In this regard, animal studies
have established, and some human studies suggest, that intense
exercise leads to adverse atrial changes resembling those seen
in persistent AF patients. In this regard, our studies reveal that
exercise induces dynamic transcriptional adaptations involving,
in particular, pronounced changes in strain-dependent pathways
related to ECM/integrin/focal adhesion. These observations seem
particularly relevant since elevated filling pressures and atrial
stretch are both prominent features of aging, CVD and exercise.
A novel and remarkable finding of our analyses was the link
between genes associated with collagen turnover, rather than
collagen transcripts, and fibrosis in exercised atria, a pattern
that mirrors aging-related fibrosis (Podolsky et al., 2020). This is
especially interesting because the strongest predictor of AF is age
(Staerk et al., 2018). Moreover, our findings revealed TNF plays
a permissive rather than primary role in exercise-mediated atrial
structural and transcriptomic remodeling.

TNF involvement in exercise-induced structural and
transcriptional adaptations are of particular interest because
TNF has been implicated in the pathogenesis of AF (Ren et al.,
2015) and persistent AF is associated with elevated atrial TNF
levels and inflammatory infiltrates (Li et al., 2010; Guo et al.,
2012). Collectively, the many common atrial features between
persistent AF patients and exercised mice suggests to us that
AF and adverse remodeling seen with intense exercise and
CVD share common mechanisms. Thus, while our findings of
an arrhythmogenic substrate requires confirmation in athletes
presenting with AF, the genetic changes seen in our studies may
have broader implications for the general AF population. By
comparison, ventricular responses to exercise were relatively
muted, although the differentially regulated gene sets were
similar to those in the atria, consistent with clinical and
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epidemiological evidence for exercise-induced arrhythmogenic
remodeling being chamber-specific (Guasch et al., 2018).

Limitations
Obviously the use of whole tissue samples prevents us from
determining the individual contributions of cardiomyocytes,
endothelial cells, and fibroblasts to the transcriptomic remodeling
induced by exercise which would be highly desirable since TNF
is a mechanosensitive cytokine expressed in cardiomyocytes
(Kapadia et al., 1997; Sun et al., 2007), fibroblasts (Yokoyama
et al., 1999), and endothelial cells (Yin et al., 2017).

Although the studies presented here were limited to male
mice, we have plan to examine the effects of exercise on
female mice. It is worth noting that even though female
athletes remain underrepresented generally in previous studies
examining exercise-induced AF (Andersen et al., 2013), several
studies have found a reduced incidence of AF in females
(Mohanty et al., 2016) making our future studies potentially
highly relevant.

Our studies were limited to only three time points leaving
many uncertainties regarding the evolving effects of intense
exercise. Nevertheless, our results showed time-dependent
adaptations to exercise with generally comparable responses
at the 2 and 6 week time points, suggestive of compensatory
adaptations in fibrotic, hypertrophic and inflammatory pathways.
In this regard, we did not extend our swim training beyond
6 weeks given the clear evidence of adverse atrial remodeling
and increased AF vulnerability at this time point. However,
given the presence of inflammatory infiltrates and enrichment
of TNF-mediated inflammatory signaling pathways at 6 weeks
of exercise, it is conceivable that the arrhythmogenic substrate
and the degree of AF vulnerability may be more pronounced if
we were to extend our exercise protocol. We cannot rule out
increased collagen synthesis or mechanisms involved in post-
translational modifications/deposition (i.e., SPARC/OPN, LOXs)
or degradation (i.e., MMPs) as contributing to exercise-induced
atrial remodeling, which might not have been fully captured at 2
day, 2 or 6 week exercise.

While we used microarray analyses for 6 week data and
RNAseq for the other time points to assess exercise-induced
transcriptional changes, our analyses focused on RNAseq data at
the earlier time points. In this regard, it was reassuring to find that
the 6 weeks microarray results align well with the 2 week RNAseq
results, thus robustly supporting the compensatory nature of the
atrial responses to exercise at the later time points.

CONCLUSION

Our results demonstrate clear exercise-induced TNF-dependent
differential activation (enrichment) of pathways associated with
mechanosensitive ECM remodeling, which are both time-
dependent and differ between atria and ventricles in a manner
consistent with preferential stretch of atria in response to
exercise-induced elevations in venous pressure. Our findings
provide insight into the chamber-specific roles of TNF and
mechanical strain in cardiac changes induced by exercise, which

supports the general conclusion that exercise-induced adverse
atrial remodeling and AF vulnerability is linked to elevated
filling pressures, consistent with AF associated with aging and
poor cardiovascular health. The common atrial features between
persistent AF patients and exercised mice suggests that AF
and adverse remodeling seen with intense exercise may share
common mechanisms, which may have broader implications for
the general AF population.
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