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Abstract

Background: Multiparametric positron emission tomography/magnetic resonance imaging (mpPET/MRI) shows
clinical potential for detection and classification of breast lesions. Yet, the contribution of features for computer-
aided segmentation and diagnosis (CAD) need to be better understood. We proposed a data-driven machine
learning approach for a CAD system combining dynamic contrast-enhanced (DCE)-MRI, diffusion-weighted imaging
(DWI), and 18F-fluorodeoxyglucose (18F-FDG)-PET.

Methods: The CAD incorporated a random forest (RF) classifier combined with mpPET/MRI intensity-based features
for lesion segmentation and shape features, kinetic and spatio-temporal texture features, for lesion classification.
The CAD pipeline detected and segmented suspicious regions and classified lesions as benign or malignant. The
inherent feature selection method of RF and alternatively the minimum-redundancy-maximum-relevance feature
ranking method were used.

Results: In 34 patients, we report a detection rate of 10/12 (83.3%) and 22/22 (100%) for benign and malignant
lesions, respectively, a Dice similarity coefficient of 0.665 for segmentation, and a classification performance with an
area under the curve at receiver operating characteristics analysis of 0.978, a sensitivity of 0.946, and a specificity of
0.936. Segmentation but not classification performance of DCE-MRI improved with information from DWI and FDG-
PET. Feature ranking revealed that kinetic and spatio-temporal texture features had the highest contribution for
lesion classification. 18F-FDG-PET and morphologic features were less predictive.

Conclusion: Our CAD enables the assessment of the relevance of mpPET/MRI features on segmentation and
classification accuracy. It may aid as a novel computational tool for exploring different modalities/features and
their contributions for the detection and classification of breast lesions.

Keywords: Diagnosis (computer-assisted), Breast neoplasms, Magnetic resonance imaging, Machine learning,
Positron-emission tomography
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Key points

� The positron emission tomography/magnetic
resonance imaging (PET/MRI) computer-aided
segmentation and diagnosis (CAD) system
automatically detects, segments, and classifies
breast lesions.

� Automatic lesion segmentation was accurate and
improved with information from all modalities.

� A small number of features mainly from dynamic
contrast-enhanced MRI achieves high classifica-
tion accuracies.

� The PET/MRI-CAD system allows exploring the
value of different imaging modalities and features.

Background
Breast cancer is the most common cancer and the second
most common cause of mortality from cancer in women
[1]. Early detection and precise diagnosis are important
for effective treatment [2], and breast imaging plays a piv-
otal role in the detection, characterisation, and staging of
breast cancer. Recently, multimodal, multiparametric im-
aging (mpI) including dynamic contrast-enhanced mag-
netic resonance imaging (DCE-MRI), diffusion-weighted
imaging (DWI), and positron emission tomography (PET)
has been investigated for an improved differentiation of
benign and malignant breast lesions [3]. Such imaging
constitutes complex protocols but is promising for a more

comprehensive measurement of morphology (MRI),
neoangiogenesis (DCE-MRI), tumour metabolism (PET),
and microstructure (DWI) in cancerous and benign tissue
[3] (Fig. 1).
Due to the increased complexity of the information cap-

tured by mpI, computational approaches that enable the
quantitative assessment of multivariate measurements
have been gaining relevance. Recently, computer-aided de-
tection and diagnosis systems have been proposed to re-
duce inter- and intra-reader variability and to aid
radiologists in the detection and diagnosis of breast cancer
[4]. These systems are able to analyse large amounts of
imaging data in a short time, detect and visualise complex
correlations and patterns, and provide objective and re-
peatable measurements [5] to increase the accuracy of
diagnosis [6]. Computer-aided detection (CADe) systems
assist radiologists in localising suspicious regions in med-
ical images, whereas computer-aided diagnosis (CADx)
systems support the radiologist in the diagnosis of suspi-
cious regions by providing and analysing information ex-
tracted from these regions [7]. These systems show
potential to be advantageous in the current clinical sce-
nario [7] where despite guidelines for DCE-MRI, such as
the Breast Imaging-Reporting and Data System (BI-R-
ADS®) MRI lexicon [8], inter- and intra-reader variability
remains an issue and the human analysis of complex rela-
tionships observed in images and the underlying disease
remains limited [9].

Fig. 1 Image modalities covering the lesion. Top: DCE-MRI time-signal intensity curve extracted from an ROI within the lesion (red) and from
normal tissue (green), illustrating the contrast enhancement within the lesion. Bottom from left to right: 18F-FDG-PET, DWI, and ADC map. Note
the decreased ADC values in the lesion area (white arrow)
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As yet, the information provided by individual imaging
techniques as part of mpI remains poorly understood. To
identify the diagnostically relevant parameters captured
across DCE-MRI, DWI, and 18F-fluorodeoxyglucose
(18F-FDG)-PET, we propose a novel automated data-driven
approach: a combined breast lesion segmentation and clas-
sification system for mpI data where the system automatic-
ally identifies the information in the imaging data that
contribute to an accurate segmentation and classification.

Methods
Patients
The data used in this retrospective analysis was acquired
from an institutional review board-approved prospective,
single-institution study [25]. All patients gave written in-
formed consent. At the time of the prospective study,
only prototypic PET/MRI scanners were in existence
and these were not available at the study centre. Thus,
46 patients were included in this prospective study in
which MRI and a combined computed tomography
(CT)/18F-FDG-PET were acquired. All tumours were
histopathologically verified. In our retrospective analysis,
the CT image was used only as morphologic information
for the registration and was purposely not part of seg-
mentation and classification. After applying our auto-
matic CT to MRI registration method, as described
below, twelve patients had to be removed from analysis
due to registration errors. All excluded cases were pa-
tients with large breasts that were considerably com-
pressed, or deformed, in one of the modalities during
image acquisition. Misalignments were detected visually
by overlaying MRI and CT images. From the remaining
34 patients, 12 had benign lesions and 22 had malignant
lesions (2 patients had multifocal or multicentric can-
cer). Characteristics of the lesions are listed in Table 1.

Image acquisition
Patients underwent 3T MRI (Tim Trio, Siemens, Er-
langen, Germany) in prone position using a four-channel

breast coil (InVivo, Orlando, FL, USA) and a combined
whole-body PET/CT in-line system (Biograph 64 True-
Point®; Siemens, Erlangen, Germany) in prone position.
For DCE-MRI a split dynamics protocol that combined

high-spatial and high-temporal resolution was used [11].
First, a high spatial resolution, pre-contrast coronal
T1-weighted turbo three-dimensional fast low angle shot
(FLASH) sequence with water-excitation and fat-suppres-
sion was acquired with matrix 320 × 320 × 120 and 1-mm
isotropic voxel (DCE-MRI pre-contrast imaging, Idce-pre).
Subsequently, a DCE coronal T1-weighted volumetric in-
terpolated breath-hold-examination (VIBE) sequence with
17 acquisitions (13.2 s per acquisition) was acquired with
matrix 192 × 192 × 72mm and 1.7-mm isotropic voxel
(DCE-MRI, Idce). Seventy-five seconds after the beginning
of the sequence, gadoterate meglumine (Gd-DOTA,
Dotarem®, Guerbet, Paris, France) was injected as a bolus
at a dose of 0.1 mmol/kg at a rate of 4mL/s and followed
by a 20-mL saline flush at the same injection rate. Then, a
FLASH sequence was acquired to capture the peak en-
hancement of lesions (DCE-MRI peak-contrast imaging,
Idce-peak), followed by a VIBE sequence with the same pa-
rameters above described. Finally, a FLASH sequence with
the same parameters above described was acquired
(DCE-MRI post-contrast imaging, Idce-post) to depict de-
layed enhancement lesion morphology. DWI sequences
were acquired in the same session, with b values of 50 and
850 s/mm2, resulting into two datasets, Idwi b0 and Idwi
b850, as well as the derived apparent diffusion coefficient
(ADC) mapping, Iadc [12] (matrix 172 × 86 × 24, pixel
2.09 × 2.09mm, slice thickness 5.5 mm). 18F-FDG-PET
(matrix 168 × 168 × 74, pixel 4 × 4mm, slice thickness 3
mm) and CT images (matrix 512 × 512 × 74, pixel 1.37 ×
1.37mm, slice thickness 3mm) of the thorax were ac-
quired in a hybrid PET/CT scanner and were aligned by
the scanner software.

CAD pipeline
We developed a novel automated data-driven combined
CADx system for mpI data with MRI and PET. The system
enabled automatic detection and segmentation of poten-
tially cancerous regions and classified lesions as benign or
malignant. The algorithm first aligned multimodal breast
imaging data from DCE-MRI, DWI, and 18F-FDG PET
non-rigidly, and segmented the breast. Then, the system ex-
tracted local textural, kinetic, and intensity-based image
features from the fused information and detected and clas-
sified lesions using a random forest (RF) classifier [10]. Fig-
ure 2 shows the overview of the proposed CAD pipeline.

Alignment
To collect information at individual positions across mo-
dalities, all images were aligned to Idce-pre serving as

Table 1 Patient and breast lesion characteristics

Patients (n = 34)
Age, years, mean ± SD (range)

51.36 ± 12.26 (24–78)

Lesions (n = 36)
Diameter, cm, mean ± SD (range)

1.8 ± 1.1 (0.6–4.9)

Lesion type

Malignant 24 (66.7%)

Invasive ductal carcinoma 19 (52.8%)

Invasive lobular carcinoma 3 (8.3%)

Ductal carcinoma in situ 2 (5.6%)

Benign 12 (33.3%)

Total 36 (100.0%)

SD standard deviation
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Fig. 3 Results of the (a) registration and (b) segmentation process for one patient. a First row: Reference Idce-pre and registered Idce-post. Second
row: Ict unregistered/registered. Third row: Ipet image unregistered/registered, fused with the corresponding CT image. Fourth row: Idwi b0
unregistered/registered. b Probability map obtained from voxel-wise classification overlaid on the MR pre-contrast image (left) and final
segmentation after applying a threshold and post-processing (right)

Fig. 2 Overview of the CAD pipeline based on multimodal and mpI features
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reference coordinate system. Images were registered
with the software package Advanced Normalisation
Tools (ANTs) [13] using an affine transformation with
mutual information as the similarity metric, followed by
a non-rigid deformation with symmetric normalisation
(SyN) [13] and windowed normalised cross-correlation
as a similarity metric (Fig. 3a). As Ipet does not provide
morphologic information, we registered the correspond-
ing CT image to Idce-pre [14] and subsequently applied
the obtained transformation on Ipet.

Lesion segmentation
We treated lesion segmentation as a voxel-wise classifi-
cation problem, where a machine learning algorithm
assigned a binary label 1 (lesion) or 0 (non-lesion) to
each voxel based on imaging features extracted at that
location. As ground truth for training and validation, we
used manual expert radiologist (with 3 years of experi-
ence) annotations performed on the registered Idce-peak
or Idce-post, depending on where the lesion borders were
better visible. Annotations were validated by a second
expert radiologist with 9 years of experience.
All computations were restricted to the breast area,

which was segmented using an intensity-based growing
region algorithm [15]. All MRI intensity values were
standardised to zero mean and unit standard-deviation
estimated from the breast area on the pre-contrast im-
ages, Idce-pre and Idce. We computed intensity features
from all imaging data, from changes of the contrast over
time and the summed up contrast in the DCE-MRI se-
quence as specified in Table 2.
An RF classifier model was trained on features ex-

tracted from 1000 randomly selected samples per
class and patient. The trained model was then used
to predict the segmentation label for a new patient
who was not part of the training data set for each

voxel x of the breast based on the computed features
(Fig. 3b).

Lesion classification
After segmentation, the lesion was classified as either
benign or malignant based on features extracted per le-
sion. Intensity-based, kinetic, morphological, and tex-
tural features were considered to train a lesion class
prediction model, and the obtained model was used to
predict malignancy for lesions in the new patient who
was not part of the training data set.
Intensity-based features were calculated from

DCE-MRI, DWI ADC, and the 18F-FDG-PET map.
We tackled the lesion inhomogeneities in the contrast
enhancement of DCE-MRI by the method described
by Chen et al. [16], where the signal-to-time curves
within a lesion were clustered by the fuzzy c-means
algorithm and the curve with highest contrast en-
hancement rate, the characteristic kinetic curve, was
chosen for classification. We used the 25 time points
beginning with contrast enhancement (flckc) and the
change over time (flδckc) calculated by forward differ-
ence (four frames) as intensity features. Analogously,
Iadc and Ipet intensities were partitioned into five clus-
ters and the cluster centre with the lowest ADC value
and the highest 18F-FDG uptake were used as features
fl-adc and fl-pet.
To capture contrast enhancement kinetics, we fitted

an asymmetric generalised logistic function as regression
function multiplied with an exponential term to the
characteristic kinetic curve:

C t;G; α; τ; t1=2; β; k
� � ¼ G � 1−

1

1þ 2α−1ð Þ � exp 1
τ � t−t1=2
� �� �� �1=α

 !

� exp β � tk� �

where G defines the scaling, α the asymmetry parameter,

Table 2 Features extracted for each voxel (x) within the breast (M)

Feature
group

Description Definition Number of features
per voxel

fdce DCE-MRI intensity values for each frame
of the DCE-MRI time series

fdce(x)≔ {Idce(x, i), j≤ i ≤ j + 25}, where j is the first frame with contrast-
enhancement and i is the frame number in the DCE sequence

26

fδdce Difference of DCE-MRI intensity values
between two frames with distance 2

fδdceðxÞ≔fIdceðx;iþ2Þ−Idceðx;iÞ
tiþ2−ti

j j≤ i≤ j þ 25g, where ti is the time point of
acquisition of frame i

25

fnsumdce Normalised sum of DCE-MRI intensities fnsumdceðxÞ≔ fsumdceðxÞ
maxy∈Mð fsumdceðyÞÞ where fsumdceðxÞ≔

P jþ25
i¼ j Idceðx; iÞ 1

fmri Intensity values for high-resolution MRI:
Idcepre, Idcepeak, and Idcepost

fmri(x)≔ {Idcepre(x), Idcepeak(x), Idcepost(x)} 3

fδmri Difference in intensity values for high-
resolution MR images

fδmri(x)≔ {Idcepost(x) − Idcepre(x), Idcepeak(x) − Idcepre(x), Idcepost(x) −
Idcepeak(x)}

3

fdwi DWI intensity value fdwi(x)≔ {Idwi b0(x), Idwi b850(x), Iadc(x)} 3

fpet PET intensity value fpet(x)≔ {Ipet(x)} 1

DCE-MRI dynamic contrast-enhanced magnetic resonance imaging, DWI diffusion-weighted imaging, PET positron emission tomography
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τ the steepness, and t1/2 the time of half maximum of
the sigmoid function; k defines the terminal slope and β
scaling factor of the exponential term (Additional file 1:
Figure S1). We used the parameters α, τ, β, and k as fea-
tures (flkinetic). In addition, we computed summary mea-
sures of the curve within a 7-min interval, beginning at
start of contrast enhancement: area under the curve
(AuC), maximum enhancement (Cmax), time to max-
imum enhancement (Tmax), time to half maximum en-
hancement (T1/2), and maximum analytical derivative δC

δt
of the regression function C(t) (MDER).
To obtain textural features, fl-texture, we used a volumet-

ric texture analysis approach based on grey-level
co-occurrence matrix (GLCM) and Haralick texture fea-
tures [17, 18]. We computed the GLCM with 128 Gy-va-
lue bins and 26 neighbours within the lesion and used its
13 s-order statistics [17]. fl-tex-pre, fl-tex-peak, and fl-tex-post
contained the Haralick features obtained from the Idce-pre,
Idce-peak, and Idce-post intensity values, respectively.
In addition to the spatial texture analysis, we used a

novel temporal texture analysis inspired by the works of
Agner et al. [19] and Woods et al. [20]. With this analysis,
we characterised the temporal properties of contrast up-
take within a lesion, e.g., homogeneity of contrast uptake.
To compute the GLCMs, we considered voxel pairs at the
same spatial position x but at different time points in the
contrast enhancement. We computed the Haralick fea-
tures from pixel pairs from (Idce-pre, Idce-peak), (Idce-pre,
Idce-post), and (Idce-peak, Idce-post), resulting in the feature
vectors fl-tex-peak/pre, fl-tex-post/pre, and fl-tex-post/peak.
To obtain morphological feature candidates, flmorph,

we used shape descriptors, as utilised previously in the
literature [19, 21, 22]. Definitions of the shape descrip-
tors are given in Additional file 1: Table S1.

Evaluation of lesion segmentation and classification
To evaluate lesion segmentation, we performed experi-
ments in a leave-one-out cross-validation (LOOCV)
fashion, training the segmentation algorithm and feature
rankings on all but one example, and applying it to the
remaining example not included in the training. The
quality of the segmentation was measured on a pixel
level by comparing the predicted segmentation with the
manually annotated data using Dice similarity coefficient
(DSC) [23] as a similarity measure and sensitivity (true-
positive rate) describing the probability of detection. As
RF provide probabilities, we determined the RF thresh-
old as the one that maximises DSC on the training set.
Overall performance was obtained by computing the
mean of all test DSC scores.
To evaluate lesion classification, we classified lesions

into the two classes: benign and malignant. Evaluation
was performed in an LOOCV fashion for both ranking
the features and determining accuracy. Accuracy was

reported as receiver operating characteristic (ROC) area
under the curve (AUC) and sensitivity/specificity. The
RF threshold was chosen within the training set as the
one maximising the F1 score, which is the harmonic
mean of precision and sensitivity. All experiments were
repeated 20 times, and averages for AUC and sensitivity/
specificity are reported. To study the impact of segmen-
tation accuracy on classification, we performed classifi-
cation on both manually delineated lesions and
automatically segmented lesions.
In a post-processing step, false-positive blobs were re-

moved by computing connected-components from the
segmentations using a six-neighbourhood, and only blobs
that partially overlapped with the manual annotation were
selected. This step mimics the manual selection of a suspi-
cious region that a radiologist wants to investigate further.
For the two benign cases where the lesion was not de-
tected, manual segmentation was used instead of the auto-
matic segmentation. This post-processing step allowed us
to evaluate classification accuracy independent of the seg-
mentation performance.

Evaluation of feature contribution
We then evaluated the contribution of features collected
across the mpI data and ranked their contribution to
segmentation and classification based on two measures:
(1) RF Gini importance (GI) [10] and (2) minimum-
redundancy-maximum-relevance (mRMR) [24]. The GI
measures the average amount of information gain using
the Gini index splitting criterion during RF training and
ranks the contribution of each feature as part of a
multivariate pattern. If features are redundant but in-
formative, it ranks all of them highly [25]; the mRMR
provides a ranking based on relevance and redun-
dancy of the features. Then, we successively increased
the number of features for training and validation, be-
ginning with the top-ranked feature, and measured
the performance of each model, thus allowing us to
assess the contribution of each individual feature in a
multimodal, multiparametric setup. In addition, the
benefits of multiparametric and multimodal features
were evaluated by training models using only
DCE-MRI features and combined DCE-MRI, DWI,
and/or 18F-FDG PET features.

Results
Lesion segmentation
We report in Table 3 and illustrate in Additional file 1:
Figure S2 the performance of the models showing the
highest DSC for Gini importance and mRMR feature
selection with and without multiparametric features.
The model with mRMR feature selection and the top
eight features showed a mean/median DSC of 0.665/
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Table 3 Automatic segmentation performance in terms of DSC and sensitivity

Features DSC mean ± SD/median ± IQR Sensitivity mean ± SD/median ± IQR Number of features

GI 0.607 ± 0.238/0.691 ± 0.255 0.661 ± 0.234/0.721 ± 0.263 2

GI without PET 0.608 ± 0.281/0.722 ± 0.419 0.739 ± 0.290/0.876 ± 0.238 11

GI without DWI 0.573 ± 0.290/0.708 ± 0.445 0.669 ± 0.324/0.825 ± 0.445 8

GI without DWI, without PET 0.577 ± 0.277/0.665 ± 0.419 0.658 ± 0.343/0.813 ± 0.597 25

mRMR 0.665 ± 0.236/0.757 ± 0.189 0.743 ± 0.267/0.836 ± 0.269 8

mRMR without PET 0.618 ± 0.272/0.749 ± 0.413 0.748 ± 0.277/0.873 ± 0.307 7

mRMR without DWI 0.601 ± 0.268/0.701 ± 0.377 0.686 ± 0.328/0.801 ± 0.538 7

mRMR without DWI, without PET 0.584 ± 0.300/0.710 ± 0.393 0.613 ± 0.338/0.784 ± 0.496 8

DSC Dice similarity coefficient, DWI diffusion-weighted imaging, IQR interquartile range, GI Gini Importance, mRMR minimum-redundancy-maximum-relevance, PET
positron emission tomography, SD standard deviation. Values presented in bold are the highest values

Fig. 4 Segmentation results for the (a) best, (b) median, and (c) worst case according to the DSC score. The green colour indicates true-positive
voxels, the yellow colour false-positive voxels, and the red colour false-negative voxels. Top row shows Idce-post
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0.757. Here, DSC benefited from multiparametric fea-
tures, showing a reduced mean DSC of 0.601 without
DWI, 0.618 without PET, and 0.584 with only
DCE-MRI features. The model with GI feature selec-
tion showed a lower performance with a DSC of 0.607
compared with the model with mRMR feature selec-
tion. Here, DSC also benefitted from multiparametric
features, showing a reduced DSC of 0.577 with only
DCE-MRI features. The improvement in segmentation
accuracy for multiparametric features mainly resulted

from reducing false-positive cases, such as vessels and
enhancing parenchymal areas. Overall, for this dataset,
we had a detection rate of 22/22 (100%) for malignant
lesions and of 10/12 (83.3%) for benign lesions. As
shown in Fig. 4, the missed benign lesions had a very
low contrast uptake and thus were missed by the pre-
diction models.
The performance of the GI and mRMR feature selection

models with an increasing number of highest-ranked fea-
tures is shown in Fig. 5a. The performance of the GI fea-
ture selection model peaked at only three features
whereas the performance of the mRMR feature selection
model peaked at six features. Table 4 shows the ranking of
the features according to GI and mRMR. Both algorithms
ranked fdwi, fnsum-dce, and Idce-post highly. However, mRMR
tended to pick more varied features than GI, where GI se-
lected six potentially correlated features from fdce as part
of the top 10 features. The features capturing changes in
the contrast, fδdce and fδmri, received a lower ranking in GI
(see also Fig. 5b) compared with mRMR.

Lesion classification
In Table 5, we list the results for the models showing
the highest ROC AUC score after GI and mRMR fea-
ture selection. Overall, for manually annotated lesions,
mRMR feature selection yielded the highest AUC
(0.978) using only two features, with a sensitivity of
94.6% and specificity of 93.6% for identifying

(a)

(b)

Fig. 5 Feature ranking and its influence on segmentation performance. a The mean DSC, using a successively increasing number of top-ranked
features according to RF GI and mRMR ranking. b GI feature ranking of the segmentation features. The four top-ranked features are labelled in
the figure

Table 4 Top-ranked segmentation features according to Gini
importance and minimum-redundancy-maximum-relevance

Rank Gini importance Minimum-redundancy-maximum-relevance

1 fnsum-dce Idce-post

2 fdwi # 1 fδdce #16

3 fdce # 25 fdwi # 2

4 Idce-post fpet

5 fdwi # 2 fnsum-dce

6 fdce # 23 fdwi #1

7 fdce # 22 fδmri #1

8 fdce # 24 fδdce #23

9 fdce # 15 fδmri #2

10 fdce # 17 fδdce #20

Numbers next to each feature (#) indicate the frame index in the dynamic
contrast-enhanced magnetic resonance imaging. DSC Dice similarity
coefficient. See text for the abbreviations subscripted after f or I

Vogl et al. European Radiology Experimental            (2019) 3:18 Page 8 of 13



malignant lesions. When automatic segmentation was
used, the highest ROC AUC was 0.861 including only
three DCE-MRI features. mRMR feature selection
showed a better AUC performance than GI, both for
manual annotation (0.978 versus 0.949) and automatic
segmentation (0.861 versus 0.771).
The performance of the GI and mRMR feature selec-

tion models with an increasing number of
highest-ranked features is shown in Fig. 6a. The mRMR
feature selection model peaked at only two features

whereas the GI feature selection model peaked at four
features, with a subsequent decrease in AuC perform-
ance. A closer look at the ranking of the features (Table 6
and Fig. 6b) indicates that features from the pool of kin-
etic (fl-kinetic) and textural (fl-texture) features were
top-ranked by GI and mRMR models. Morphologic
(fl-morph) and PET (fl-pet) features received a low ranking
by GI and mRMR models. The DWI ADC feature (fl-adc)
was ranked as an important feature by GI in automatic
segmentation only.

Table 5 Classification results for differentiation of malignant and benign lesions for manually annotated lesions and automatic
segmented lesions using automatic feature selection

Feature selection method Manual annotation Automatic segmentation

AUC (mean ± SD) Sensitivity/
specificity

Number of
features

AUC (mean ± SD) Sensitivity/
specificity

Number of
features

GI LOOCV 0.949 ± 0.019 0.920/0.868 4 0.771 ± 0.040 0.961/0.482 100

GI LOOCV without PET 0.946 ± 0.002 0.924/0.859 4 0.771 ± 0.040 0.972/0.486 75

GI LOOCV without DWI 0.949 ± 0.015 0.915/0.873 4 0.754 ± 0.035 0.983/0.427 75

GI LOOCV without DWI, without PET 0.944 ± 0.018 0.922/0.868 4 0.755 ± 0.033 0.976/0.409 75

mRMR LOOCV 0.978 ± 0.008 0.946/0.936 2 0.858 ± 0.013 0.941/0.773 3

mRMR LOOCV w/o PET 0.975 ± 0.010 0.957/0.918 2 0.856 ± 0.018 0.948/0.736 3

mRMR LOOCV w/o DWI 0.977 ± 0.006 0.954/0.950 2 0.857 ± 0.017 0.943/0.745 3

mRMR LOOCV w/o DWI, PET 0.973 ± 0.010 0.950/0.927 2 0.861 ± 0.009 0.941/0.755 3

AUC area under the curve at receiver operating characteristic analysis, DCE-MRI dynamic contrast-enhanced magnetic resonance imaging, DWI diffusion-weighted
imaging, GI Gini importance, LOOCV leave-one-out cross-validation, mRMR minimum-redundancy-maximum-relevance, PET positron emission tomography, SD
standard deviation. Values presented in bold are the highest values

(a)

(b)

Fig. 6 Feature ranking and its influence on classification performance. a Mean ROC-AUC using an increasing number of top-ranked features
according to GI and mRMR ranking. b GI ranking showing the top-ranked classification features of each feature-group, computed from manual
annotations (green) and automatic segmentations (blue)
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Discussion
We present a novel data-driven combined breast lesion
segmentation and classification system for mpI data with
combined 18F-FDG-PET/MRI. This system automatically
detects and segments potentially cancerous regions and
classifies lesions as benign or malignant. Our results
showed that automatic lesion segmentation was accurate
and improved with information from all modalities, but
even a small number of features were sufficient to
achieve the reported maximum accuracy. On the other
hand, our results showed that lesion classification largely
drew on information from DCE-MRI, without benefit-
ting from information from other modalities and param-
eters. The results are consistent with previous findings
but add insights into the feasibility of a completely auto-
mated lesion segmentation and of classification from
mpI data. The results were obtained by quantifying the
information captured across multimodal mpI data and
features, enabling the assessment of imaging protocols
in this context.
Using combined mpI based on DCE-MRI, DWI, and

18F-FDG-PET in a CADe or CADx system is a novel
promising approach for improving diagnostic accuracy
[26]. Previously, CADe and CADx systems have been
proposed for digital mammography to increase the ra-
ther moderate sensitivity [27] and to help in classifying
lesions as benign or malignant [28]. Semi-automatic
methods have been proposed for classifying each pixel as
cancerous or non-cancerous using fuzzy c-means clus-
tering [29] or Markov random field-based clustering of
the time-series [30]. Moreover, methods designed to out-
line lesions using the active contour framework (i.e., au-
tonomously and adaptive search of object contours
based on image features and user interaction) have also
been presented [31, 32]. Automatic segmentation
methods, which may also be seen as CADe systems,
have been proposed using machine-learning approaches

based on intensity and textural features (co-occurrence,
run-length) [20, 33–35]. Recently, an automated localisa-
tion of breast cancer lesions based on DCE-MRI was
proposed by Gubern-Mérida et al. [36]. Multimodal ap-
proaches combining several modalities have been re-
ported for PET/CT breast images: Han et al. [37]
segmented lesions by applying a graph-based Markov ran-
dom field method on a combined PET/CT image, taking
advantage from both the high spatial resolution of CT and
the functional information of PET. Lastly, several CADx
methods that classify breast lesions as benign or malignant
by exploring the DCE-MRI data have been proposed using
morphology [38], lesion texture [39], contrast enhance-
ment [16, 40], a combination of morphology and contrast
enhancement [41], or a combination of morphology and
texture [19, 21, 31, 42, 43]. State-of-the-art DCE-MRI
CADx methods have been reported using various per-
formance metrics, different datasets (e.g., malignant cases
only), and differing aims (i.e., segmentation versus
detection).
Using our system, we detected all malignant cases and

missed two benign lesions. Detected lesions were classi-
fied as malignant with a sensitivity of 95%. Using texture
features, Woods et al. [20] and Yao et al. [35] previously
reported an ROC-AUC of 0.999 and 0.984, respectively.
However, Woods et al. performed the evaluation on the
same subjects as used in training, and both these studies
were conducted in a small set of malignant lesions only.
Twellmann et al. [33] reported a ROC-AUC of 0.99 for
lesion detection using LOOCV and DCE-MRI informa-
tion. Vignati et al. [34] reported the performance of a
fully automated system as a detection rate of 0.89 and a
sensitivity of 0.98 at four false-positive cases per breast.
In their study, the performance measure did not include
false-positive areas. Gubern-Mérida et al. [36] used an
automated method and achieved a sensitivity of 89% at
four false-positive per normal case. As normal cases,

Table 6 The ten top-ranked classification features according to Gini importance and minimum-redundancy-maximum-relevance

Rank Manual annotation Automatic segmentation

Gini importance Minimum-redundancy-maximum-relevance Gini importance Minimum-redundancy-maximum-relevance

1 fl-tex-post/peak entropy fl-tex-post/peak energy fl-kineticT1/2 fl-tex-post/peak energy

2 fl-tex-post/peak energy fl-δckc # 11 fl-tex-post/peak energy fl-δckc #10

3 fl-kineticT1/2 fl-δckc # 8 fl-kinetic MDER fl-tex-post/pre sum average

4 fl-ckc #11 fl-kinetic MDER fl-adc fl-tex-post/pre homogeneity

5 fl-ckc #9 fl-tex-post/pre homogeneity fl-δckc #18 fl-δckc #20

6 fl-tex-post information measure 1 fl-tex-post/peak correlation fl-ckc #11 fl-tex-post/peak information measure 2

7 fl-δckc #14 fl-tex-post/peak entropy fl-δckc #21 fl-δckc #21

8 fl-tex-post information measure 2 fl-kineticT1/2 fl-δckc #14 fl-kineticβ

9 fl-δckc #11 fl-tex-post/pre dva fl-tex-post/pre dva fl-tex-peak/pre homogeneity

10 fl-tex-peak entropy fl-tex-post/pre energy fl-δckc #10 fl-tex-post sum variance

dva difference variance, MDER maximum derivative of kinetic regression function
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they included patients with a BI-RADS rating of 1 or 2,
who were healthy subjects with benign findings.
For the task of automatic lesion segmentation, our

study showed that mpI is beneficial, as evidenced by the
increase of the DSC from 0.584 to 0.665. The high rank-
ing of DWI features in both GI and mRMR feature se-
lection models indicates that the addition DWI to
DCE-MRI is especially beneficial in segmentation. We
also found that lesion segmentation benefitted from the
addition of PET, although the benefit was to a lesser ex-
tent than that of DWI. When both DWI and PET were
added, the DSC was further improved; thus, our results
suggest that PET has a complementary relationship with
DWI. Interestingly, features describing the change of
contrast between time-steps (fδdce and fδmri) received a
good ranking in the mRMR feature selection model
overall but a low ranking in the GI feature selection
model. A likely reason is that while they contribute less
information than the higher-ranked GI features, their
contribution is orthogonal to the higher-ranked features.
In our study, mRMR as a feature selection model pro-
vided slightly better results than GI. The moderate mean
DSC score for lesion segmentation results from several
reasons. First, the two undetected benign lesions exhib-
ited very low contrast enhancement with a DSC of 0,
leading to a drop in the mean value. However, we kept
these two benign cases in the dataset to evaluate whether
additional parameters may allow the system to segment
these challenging cases, which was not the case as re-
ported. Second, additional areas of contrast uptake, such
as vessels and enhancing parenchymal tissues, resulted in
an increased false-positive rate. While DWI and
18F-FDG-PET image modalities increased automatic seg-
mentation accuracy, mainly by reducing the false-positive
cases, lesions with low contrast uptake could not be de-
tected automatically. As good segmentation is important
for the accurate classification of a lesion, we aim to im-
prove the segmentation performance, e.g., by introducing
heuristics that filter false-positive cases in a post-process-
ing step in a future study, as proposed for instance by Vig-
nati et al. [34] and Gubern-Mérida et al. [36] where
morphologic and kinetic descriptors were used in a sec-
ond step.
In our study, a high accuracy in lesion classification

was achieved for both expert and automatic segmenta-
tion. However, the highest accuracy was achieved with
manual segmentation and mRMR feature selection from
DCE imaging data. Top-ranked features largely over-
lapped between GI and mRMR feature selection models;
the exception was that fl-adc was ranked highly by the GI
feature selection model following only automatic
segmentation. While the addition of DWI and
18F-FDG-PET to DCE-MRI was beneficial overall for le-
sion segmentation, lesion classification only improved

slightly with these two modalities for GI feature selec-
tion following manual segmentation. Lesion classifica-
tion for mRMR features selection was best without these
two modalities. fl-pet was lowly ranked, consistent with
recent findings by Magometschnigg et al. [44] that indi-
cate that quantitative 18F-FDG-PET values are not help-
ful for breast cancer classification. On the other hand,
the kinetic feature fl-kinetic received a high GI as well as
high mRMR ranking. Textural features were top-ranked,
mostly from fl-tex-post/peak. The top-ranked feature,
GLCM energy, measures the uniformity of lesion tex-
ture, reflecting the uniformity of contrast-enhancement
within the lesion during a later stage. The morphologic
feature fl-morph scored very low, although they are an in-
tegral part of the BI- RADS® lexicon for lesion classifica-
tion, being discriminative features for clinical diagnosis,
as shown by Pinker-Domenig et al. [45]. This suggests
that binary segmentation and shape descriptors are not
precise enough to describe the shape and margin of the
lesion and feature extraction from a soft-margin around
the hard segmentation border (e.g., textural features)
may better capture the BI-RADS margin descriptors (cir-
cumscribed, non-circumscribed, irregular, spiculated).
Alternatively, digital mammography or digital breast
tomosynthesis may be used as an additional higher reso-
lution modality to assess the morphology of the lesion
more accurately. To summarise, mRMR slightly outper-
formed GI as a feature selection method for breast le-
sion classification. Novel DCE-MRI features that
describe the kinetics and spatio-temporal texture of the
contrast uptake were highly predictive for the classifica-
tion of benign and malignant lesions, whereas DWI and
PET did not provide additional information. Whereas
we used data from separate MRI and PET/CT scanners,
the methods, results, and findings can be directly trans-
ferred to images obtained at combined PET/MRI scan-
ners, as the CT information was used for alignment only
and was not part of the decision models.
One limitation of the study is that only subjects with

suspicious findings on mammography or breast ultra-
sonography were included. As a consequence, an assess-
ment of false-positive cases in healthy subjects was not
possible. However, the majority of tissue in the breast
consists of healthy tissue, on which the classifier was
trained, and was classified as healthy tissue in our study.
A second limitation is the small number of subjects.
Even though cross-validation allowed us to estimate the
generalisation of the model to some degree, statistical
significance can only be obtained from a larger cohort.
Thus, we aim to confirm our preliminary findings on a
larger number of patients in a future study.
In conclusion, we used an entirely data-driven approach

in combination with the assessment of the contribution of
individual imaging parameters to provide a means for
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in-depth understanding of the multivariate information,
where redundancies and relationships between imaging
data are not obvious. This is essential for further clinical
exploitation of imaging parameters. It enables designing of
feasible imaging paradigms constructed from a possibly
reduced subset of acquisition sequences. Furthermore, in
the context of disease mechanisms, the data-driven model
could serve as a means for hypothesis generation.
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