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Editorial on the Research Topic

Defining the Spatial Organization of Immune Responses to Cancer and Viruses In Situ

Cellular organization within tissues is purposeful: specific cell-types are arranged at different
proximities with intent, thus enabling intercellular crosstalk and driving tissue functions in health,
disease, and response to therapy. Elucidating the spatial pattern of cells and molecules within their
native tissue microenvironment is therefore critical towards identifying tissue-based biomarkers
predictive of clinical outcome.

Multiplexed tissue imaging methods—including imaging mass cytometry (IMC) (1), multiplex
ion beam imaging (MIBI) (2, 3), multiplex immunohistochemistry (mIHC) (4), CO-Detection by
indEXing (CODEX) (5, 6), cyclic immunofluorescence (CyCIF) (7, 8), and spatial transcriptomics
(9–12)—allow for the simultaneous detection of more than 50 proteins and 1000s of transcripts,
thereby empowering the interrogation of spatial organization within tissues. Importantly, these
technologies retain the native tissue context of each individual cell, while enabling deep
phenotypical and functional interrogation. To date, these methods have enhanced our
understanding of the diverse tissue microenvironments in oncology (3, 13–19), reactive and
auto-immunology (5, 20, 21), and microbiology (22–24).

This Research Topic focuses on the spatial organization of immune responses to cancer and viral
infections. It brings together nine manuscripts that 1) contribute methods to improve the accuracy
of cell-type annotation, 2) provide new computational tools to profile spatial tissue patterns, and
3) advance our understanding of spatially resolved immune responses to cancer, infections,
and immunotherapy.

A well-designed multiplexed antibody panel is critical for accurate cell-type annotation and
serves as the foundation for characterizing cellular composition, cell-cell interactions, intracellular
functional states and all further downstream spatial analyses (Phillips D. et al.) optimize a 56-
marker CODEX panel consisting of major structural, tumor, and immune cell markers, including
eight regulatory proteins that are common immunotherapy targets—PD-1, PD-L1, CTLA-4, ICOS,
IDO-1, LAG-3, OX40, TIM-3, and VISTA. As such, this panel provides an important tool for
informing clinical cancer care and the design of therapeutic combination strategies across tumor
types. Jiang S. et al. present a 21-marker CODEX panel consisting of 18 antibodies for major
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immune cell-types and 3 Ebola virus-specific antibodies in
rhesus macaques. Importantly, this is one of the first highly
multiplexed tissue imaging antibody panels targeted towards
rhesus macaques, a common non-human primate model used
to evaluate the efficacy of medical countermeasures against
biothreat pathogens. Development and optimization of both
multiplexed antibody panels was costly and time-consuming,
but these panels are easy to reproduce, expand upon, and
translate towards other multiplexed imaging modalities. For
example, the analogous biochemistry of CODEX and MIBI/
IMC antibody conjugations have allowed many of our stains to
be reproduced across these platforms (unpublished observations
from D.P. and S.J.). Thus, these studies provide investigators
with a solid starting point for interrogating how cells functionally
organize within tissues to mount coordinated immune responses
to cancer, infections, biothreats, and therapeutic intervention.

Accurate cell-type identification is also heavily influenced by
chosen normalization strategy and data pre-processing
algorithms. Hickey et al. evaluate the performance of major
normalization techniques (i.e., Z, log(double Z), min-max, and
arcsinh) in mitigating the effects of noise on cell-type annotation
in a CODEX dataset. This study shows that regardless of the
downstream unsupervised clustering algorithm used, Z
normalization of marker intensity results in the most
reproducible intra- and inter-sample comparisons for the most
accurate cell-type annotation. Correct cell-type identification
also depends on the ability to minimize and correct for lateral
signal spillover from adjacent cells, a particular challenge in
packed lymphoid or tumor tissues. Given the large number of
antibody tags imaged in multiplexed experiments, cumulative
pairwise spillovers in densely packed tissues can have
detrimental effects on cell-type assignments and downstream
biological conclusions. Bai et al. present a lateral spillover
compensation algorithm termed Reinforcement Dynamic
Spillover EliminAtion (REDSEA), which allows robust
reassignment of lateral spillover signal to the cell of origin
based on the proportion of the shared boundary between
adjacent cells. Application of REDSEA to MIBI and CyCIF
datasets led to significant improvement in cell-type annotation
(i.e., 56.0% of cells were correctly identified at baseline compared
to 81.5% after a border-based REDSEA compensation). These
studies provide platform agnostic image processing tools that
increase the certainty of marker intensities extracted from
individual segmented cells, thereby improving the speed and
accuracy of cell-type identification.

In addition to REDSEA (Bai et al.), this Research Topic
provides additional computational tools that resolve cellular
tissue heterogeneity and reveal complex tissue architecture.
Yuan et al. present Seg-SOM, a computer vision method for
dimensionality reduction of nuclear morphology in histological
images. Seg-SOM is easily scalable: it is entirely automated,
performs dimensionality reduction on hundreds of thousands
of cells within seconds, and can operate on H&E-stained or
multiplexed images. Application of Seg-SOM to breast cancer
imaging datasets enabled the 1) prediction of tumor-infiltrating
lymphocyte density in normal and cancerous breast tissues and
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2) classification of ductal carcinoma in situ lesions into those that
exist in isolation or were accompanied by invasive breast cancer.
Baranwal et al. present Cell-Graph Attention (CGAT) Network,
a graph-theory approach that allows for grading of pancreatic
disease based on point patterns derived from multiplexed
immunofluorescence-stained images. The CGAT framework
can differentiate pancreatic ductal adenocarcinoma from
chronic pancreatitis. This is of fundamental clinical impact as
the similar pathological appearances of these conditions can
often lead to either a missed diagnosis of an aggressive cancer or
repeated, unnecessary biopsies of a benign condition. Modular
implementation of these computational approaches into existing
analytical pipelines will provide new avenues of investigation and
facilitate a greater understanding of spatial dynamics in complex
tissue microenvironments.

A major effort of multiplexed tissue imaging is to better
understand how the composition and spatial interactions of
distinct cell-types in tumor tissues contribute to disease
prognosis and response predictions during immunotherapy.
Stoltzfus et al. leveraged upon multi-parameter confocal
imaging, histocytometry , and a previous described
computational method for distinguishing tissue organization,
CytoMAP (30), to characterize immune cell organization
in mouse models of colorectal and pancreatic cancer to
identify a perivascular immune niche (i.e., co-localization of
myeloid and CD8+ T cell aggregates adjacent to tumor blood
vessels), which is positively associated with anti-PD-
L1 immunotherapy response. The increased abundance of
this perivascular immune niche following immunotherapy
suggests a major role of blood vessels in coordinating the
active remodeling of innate and adaptive immune cells within
tumors, leading to improved antitumor immunity. Ardighieri
et al. combine immunohistochemistry with RNAscope to
identify a subset of M1-type tumor-associated macrophages
(TAMs) (i.e., CXCL10+IRF1+STAT1+) in ovarian cancer.
Patients with a high density of these tumor-infiltrating
macrophages have improved prognoses and superior
responses to platinum-based therapies. These findings are
also extended to other cancer types—including melanoma,
head and neck squamous cell carcinoma (HNSCC),
colorectal cancer, endometrial cancer, breast cancer, and
lung cancer—suggesting that these specialized M1-polarized
TAMs are part of a T-cell infiltrated immune contexture that
confers a better clinical outcome. Yoshimura et al. utilized
multiplexed immunohistochemistry and image cytometry-
based quantification to reveal co-localization of PD-1+ helper
T cells and CD163+ TAMs within tumor cells nests as a
negative prognostic indicator in HNSCC. This finding
suggests that CD163+ TAMs exert their immunosuppressive
effects on effector PD-1+ helper T cells, in line with recent
orthogonal work showing that co-localization of PD-1+CD4+

T cells and Tregs was associated with poor response to
immunotherapy (18). Collectively, these studies provide a
framework for utilizing advanced spatial analyses to
interrogate the complexity of the tumor microenvironment
and decode the therapeutic response in situ.
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For multiplexed tissue imaging to reach its full potential as a
research paradigm, it is pertinent that these studies are not
performed in isolation. Orthogonal interrogation with
synergistic tools, such as RNA quantification methods
including spatial transcriptomics, single-cell RNA sequencing,
and other advanced techniques are needed to precisely define the
genetic and protein topographies of human tissues. The
development of multi-omic measurements in situ is a key
fundamental advancement in this regard, including the
quantification of metabolic states (21), nucleic acids and
proteins (12, 23, 25), clonality (26), and epigenetic states (27).
The continued advancement of computational methods is also
vital for multi-scalar inferential analysis across different
measurement modalities (28). Future studies must be
performed in large, well-annotated clinical cohorts to delineate
more subtle features of the tissue’s spatial architecture and to
determine if spatial findings translate broadly, with the
incorporation of powerful statistical frameworks to aid in
experimental designs (29). To this end, numerous challenges
must be overcome, including 1) establishing protocols for
collecting tissue specimens that minimize fixation artifacts,
2) compilation of published lists of domain expert-verified
antibody clones that retain specificity even after conjugation,
3) development of better methods for segmentation,
normalization and quantification of single-cell protein
expression intensities, 4) novel algorithms to automate
cell-type and tissue feature identification in a scalable manner,
Frontiers in Immunology | www.frontiersin.org 3
5) experimental and computational methods to enable multi-
modal measurements of spatial-resolved single cells.

In sum, investigation into the spatial organization of cells and
molecules within tissues is advancing at a rapid and exciting
pace. The articles in this Research Topic serve as a reference for
those interested in using multiplexed tissue imaging technologies
and emerging computational tools to enable a comprehensive
understanding of tissue-level immune responses to cancer, viral
infections, and immunotherapy.
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