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Abstract

Background: A fragmentation of genomic DNA by restriction digestion is a popular step in many applications.
Usually attention is paid to the expected average size of the DNA fragments. Another important parameter,
randomness of restriction, is regularly implied but rarely verified. This parameter is crucial to the expectation, that
either all fragments made by restriction will be suitable for the method of choice, or only a fraction of those will be
effectively used by the method. If only a fraction of the fragments are used, we often should know whether the
used fragments are representative of the whole genome. With a modern knowledge of mouse, human and many
other genomes, frequencies and distributions of restriction sites and sizes of corresponding DNA fragments can be
analyzed in silico. In this manuscript, the mouse genome was systematically scanned for frequencies of
complementary 4-base long palindromes.

Findings and conclusions: The study revealed substantial heterogeneity in distribution of those sites genome-wide.
Only few palindromes showed close to random pattern of distribution. Overall, the distribution of frequencies for most
palindromes is much wider than expected by random occurrence. In practical terms, accessibility of genome upon
restriction can be improved by a selective combination of restrictases using a few combinatorial rules. It is
recommended to mix at least 3 restrictases, their recognition sequences (palindrome) should be the least similar to
each other. Principles of the optimization and optimal combinations of restrictases are provided.
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Background
Fragmentation of genomic DNA is very usual step in
many protocols aimed at genomic analysis. For instance,
studies of DNA methylation employ a genomic restriction
protocol with a pair of enzymes, one of which is sensitive
to the methyl cytosine in the context of a CG di-
nucleotide [1-3]. Telomere length can be measured by use
of a combination of for instance two restriction enzymes
[4] with the expectation that the longest fragment in the
digest will be the telomeric region. A reduced representa-
tion approach employs the idea that a randomly selected
fraction of DNA fragments adequately represent the
whole genome, yet the size of the genomic sample can be
substantially reduced [5-8]. A strategy of restriction site
associated markers (RAD) for high throughput genotyping
is another example of this concept [9]. A few methods aim
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reproduction in any medium, provided the or
for maximal accessibility of the genome fragments for de-
tection of some particular genomic elements, for instance
retro elements [10-13] or retroviral vectors integrating
into the genome [14-16].
In all those kinds of applications it is important to

know the cost of deviation from the expected pattern of
genomic fragmentation. Issues of genomic bias from
randomness can be largely ignored in case of, for in-
stance, restriction-based analysis of DNA methylation:
they are exclusively aimed at CpG analysis rather than a
randomly sampled genome, the restriction schemes used
work well with CpG rich loci but miss large parts of
CpG poor regions. In the case of reduced representation,
biased genome sampling might affect the calculated gen-
ome diversity and phylogeny as a consequence [17]. In
the case of genome accessibility, the requirements of the
genomic restriction are the highest due to a risk of miss-
ing the genomic element in question and drawing incor-
rect conclusions as a consequence. In the search for
endogenous retro elements, we deal with hundreds of
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those elements across the entire genome, therefore miss-
ing a fraction of those might be acceptable. In the case
of an analysis of retroviral integration sites, a relatively
small number of integrations per cell are generally
expected. Therefore the risk and the cost of missing
those few might be very high. Yet a common practice of
using particular restriction schemes is highly empirical.
For a long time, only one restriction enzyme was used
for the recovery of retroviral integration sites [18]. It
wasn’t until 2007 that Harkey et al., [14] confronted this
practice and initiated a search for the optimal combin-
ation of restriction enzymes, since a single enzyme re-
striction was claimed to be ineffective. Ideally all
fragments should be as close as possible to the preferred
average. An average fragment size should fit the require-
ments of the assay. Note that studies performed on the
analysis of the endogenous retro elements use combina-
tions of 6-base enzyme restrictases [12,13], which are
generally very rare cutters falling below 1 cut per 1 kb.
Those authors claim a rather broad window of detection,
namely up to 4 kb long fragments, therefore the restric-
tion they used would serve the purpose. In a retroviral
integration site analysis, the distance of the integrated
vector to the restriction site is recommended to be in a
range of 20–200 bp [15]. In practice this means that re-
striction with an enzyme which has an average frequency
in the range 5–50 cuts per 1 kb will serve the purpose.
Frequent 4-base cutters formally suit those requirements
on average. However, it is equally important to ensure
that restriction is positionally close to random, as de-
fined for instance in [19]. Until now, this point was
rarely expressed or taken in consideration. Since DNA is
highly non-random and variable in local frequencies of
particular nucleotides is highly unlikely to expect ran-
dom distribution of restriction sites for any particular
restrictase across genome. In the field of retroviral in-
tegration site analysis, authors have attempted to circum-
vent the genome accessibility problem by combining
4-base recognizing restriction enzymes either empir-
ically [16,20], or using a combination of the most fre-
quent cutters [15]. Those combinations are claimed
to reach >95% of the whole mouse genome. Although
increasing the average restriction frequency might be
helpful, this alone is not sufficient to ensure improve-
ment along the entire genomic sequence. It is import-
ant to verify that genomic loci void of some particular
restriction site will be cut by another enzyme added
to the combination and eventually reduce the vari-
ation of restricted fragment sizes to the minimum. Al-
ternatively, if the added enzyme would cut at the
same loci as another enzyme from the selected en-
zyme mixture, such a combination will probably be
rather counter-effective. It is important therefore to
check whether the spectrum of restriction fragments
used fits the requirements of the analysis. This inevit-
ably leads to the question how close the distribution
of any enzyme or a combination of enzymes is to the
random distribution (since an option of making equal
fragments is not realistic). If it is too wide, how can it
be reduced in practical terms? To illustrate this, all
possible complementary palindromes were scanned
along the mouse genome, those sites were analyzed
for frequencies and randomness of distribution both
for each site separately and in combinations. The ana-
lysis revealed that distribution of all 4-base long re-
striction sites is wider than expected by random. A
few simple rules can be followed to achieve combina-
tions of restriction sites which fit to a random model.
None of the combinations could create a narrower
distribution of restriction sites than expected by
random.

Findings
Fitness to the Poisson distribution
At present detailed description of mouse and other ge-
nomes can be found at several WEB sites, such as NCBI
(http://www.ncbi.nlm.nih.gov/genome), Ensembl (http://
www.ensembl.org/index.html), or UCSC (http://genome.
ucsc.edu). Since the mouse genome is almost completely
assembled, frequencies of all possible restriction sites
can be mapped with a high precision. This work is
mainly focused on an analysis of 4-base long palin-
dromic sequences. Naturally 24 = 16 combinations of
complementary palindromes are possible since the last
two bases always depend on the combination of the 1st
two bases. All chromosomes were scanned for each pal-
indrome, and frequencies of all palindromes per 1 kb
non-overlapping windows along the entire chromosome
were recorded and further analyzed. Each restriction site
showed a rather variable average, varying from 8.25
sites/kb for ATAT on chromosome X to 0.06 sites/kb for
CGCG on chromosome Y. For each palindrome, esti-
mated frequencies of cuts were compared with the ran-
dom hypothesis (Poisson distribution). From the results
shown on a Figure 1A is clear that AT-rich palindromes
are the most frequent cutters and they deviate the most
from the random distribution. Balanced palindromes
(those which contain all 4 bases) tend to fit the best to the
random test across all frequencies of restrictions, CG-rich
palindromes show reasonable randomness but low fre-
quencies of occurrence. The way experimentally found
frequencies deviate from the Poisson model is very uni-
form: Poisson systematically underestimates both low and
high frequencies of the distribution (Figure 2A), in other
words: the real distribution is systematically wider than
expected by random. This deviation can be better visual-
ized in a kind of a “lasso” plot: by plotting observed
and predicted frequencies of cuts against each other
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Figure 1 Frequencies of occurrence and randomness of 4-base palindromes across mouse genome. 2D plot of randomness, measured as
an F-test P value versus average frequencies of tetra-palindromes on all mouse chromosomes (A) and trends of randomness for non-AT rich
palindromes upon changing bin size and average frequencies per bin therefore (B). Note that GATC, CTAG, TGCA remain quite stable, whereas
CG-containing palindromes are moving towards the area of AT-rich palindromes.
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Figure 2 Example of deviation from randomness for ACGT and CCGG. Broad shoulders detected upon changing bin size and average
frequency per bin (A), non-linearity in expected versus observed frequencies plot (B). Note that linearity of such a plot became worse upon
increased bin size and corresponding frequency of restriction.
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(Figure 2B). Ideally if observed and predicted frequen-
cies are equal, such a plot should generate a straight
line. Instead, it shows a “lasso”-like curve. Importantly,
in the case of low cutters, the shoulders of the distri-
bution are smaller, which can cause a better fit to the
Poisson when low efficiency cutters are compared to
high efficiency enzymes (Figure 1A). To test this, the
bin size was varied from 1 kb to 2, 5, 10, 25 kb respect-
ively and the fitness of the lower frequency palin-
dromes to the random model was repeatedly measured
(Figure 1B). By increasing bin size from 1 kb to 8 kb
(and consequently increasing the average frequency
per bin), P values from an F-test became slightly worse
for balanced, non-CG containing palindromes (GATC,
CTAG, TGCA). Among unbalanced palindromes, a
profound change in F-test P value was recorded. In
fact the difference between AT and GC rich sites
appeared to be due to the differences in frequencies
only. When the bin size was increased, CG rich palin-
dromes showed very comparable frequencies per bin
and randomness values as found for AT-rich palin-
dromes. To conclude: CG-rich and AT-rich palin-
dromes, although different in frequencies, are not
different in their randomness, rather the F-test is sen-
sitive to the frequencies instead.

Similarity metric by di-nucleotide count
In addition to classification of palindromes as AT-rich,
GC-rich and balanced, it is useful to introduce more a
precise measure of similarity or difference between
A

B

Figure 3 Relationship between similarity of palindromes and correlat
complementary palindromes. All edges connect palindromes similar by 2 t
all pairs of palindromes on chr1. C, Top- and bottom-12 correlations from a
between similar palindromes, whereas negatively correlating palindromes a
palindromes. Since all of them are composed of comple-
mentary pairs of bases, a comparison of di-nucleotide
composition in each palindrome is a naturally suitable
metric. Each palindrome can contain up to 3 different
di-nucleotides, for instance the AGCT palindrome con-
tains AG, GC, and CT di-nucleotides. As is shown in
Figure 3A, many palindromes have variable similarity to
others by having 2 to 3 di-nucleotides in common. For
each of 16 possible palindromes, there is at least one
highly similar palindrome with 2 di-nucleotides in
common.
The same metric was applied for a list of currently

known 6-base restriction sites (Table 1). Important dif-
ference between 4-base cutters and 6-base cutters is that
whereas tetra-palindromes fall naturally in 3 different
categories, AT-rich, CG- rich and balanced, hexa-
palindromes cannot be fully balanced. Instead, all variety
of 6-base sites (totally 55 known restriction sites) falls
into 4 groups: AT-rich (e.g. TTTAAA), CG-rich (like
CGGCCG), but also AT-enriched (CTTAAG) and GC
enriched (CTCGAG).

Correlations between palindrome frequencies along the
chromosome
Cross correlation of all tetramer palindromes across
mouse chromosome 1 revealed that an average of
those correlations slightly shifted into negative region
(Figure 3B), the positive shoulder is longer than the
negative one. Note that a correlation is analyzed
through tens of thousands data points and even small
C

ion in their restriction frequencies. A, Similarity network between all
o 3 di-nucleotide combinations. B, Pearson correlation frequencies for
ll pairs on chr1. Note, that the highest positive correlations are found
re of an opposite type.



Table 1 Pearson-based combinations of known 6-mer restriction enzymes

Palindrome Name
example

Average restriction
frequency/10 kb

1st best
choice

Pearson
correlation

Similarity
count

2nd best
choice

Pearson
correlation

Similarity
count

AACGTT AclI 0.516 CAATTG -0.067 2 GGATCC -0.063 0

AAGCTT HindIII 3.374 TCCGGA -0.056 0 GCCGGC -0.054 1

AATATT SspI 6.991 CAGCTG -0.264 0 CTGCAG -0.257 0

ACATGT PciI 3.793 AGATCT -0.137 1 GGATCC -0.120 1

ACCGGT AgeI 0.216 AATATT -0.096 0 TTATAA -0.079 0

ACGCGT MluI 0.089 AGTACT -0.067 2 GATATC -0.059 0

ACTAGT SpeI 1.485 AGATCT -0.080 2 ATCGAT -0.075 0

AGATCT BglII 3.614 TTTAAA -0.188 0 GCATGC -0.145 1

AGCGCT AfeI 0.352 AATATT -0.169 0 CATATG -0.135 0

AGGCCT StuI 2.345 AATATT -0.244 0 TTATAA -0.232 0

AGTACT ScaI 2.686 CAGCTG -0.183 2 CTGCAG -0.141 2

ATCGAT ClaI 0.471 TTTAAA -0.178 0 CAGCTG -0.141 0

ATGCAT AvaIII 3.520 AGATCT -0.136 1 GGTACC -0.129 0

ATTAAT AseI 4.695 CTGCAG -0.202 0 CAGCTG -0.189 0

CAATTG MfeI 2.166 CTGCAG -0.154 2 GCATGC -0.126 3

CACGTG AcvI 0.847 AATATT -0.176 0 CATATG -0.138 2

CAGCTG PvuII 3.435 AATATT -0.264 0 TTATAA -0.191 0

CATATG NdeI 3.594 AGGCCT -0.151 0 CTGCAG -0.138 2

CCATGG NcoI 3.056 ATTAAT -0.152 1 AATATT -0.145 1

CCCGGG XmaI 0.566 ATTAAT -0.183 0 TTATAA -0.165 0

CCGCGG KspI 0.111 AATATT -0.115 0 TTATAA -0.107 0

CCTAGG AvrII 2.034 TTTAAA -0.208 1 TTATAA -0.160 1

CGATCG PvuI 0.036 TCATGA -0.060 3 TTATAA -0.059 1

CGGCCG EagI 0.127 CATATG -0.107 0 AATATT -0.105 0

CGTACG PspLI 0.049 AATATT -0.082 1 TTTAAA -0.074 1

CTCGAG XhoI 0.469 CATATG -0.118 0 TTATAA -0.116 0

CTGCAG PstI 3.221 AATATT -0.257 0 TTATAA -0.205 0

CTTAAG AflII 2.347 ATCGAT -0.094 0 GGATCC -0.090 0

GAATTC EcoRI 3.073 CAGCTG -0.132 0 GCATGC -0.111 1

GACGTC ZraI 0.237 AATATT -0.101 0 TCATGA -0.085 2

GAGCTC SacI 2.308 AATATT -0.171 0 ATTAAT -0.145 0

GATATC EcoRV 1.850 CAGCTG -0.162 0 CTGCAG -0.154 0

GCATGC SphI 2.001 AGATCT -0.145 1 GATATC -0.142 1

GCCGGC NaeI 0.289 AATATT -0.181 0 ATTAAT -0.148 0

GCGCGC BsePI 0.177 TTATAA -0.111 0 AATATT -0.108 0

GCTAGC NheI 1.157 AATATT -0.139 1 ATTAAT -0.109 1

GGATCC BamHI 1.989 TTTAAA -0.201 0 ATTAAT -0.140 1

GGCGCC KasI 0.251 ATTAAT -0.150 0 AATATT -0.149 0

GGGCCC ApaI 1.153 AATATT -0.188 0 ATTAAT -0.186 0

GGTACC KpnI 1.184 TTTAAA -0.188 1 ATGCAT -0.129 0

GTATAC SnaI 1.511 AGATCT -0.076 1 GGTACC -0.067 3

GTCGAC SalI 0.128 AGTACT -0.043 1 TCATGA -0.040 3

GTGCAC VneI 1.674 AATATT -0.179 0 ATTAAT -0.144 0
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Table 1 Pearson-based combinations of known 6-mer restriction enzymes (Continued)

GTTAAC HpaI 1.253 ATCGAT -0.098 0 AGATCT -0.075 0

TACGTA SnaBI 0.333 CCTAGG -0.057 1 ATCGAT -0.051 1

TCATGA BspHI 3.576 GGCGCC -0.112 0 GCTAGC -0.102 0

TCCGGA AccIII 0.363 AATATT -0.146 0 TTATAA -0.142 0

TCGCGA NruI 0.043 ATGCAT -0.060 1 CATATG -0.053 0

TCTAGA XbaI 3.145 GGCGCC -0.069 0 CCGCGG -0.059 0

TGATCA BclI 2.721 CTGCAG -0.098 2 AGCGCT -0.090 0

TGCGCA AviII 0.377 TTATAA -0.109 0 AATATT -0.102 0

TGGCCA MscI 2.658 AATATT -0.200 0 ATTAAT -0.165 0

TGTACA BsrGI 3.332 GGTACC -0.077 3 TCCGGA -0.070 0

TTATAA PsiI 5.286 AGGCCT -0.232 0 CTGCAG -0.205 0

TTCGAA AsuII 0.407 TTATAA -0.055 2 GTATAC -0.033 0

TTTAAA DraI 10.198 CCTAGG -0.208 1 GGATCC -0.201 0

Note: Full set of correlations is available in the Additional file 1: Table S3.
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correlation values are highly significant. For instance, a
correlation of 0.05 along one of the smallest chromo-
some 19 collects approximately 60000 data points and
a corresponding p-value < 0.0001. A selection of the
lowest 10 and the highest 10 correlations (Figure 3C),
which constitutes 19% of all correlated pairs, appeared
to be enriched with unbalanced palindromes (note that
the number of balanced and unbalanced palindromes
is equal). Of those, palindromes similar in their di-
nucleotide composition and type of enrichment (GC or
AT) show significant positive correlations. The com-
plementary palindromes from opposite enrichment
groups tend to show negative correlation. Analysis of
correlations was repeated for all chromosomes. Similar
results were obtained for the same palindrome along
the whole mouse genome (Figure 4, Additional file 1:
Table S1). Note that only X and Y chromosomes devi-
ated most drastically from the common trend whereas
all autosomes showed highly similar results. In prac-
tical terms, this finding ensures that analysis of one
autosome is already well representative of the whole
mouse genome. It saves computational time as well as
simplifying visualization of the data. The trends found
by di-nucleotide context and palindrome enrichment
type could be further followed and analyzed in more
detail during the selection of a series of best anti-
correlating palindromes. Obviously, the purpose of
such selection is to test the possibility of finding com-
binations of various restriction sites where a desired aver-
age frequency is achieved together with minimal bias and
maximally possible randomness of distribution.

A negative correlation strategy
We can try to begin with each of the 14 palindromes for
which restriction enzymes are available and follow the
most negatively correlating site as the best candidate for
a mixture. At this stage ATAT and TATA palindromes
were excluded from analysis since they do not represent
any known restriction enzyme. An algorithm will step-
wise select for the most negatively correlating palin-
drome and consecutive count of combined frequencies
of already selected palindromes. An example of such a
strategy is shown in Figure 5 for the selected sequences
AATT, GGCC, AGCT, and CATG. A network graph
shows that the total number of negatively correlating
palindromes gradually decreases upon addition of the
next palindrome to the mixture. Whereas AATT is
negatively correlating with 8 different palindromes,
addition of the third palindrome, AGCT shows only two
candidates, ACGT and CATG. Upon addition of the last
palindrome, CATG, no more candidates to the mixture
were revealed (in a threshold < −0.05). Note that the cor-
relation value between the selected group and every sub-
sequently added palindrome is decreasing (and the
cumulative correlation value is decreasing as well,
Figure 5B). At the same time, randomness (fitness to
the Poisson distribution) of the combined palindrome
frequencies is asymptotically increasing, as shown in
the “lasso” plot (Figure 5C), namely a plot of observed
frequencies versus expected gradually became linear.
A full screen of all possible starting palindromes re-
vealed that, in fact, good randomness is already
achieved in a mixture of 3 palindromes. Further addi-
tions are useful mainly to satisfy average restriction
frequency.
When starting with different palindromes, out of 14

trials (with all possible palindromes as the 1st choice)
only 10 unique combinations were found (for details see
Additional file 1: Table S2). In this series there is a
strong effect of the most frequent and most biased



Figure 4 Correlation between all 4-base palindromes on all mouse chromosomes. The most deviating from the common trend were ChrX
(red line) and ChrY (blue line).
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palindromes, like TTAA, AATT, which always require
CG rich palindromes for compensation, the most frequent
compensating palindrome was found to be GGCC. A
network of 1st 2 choices made by the negative correlation
strategy illustrates this trend (Figure 6A) and summarizes
a “popularity contest” among different palindromes.
Figure 6B shows the total frequency of palindromes in
a complete series of 5 out of 14. Similarly, AATT,
AGCT, CATG and GGCC appeared to be the most fre-
quent choices for a Pearson-based strategy.
During this analysis, it was found that there is an ap-

proximate solution for the laborious recalculation of cor-
relation coefficients upon addition of a new palindrome
to the mixture (it was actually done for all discussed ex-
amples). In fact the next best palindrome can be found
using the primary paired correlation table by estimating
the weighted (by restriction frequency) average between
two previously added components (group or single
palindrome, more details in Additional file 1: Table S1,
page example), the palindrome with the most negative
correlation to the group can be selected as the next best
candidate to the mixture.

Use of an F-test for finding palindrome combinations
Considering such a small number of found combinations
listed above we could try some alternative strategies. For
instance, a search by Pearson correlations works well
with biased distributions, but it is probably less sensitive
when dealing with more balanced and randomized pal-
indromes. With this idea in mind, the F-test was tried
instead. Screening through all starting palindromes
showed good agreement with AT rich and balanced
palindromes. One new combination with a good ran-
domness was revealed (Additional file 1: Table S2).
However, this algorithm appeared to be completely
nonfunctional in the case of low frequency GC rich
palindromes, such as CGCG, TCGA, ACGT and
GCGC. Apparently such enrichment occurs due to the
problem of the F-test estimation (mentioned earlier in
this text): with increased frequency of the restriction,



A C

B

Figure 5 Example of a combination by negative correlation strategy. A, Choices of negatively correlating palindromes (with a threshold
< −0.05) along consequently made choices, AATT, GGCC, AGCT, CATG. B, Parameters for the selected group gradually reaching their maximum/minimum
values. C, a “lasso” plot shows improved linearity upon gradual addition of each subsequent palindrome to the mixture.
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the F-test value became worse, which hinders the
search for the optimal randomization. This approach is
inferior to the selection by negative correlation and
can be recommended for balanced and frequent palin-
dromes only.

Comparison with combinatorial model
It was already mentioned above (Figure 3C) that the
resulting combinations based on a Pearson correlation
revealed interesting combinatorial rules: similar palin-
dromes will be naturally excluded and the most dissimilar
palindromes will be selected (as they are negatively correl-
ating). We can follow this trend in more detail by counting
cumulative frequencies of all possible di-nucleotides within
previously found combinations of palindromes (Additional
file 1: Table S2). Note that since each palindrome can
contain 3 different di-nucleotides at maximum the
non-redundant set of restriction sites (no repeated use of
di-nucleotides is allowed) should not be higher than 5. Al-
though a maximum of 15 di-nucleotide combinations out
of 16 possible could be reached, the results show that
maximal coverage of possible di-nucleotides in a set of 15
palindromes is 14. Out of 8568 combinations screened, a
list of 60 combinations containing 14 different di-
nucleotides was generated. A variation of total restriction
frequencies varied from 1 to 19 per 1 kb bin size. Selective
testing for randomness with the F-test demonstrated that
these are quite credible combinations quite closely resem-
bling the sets generated by the negative correlation strat-
egy (Figure 7). Overall, the cloud of all combinations
found is broad in terms of an average frequency and
fitness to the random distribution. Out of 60 total
combinations, all except CGCG and GCGC were
equally represented in these series (Figure 6B). A selec-
tion by Pearson correlation is localized with few more
examples found by combinatorial approach. Both of
them are substantially better than combinations found
using F-test fitness to Poisson distribution. Only one alter-
native combination with high total frequency of restriction
was found in a set of F-test generated series, the same
combination was the best regarding randomization of
di-nucleotides.

Previously suggested combinations
As already mentioned before, a use of a single cut for
studies of retro elements is problematic, since neither
frequency nor accessibility of fragments are at their
optimum. In the case of retroviral integration site analysis,
one restriction enzyme, cutting at TTAA was used for
quite some time. It is only since 2007 [14], when a mixture
of enzymes was suggested in order to maximize genome
accessibility. Figure 7 and Additional file 1: Table S2 dem-
onstrate average frequencies and randomness of a few
published combinations. A mix by Wang et al. [16] is



A B

Figure 6 Typical choices and total numbers of unique sets in different strategies of combining restriction enzymes. A, a network
representation of the first two choices made by the most negative correlation strategy when using all possible palindromes. Note that AATT and
GGCC are the most frequent choices. B, a histogram count of all used palindromes using different strategies. Note that Pearson and Poisson
strategies used 14 trials in total, the combinatorial approach used 60 trials (total unique combinations).
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unnecessarily redundant. After removing redundancy it
became identical to a mix suggested by Gabriel et al. [15],
who were aiming on the maximal restriction frequency ig-
noring a di-nucleotide bias in selecting two AT-rich en-
zymes, one balanced (also AT containing) and no GC rich
enzymes. As a consequence, such a mixture is highly non-
random and the spread of the cut fragment size will be
Figure 7 Combinations of palindromes generated by different approac
by F-test; blue, all combinations by 5 from 14 palindromes with 14 di-nucleot
Bystrykh et al. [21], 3, Biasco et al. [20], 4, Gabriel et al. [15], which is identical t
unnecessarily broad: it will systematically undercut GC-
rich regions, many of which are situated in promoter
regions, which are potential targets for integration of
retroviral vectors. Similarly, an empirical set by Biasco
et al. [20] is almost the same in average frequency as
given by Harkey et al., (2007). However, the difference
in randomness of those mixtures is dramatic. Extensive
hes. Pink dots, selection by negative Pearson correlation; green, selection
ides used, red, combinations from literature:1, Harkey et al. [14], 2,
o simplified Wang et al. [16]. Details in a Additional file 1: Table S1.



Bystrykh BMC Research Notes 2013, 6:284 Page 10 of 13
http://www.biomedcentral.com/1756-0500/6/284
restriction of AT rich regions by mixing the most fre-
quent restrictases faces a risk of generating too small
fragments (primarily in AT rich regions) to be used for
site identification. On the contrary, the addition of
GC-rich restrictases, albeit with a minimal increment
in average frequency, will substantially improve ran-
domness of the cut and therefore will improve the
overall chances of detecting integrated vectors. Note
that a mixture suggested in our recent review [21] was
purely based on the combinatorial principle before the
current analysis was done.

Use of 6-base restrictases
Whereas 4-base restrictases show frequencies of restric-
tions in a range from 0.05 to 8 cuts per 1 kb, 6- base
cutters are approximately 10 times less frequent (see
data for chr1 in Additional file 1: Table S3 for details).
Therefore their use must be justified after critical
evaluation of the method of choice. General trends
among 6-base cutters are similar to those found and
described above for tetra-palindromes. AT-rich restric-
tion sites are the most frequent, balanced 6-cutters do
not exist. Instead AT- or GC- enriched palindromes
show intermediate frequencies, and GC-rich sites are
the least frequent along the genome. If two restrictases
would be combined, the combinatorial rule still stands:
AT-rich palindromes a best matching to GC-rich (as can
be revealed by negative correlations). All other palin-
dromes, however, behave less predictable (regarding com-
binatorial rule) and more elaborate concepts should be
developed. For practical purpose, if any selected combina-
tions will be implemented, names of known 4- and 6-base
restriction endonucleases and corresponding palindromes
are provided in a Additional file 1: Table S4.

Discussion
Fragmentation of genomic DNA by restriction remains a
routine element in modern genomic studies. Unfortu-
nately, the selection of particular restriction enzymes for
the application is often empirical and not subjected to
any optimization or validation. An issue of prediction
and distribution of nucleotide dimers, restriction sites
and small words was previously discussed in the litera-
ture. Originally prediction of restriction sites was based
on a single-base probabilistic rule [22]. In the case of mi-
crobial genomes, near to random distributions were sug-
gested for restriction sites [19] or small words [23].
However, a bias in di-nucleotide frequencies [24] and
genomic k-mers [25] were also documented in large ge-
nomes. Therefore the assumption of randomness should
be made carefully for analysis of short DNA sequences,
including restriction sites. The concern that restriction
with a particular enzyme or mixture of enzymes might
substantially deviate from random did not spread far
outside the field of theoretical genome biology. For in-
stance, in studies of genomic retro elements, restriction
of DNA is performed with empirical combinations of 6-
base restrictases [12,13], and no issue of randomness is
addressed. Note that 6-base cutters show considerably
lower frequencies compared to 4-cutters (see some exam-
ples in [21]) and therefore inferior in frequencies to the ex-
amples of combinations given in this paper. In fact use of
6-base cutters for fragmentation of large genomes should
be theoretically justified, otherwise not recommended. In
the field of population genetics, the problem of biased
sampling and its possible drawbacks is already introduced
[17]. In a recent publication it was anticipated that the
performance of genome sequencing itself depends on
representative and random fragmentation [26]. An
issue of non-optimal fragment size is one of many
problems recognized in chromosome conformation
capture protocols [27,28]. Yet, in many of those publi-
cations authors have used 1 or 2 empirically selected
6- or 4-base cutters to create genomic fragments. In
similar studies [6,7] only a single 4-base restriction en-
zyme was used for genome digestion. Van Tassel et al.,
[6] selected their 4-base cutter by computer analysis to
minimize the appearance of repeated elements in their
virtual fragments. This selection makes sense to im-
prove efficiency of mapping. However, as was already
mentioned here, a single cut strategy is always inferior
to the combination of restrictases regarding its random-
ness. Some genome restriction based protocols have
already reached clinical studies, for instance gene therapy
treated patients. In those studies, the problem of accessi-
bility has been already identified and discussed [14,15].
However authors still focus their attention on an average
restriction frequency without much consideration of the
randomness. As a result, authors almost empirically sug-
gested mixtures of enzymes with low to medium random-
ness (examples are shown in Figure 7). Note that those
few suggested combinations are further replicated in
more recent clinical studies. To conclude, the problem
of a proper fragmentation of genomic DNA and its
verification for randomness remains an unexplored op-
tion for further improvement. As it is demonstrated
here, none of the restriction sites are fully random.
However, some restrictases are more random than
others. Combinations of restrictases presented in this
paper provide the best random distribution across the
mouse genome.
The F-test was used here for the assessment of ran-

domness, which although superior to the Chi-squared
test [29], should be used with care. It is sensitive to
the average frequency of the distribution. Nevertheless
the F-test served the purpose quite well, namely it
helped to compare different restrictases, and also
helped to establish how combinations of restriction
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enzymes could improve the randomness of genomic
restriction.
Although the combinatorial principles revealed might

look puzzling and unexpected, the explanation is quite
simple. The reason similar palindromes correlate is be-
cause they correlate to the regions enriched in subse-
quences which they contain. If they contain similar
subsequences, for instance similar di-nucleotides, they
will tend to be positively correlating. For the same rea-
son, complementary di-nucleotides (AT vs GC, AA vs
GG etc.) will tend to show negative correlation. This
combinatorial rule is essentially based on Markov chains
models, it is well reproducible in a different genomic
context (see consistency of correlations across auto-
somes), it is also resistant to SNP variations and other
minor mutations in a population of considered species.
In the case of balanced palindromes, this rule will be
more problematic, because 4 bases cannot be enriched
all at the same time: any enrichment also means loss of
complementary bases or di-nucleotides. Consequently it
will hamper enrichment of corresponding subsequences.
Although the combinatorial principle was found to be
useful as a guideline, some deviations from it were also
evident. For instance, CG-containing palindromes tend
to correlate with each other more than would be
expected from similarity measurements. Mutually ex-
clusive pairwise palindromes with relatively low fre-
quency might co-occur in a bigger set of palindromes
due to the dominating effect of more frequent and
biased palindrome.
There can be many factors indirectly causing non-

randomness of restriction sites along the genome. It
might reflect an evolutionary expansion of DNA by self-
duplication, selective pressure in coding regions and in
CpG islands for CG- rich palindromes. Some evolution-
ary pressure can be expected for ATAT and TATA se-
quences due to their similarities to TATA boxes. It is,
however, difficult to expect direct selective pressure on
the distribution of restriction sites themselves (unless a
clear functional demonstration of those sequences will
be provided). Instead, an effect of local enrichment for
sub-words, for instance di-nucleotides, presented in GC
or AT rich palindromes is most likely. This selectivity of
genomic landscape fundamentally breaks the principle of
equal chance along the genome and this might be a pri-
mary cause of deviation from the Poisson model. Analyt-
ically, the Poisson model (see also Methods) can be
adjusted to such situations, if λ is the average frequency
of an event and k is the expected exact frequency, we
can consider λ as being a function of k (equation can be
found in the Methods). The notion that the genomic
landscape is primarily responsible for non-randomness
of restriction sites is an important example how genomic
non-randomness in general can be interpreted beside
other existing explanations. As an example, Falconer
et al. [30] found a wider distribution of segregating DNA
template strands than predicted by a random distribu-
tion (very similar to the case of non-randomness found
in this paper). Such non-randomness was interpreted as
selective process, disregarding the alternative option of
having non-random (selective) genomic background for
the fairly random process of template segregation. Those
two options, not one, should be considered for further
experimental verifications.
During preparation of our recent review [21] on a sub-

ject of clonal analysis of hematopoietic cells, we briefly sug-
gested the combinatorial principle of mixing restrictases
for optimal genome fragmentation, which was hypothetical
at that time. This paper provides the necessary background
to this concept in sufficient detail and demonstrates how
this principle helps in analysis and finding the best combi-
nations of restrictases. Although mainly tetra-nucleotide
palindromes were studied here, the strategy described can
be applied to restrictases of any length.

Conclusions
Enzymatic restriction is a very frequent step in fragmen-
tation of genomic DNA. A question of the randomness
of restriction is often expected or implied, but rarely
verified. A genome-wide restriction analysis of 4-base
cutters revealed significant deviation from randomness
for practically all tested restriction enzymes. The random-
ness can be improved by combining separate restrictases
in the mixture. A combinatorial approach is probably
the simplest but most effective principle to achieve
such improvement.

Methods
For the mouse genome, the Bioconductor (version 2.9)
metadata package Bsgenome.Mmusculus.UCSC.mm10 for
R version 2.15 was used which consists of the mmu10 as-
sembly from UCSC (based on C57BL/6 J mouse strain).
This package was used in conjunction with R (version
2.14.1) to scan the genome for the presence of all 16 pos-
sible complement palindromes in non-overlapping bins of
1 kb in size. All bins with N < 500 were included in the
resulting table. For each complement palindrome, fitness
to the Poisson distribution per chromosome was calcu-
lated using a custom Python script and Gnumeric spread-
sheet (in Linux). For a random model, a Poisson
distribution was used as following:

f k; λð Þ ¼ λke−λ=k!

Where λ is observed average, k is exact number of
events expected at given average, f(k;λ) is a probability of
such event.
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Randomness of restriction was tested by comparing for
observed and Poisson predicted data sets using the F-test
as commonly described [27]. A p-value for the two-tailed
hypothesis test comparing the variances of two popula-
tions, in our case palindrome frequencies and Poisson dis-
tribution, was calculated using the built in F-test function
in the Gnumeric spreadsheet program. When used in the
text, this is referred as an F-test P value or F-test P on the
plot. Pearson correlation was calculated along the entire
chromosome of choice using a custom script in python,
using a double-pass strategy and the equation;

r ¼ ∑ Xi−�Xð Þ Y i−�Yð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ Xi−�Xð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ Y i−�Yð Þ2

q

The probability of correlation was assessed using the
t-test transformation.

t ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffi
n−2ð Þ

p
=1−r2

and an online probability calculator http://www.
statstodo.com/TTest_Pgm.php.
Through the text all palindromes are mentioned by

their DNA sequence. Names of the corresponding re-
striction endonucleases are provided in the Additional
file 1: Table S4.

Additional file

Additional file 1: Table S1. Pearson correlation data for all tetra
palindromes all mouse chromosomes. Table S2: Selection of all
palindromic combinations using 3 different approaches. Table S3:
Pearson correlation data for all tetra palindromes mouse chromosome 1.
Table S4: Commercial names for all 4- and 6- base restriction
endonucleases. Additional files. The Supplementary files S1, S2, S3, S4 are
deposited in an open access repository https://easy.dans.knaw.nl/ui/
datasets/id/easy-dataset:53177. http://www.persistent-identifier.nl?
identifier=urn:nbn:nl:ui:13-d9zq-rm.
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