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Abstract

Idiopathic normal pressure hydrocephalus (iNPH) is a clinical syndrome characterized by cognitive decline, gait disturbance, and uri-
nary incontinence. As iNPH often occurs in elderly individuals prone to many types of comorbidity, a differential diagnosis with other
neurodegenerative diseases is crucial, especially Alzheimer’s disease (AD). A growing body of published work provides evidence of
radiological methods, including multimodal magnetic resonance imaging and positron emission tomography, which may help non-
invasively differentiate iNPH from AD or reveal concurrent AD pathology in vivo. Imaging methods detecting morphological changes,
white matter microstructural changes, cerebrospinal fluid circulation, and molecular imaging have been widely applied in iNPH pa-
tients. Here, we review radiological biomarkers using different methods in evaluating iNPH pathophysiology and differentiating or
detecting concomitant AD, to noninvasively predict the possible outcome postshunt and select candidates for shunt surgery.

Keywords: idiopathic normal pressure hydrocephalus; Alzheimer’s disease; radiological biomarker; magnetic resonance imaging;
positron emission tomography

Introduction
Idiopathic normal pressure hydrocephalus (iNPH) is a clinical syn-
drome characterized by cognitive decline, gait disturbance, and
urinary incontinence (Adams et al., 1965) with a prevalence of
0.2% in populations aged 70–79 years and 5.9% in 80 years and
older (Jaraj et al., 2014). Shunt surgery is an effective treatment for
iNPH, while the cerebrospinal fluid tap test (CSFTT) is a common
method to predict whether iNPH patients can benefit from fur-
ther shunt surgery (Graff-Radford et al., 2019), but the application
of CSFTT was clinically confined due to its relatively low sensi-
tivity and invasiveness (Thavarajasingam et al., 2021). Therefore,
radiological approaches may provide noninvasive biomarkers for
identifying possible shunt responders (Craven et al., 2016).

On the other hand, since iNPH often occurs in elderly individ-
uals prone to many types of comorbidity, a differential diagnosis
with other neurodegenerative diseases is crucial, especially with
Alzheimer’s disease (AD) (Malm et al., 2013). Several studies based
on brain biopsy have also supported that AD is a common patho-
logic comorbidity with iNPH, and distinguishing these patients
may help in the selection of probable shunt responders (Cabral
et al., 2011; Pomeraniec et al., 2016).

A growing body of reports provide evidence that multimodal
magnetic resonance imaging (MRI), including structural MRI, dif-
fusion tensor imaging, phase-contrast MRI, and glymphatic MRI,
as well as positron emission tomography (PET) may help nonin-
vasively differentiate iNPH from AD and discover concurrent AD

pathology in vivo (Ishii et al., 2008; Leinonen et al., 2018; Park et al.,
2021). Therefore, this study set out to review the usefulness of var-
ious radiological biomarkers in the differential diagnosis of iNPH
and AD and their value in the prediction of shunt responders in
iNPH patients.

Structural MRI
Structural MRI (sMRI) is the most useful model in clinical practice
due to its accessibility. Common morphological hallmarks of iNPH
on sMRI include increased Evan’s index (EI), sharpened callosal
angle (CA), and disproportionately enlarged subarachnoid space
(DESH) (Agerskov et al., 2019) (Fig. 1). Extensive series of volumetric
and voxel-based analysis (VBA) studies have quantitatively mea-
sured these changes (Ishii et al., 2008; Moore et al., 2012; Yamashita
et al., 2014).

EI was first proposed in 1942 as the ratio of the maximal width
of the frontal horns of both lateral ventricles to the maximum
inner skull diameter (Evans, 1942). It was recognized as an esti-
mation of ventricular volume, with an EI > 0.3 defined as ven-
triculomegaly (Toma et al., 2011). However, with progress in brain
scan techniques, researchers have found that EI is related to age,
sex, and scan plane (Toma et al., 2011). A large population-based
study demonstrated that EI ranged from 0.11 to 0.46 in individu-
als aged ≥70 years, and 20.6% of them had an EI > 0.3 (Jaraj et al.,
2017). Another study derived new cutoff values of EI based on age
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Figure 1: Common morphological hallmarks of iNPH. (A)–(C) were taken from an 80-year-old iNPH patient with a positive CSFTT, and (D)–(F) were
taken from a 76-year-old AD patient. (A) and (D) demonstrate the measurement of EI. These two patients both had an EI > 0.3 (A, EI = 0.36: D,
EI = 0.34); thus, EI seems unreliable for distinguishing iNPH and AD. (B) and (E) demonstrate that iNPH patients have a different CSF distribution from
AD patients. CSF volume significantly increased in ventricles and Sylvian fissures but decreased in the superior convexity and medial subarachnoid
spaces, termed DESH. (C) and (F) show the measurement of CA. CA should be measured on a coronal plane perpendicular to the AC–PC line on the
posterior commissure plane, and 90◦ is a common cutoff value for differentiating iNPH from AD (C, CA = 69◦; F, CA = 109◦).

and sex from AD cohorts and healthy elderly controls, and further
validated them in a small sample of probable iNPH patients. It fi-
nally showed a sensitivity of 80% for differentiating iNPH from
controls using a revised cutoff value of EI (Brix et al., 2017). As
there is a major overlap of EI between iNPH and AD (also known as
‘hydrocephalus ex vacuo’), using EI solely to exclude neurodegen-
erative diseases seems unreliable (Nakajima et al., 2021) (Fig. 1A
and D).

CA, another traditional radiological marker, was initially dis-
covered using pneumoencephalography (Benson et al., 1970). The
renewed concept of CA based on computed tomography or MRI
scans should be measured on a coronal plane perpendicular to
the anterior commissure–posterior commissure (AC–PC) line on
the posterior commissure plane (Ishii et al., 2008). A recent meta-
analysis evaluated the diagnostic performance of CA in iNPH pa-
tients with low heterogeneity. The pooled sensitivity was 91%, and
the specificity was 93% when using CA to diagnose iNPH and five
out of seven studies using a cutoff value of 90◦ (Park et al., 2021).
Unlike EI, CA could reflect specific iNPH pathogenesis, since a
sharp CA often suggests an elevation due to the dilation of lat-
eral ventricles and Sylvian fissures and thus assists the differen-
tial diagnosis of iNPH with AD (Ishii et al., 2008). Several studies
have revealed that using 90◦ as a cutoff value yielded a sensitivity
of 84–97% and specificity of 64–95% when differentiating proba-
ble iNPH and AD (Ishii et al., 2008; Kim et al., 2021; Mantovani et
al., 2020) (Fig. 1C and F). As mentioned before, EI has little value
in differentiating iNPH and AD, but when using EI and CA in com-
bination, the differential diagnostic performance could be further
improved compared to using CA alone (Ishii et al., 2008; Miskin et
al., 2017).

Moreover, researchers have found that there is a different pat-
tern of CSF distribution between iNPH and brain atrophy. Kitagaki
et al. compared four main CSF compartments using coronal MR
images in shunt-responsive iNPH and matched AD and vascular
dementia patients (Kitagaki et al., 1998). This study first reported
a different CSF distribution pattern between iNPH and AD, with
the CSF volume significantly increased in ventricles and Sylvian
fissures but decreased in the superior convexity and medial sub-
arachnoid spaces (Kitagaki et al., 1998). Then, a multicenter cohort
study validated the diagnostic value of these signs and termed
them DESH (Hashimoto et al., 2010) (Fig. 1B and E). Studies have
elucidated that DESH exhibits the ability to distinguish shunt re-
sponders and nonresponders (Craven et al., 2016; Hashimoto et al.,
2010; Narita et al., 2016; Virhammar et al., 2014). The estimated
positive predictive value of DESH for shunt responders was 77%
but with a relatively low negative predictive value of only 25%
(Craven et al., 2016). While these findings suggest DESH is a great
diagnostic tool for iNPH and reflects the prognosis to some extent,
it is still not sufficient to replace CSFTT.

Several different methods have made these morphological
changes quantitative, with volumetric analysis and VBM being
the most common methods. Quantitative measurements of ven-
tricular volume and total cortical thickness in combination can
improve iNPH differential diagnosis with AD (Moore et al., 2012).
VBA demonstrated that increased gray matter density of para-
interhemispheric gyri and frontoparietal cortices at high convex-
ity can be used as important markers for differentiating iNPH
and AD, since it underlies the pathophysiology of iNPH such as
DESH (Ishii et al., 2008). Although hippocampal volume is con-
sidered a biomarker of neurodegeneration in AD, iNPH patients
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also demonstrated alterations in hippocampal volume. It was first
reported that iNPH patients exhibited a minor left-side decrease
in hippocampal volumes, and this different pattern may provide
diagnostic discrimination from AD (Savolainen et al., 2000). The
voxel-based morphometry study, however, confirmed bilateral
hippocampal volume loss in iNPH patients, while it was relatively
retained compared to AD (Ishii et al., 2008). Whether AD pathol-
ogy complicates the diagnosis of iNPH in this study is unknown
(Golomb et al., 1994). Voxel-based morphometry of CSF space was
also conducted on shunt-responsive iNPH and AD patients, with
ventricular/sylvian and high convexity/midline (HCM) being used
as regions of interest (Yamashita et al., 2014; Yamashita et al.,
2010). The results indicated that the ratio of these two regions of
interest (ventricular/sylvian/HCM) was significantly higher than
that of AD, exhibiting a sensitivity of 89% and specificity of 100%
for differential diagnosis (Yamashita et al., 2014). In addition, this
ratio was related to the improvement of gait and cognitive func-
tion after shunting, supporting the idea that milder brain defor-
mation could have larger improvements after shunt surgery (Ya-
mamoto et al., 2013).

Recent studies still attach great importance to these traditional
markers, and several newly proposed imaging biomarkers were
derived from these traditional ones. Inspired by EI and DESH, Ya-
mada et al. found that z-axial expansion of lateral ventricles and
compression at convexity may be common parameters for differ-
ential diagnosis and further established the z-axial EI (z-EI) and
brain-to-ventricle ratios: two new radiological markers to differ-
entiate iNPH from AD (Yamada et al., 2016; Yamada et al., 2015).
As CA has already been validated in several studies, researchers
seek to measure CA at the anterior commissure level, called the
anterior CA (ACA), which clearly differentiates iNPH from AD with
a sensitivity of 93% and specificity of 83% (Mantovani et al., 2021).
Further investigations are needed to validate these findings in
larger populations.

To date, structural MRI is still the most useful method for the
clinical evaluation of iNPH, considering its overall accessibility,
and could be interpreted visually. Traditional radiological markers
reflected by sMRI still reveal a good performance of differential di-
agnosis and prognostic prediction, while their absence should not
exclude iNPH patients from shunt surgery (Agerskov et al., 2019;
Chen et al., 2022; Ishii et al., 2008; Virhammar et al., 2014). More im-
portantly, these radiological changes were confirmed to precede
the onset of iNPH symptoms or only with subclinical cognitive de-
cline (Engel et al., 2018; Engel et al., 2021) and thus may become a
preferable screening tool for preclinical iNPH patients in the fu-
ture.

Diffusion tensor imaging
Diffusion tensor imaging (DTI) is a rapidly developing noninvasive
MRI-based imaging technique that was proposed in 1994 (Basser
et al., 1994a; Basser et al., 1994b), which can detect microstruc-
tural integrity and orientation of white matter by measuring the
intracranial directionality and scale of water diffusion (Beaulieu,
2009; Winston, 2012). There are many tensor-derived quantitative
parameters commonly used in DTI-based analysis of microstruc-
tural WM integrity, including axial diffusivity (reflecting the paral-
lel diffusion of the axon), radial diffusivity (reflecting the perpen-
dicular diffusion of the axon) (Klawiter et al., 2011), mean diffusiv-
ity [MD, meaning the mean motion of water (Rose et al., 2008)], and
fractional anisotropy (FA, commonly used for measuring diffusion
anisotropy of the water (Teipel et al., 2016)).

In recent years, DTI has been regarded as one of the most
sensitive and promising imaging biomarkers for the diagnosis of
iNPH due to its excellent ability to reflect changes in white mat-
ter microstructure, and many studies have found that iNPH has
unique DTI alterations compared with healthy controls and other
neurodegenerative diseases (such as AD) because of its unique
pathophysiological mechanism (Caligiuri et al., 2022; Daouk et al.,
2014; Grazzini et al., 2021; Hattori et al., 2011; Hong et al., 2010;
Horinek et al., 2016; Hoza et al., 2015; Ivkovic et al., 2013; Kang
et al., 2016; Kanno et al., 2011; Kanno et al., 2017; Koyama et al.,
2013; Scheel et al., 2012; Siasios et al., 2016; Younes et al., 2019) (Ta-
ble 1). Most studies indicate that iNPH has widespread diffusion
changes in the corpus callosum (CC) and periventricular white
matter (Caligiuri et al., 2022; Hattori et al., 2011; Hong et al., 2010;
Horinek et al., 2016; Kang et al., 2016; Kanno et al., 2011; Koyama
et al., 2013; Younes et al., 2019). Significantly lower mean hemi-
spheric FA and higher mean hemispheric MD have been found
in iNPH patients than AD and PD patients, and VBA showed that
iNPH patients have significantly higher MD values in the CC and
periventricular white matter and have significantly lower FA val-
ues in the CC (Kanno et al., 2011). Similar FA and MD changes in
the CC were also found in studies using tract-based spatial statis-
tics (TBSS) than in healthy controls and AD patients (Kang et al.,
2016; Koyama et al., 2013). Moreover, iNPH patients have more al-
tered principal diffusion direction (V1) voxels in the midsagittal
portion of the splenium along the CC, which is significantly dif-
ferent from AD patients (Bonferroni-corrected P value < 0.01) and
has better diagnostic efficiency based on a random forest classi-
fier than other diffusivity parameters [AUCiNPH vs. AD = 0.88 (95%
CI: 0.76–1)] (Caligiuri et al., 2022). Additionally, many studies have
shown that patients with iNPH also have significant diffusivity pa-
rameter changes compared with AD patents in paraventricular
white matter fibers, such as the anterior corona radiata [including
corticomedullary tract, corticospinal tract (CST), thalamic radia-
tion, and thalamic, etc.] and thalamic radiation, which indicate
impaired white matter integrity (Hattori et al., 2011; Hong et al.,
2010; Horinek et al., 2016; Kang et al., 2016; Koyama et al., 2013;
Younes et al., 2019). INPH patients present significantly lower FA
in the anterior corona radiata and superior longitudinal fascicu-
lus based on TBSS. Decreased FA was also found in cortico-ponto-
cerebellar pathway fibers (i.e. bilateral posterior thalamic radia-
tion, external capsules, and middle cerebellar peduncles), which
awaits further study (Kang et al., 2016; Schmahmann et al., 2006).
The decreased FA and increased MD in the CC and periventricular
white matter in the iNPH patients discussed before may be caused
by axonal degeneration and interstitial edema based on the me-
chanical pressure of dilated ventricles (Mataró et al., 2007; Medina
et al., 2008; Röricht et al., 1998; Uluğ et al., 2003).

In addition, most studies have demonstrated that iNPH pa-
tients have higher FA values in the white matter of the paraven-
tricular tracts, especially the CST (Hattori et al., 2011; Horinek
et al., 2016; Younes et al., 2019). A study focusing on CST fibers
in iNPH patients found significantly increased FA values and ax-
ial diffusivity in the CST of iNPH patients based on tract-specific
analysis. They also showed that CST fibers of iNPH patients have
higher anisotropy and are straighter than patients with AD in
visual evaluation of tractography (Hattori et al., 2011). Similarly,
iNPH patients also have increased FA, MD, and axial diffusivity in
the corticoefferent tracts adjacent to the lateral ventricles, which
correlated with ventricular volumes (Horinek et al., 2016). Posi-
tive correlation between ventricular volumes and the axial dif-
fusivity was also found in the CST, which does not exist in AD
patients. Interestingly, a similar correlation was also found in
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superior thalamic radiation (the most medial part of the superior
corona), which uncovers further research and diagnostic value of
correlations between macrostructural characteristics of ventricu-
lar and microstructural changes of paraventricular tracts (Younes
et al., 2019). INPH patients also have significantly higher FA in the
posterior limb of the internal capsule where the CST is located
(Koyama et al., 2013). The widely identified paraventricular tract’s
increased FA and axial diffusivity in paraventricular tracts may
be explained by fewer crossed fibers within the voxel due to the
pressure-related stretching of the ventricles and compression of
white matter fibers, which remains controversial (Grazzini et al.,
2021; Horinek et al., 2016; Kim et al., 2011).

Furthermore, several studies are expected to further explore
the pathophysiological mechanisms of iNPH and complete its dif-
ferential diagnosis with AD using DTI-based methods (Daouk et
al., 2014; Hong et al., 2010; Ivkovic et al., 2013). The FA value in
the hippocampal region was found sorted from the highest to the
lowest in the HC-NPH-AD order, while the MD value in the hip-
pocampal region was sorted from the highest to the lowest in the
AD-NPH-HC order using a region of interest-based method, which
indicates different pathophysiological changes between AD and
NPH patients; that is, the damage to hippocampal white matter
microstructure due to mechanical pressure of CSF in iNPH pa-
tients is not as severe as the primary damage to hippocampal
structure caused by AD (Hong et al., 2010). Some studies have also
proposed innovative biomarkers for classification. A classification
model based on DTI histograms and the Voss-Dyke fitting method
was proposed and obtained 86% sensitivity and 88% specificity in
the iNPH-AD classification task (Ivkovic et al., 2013). The relation-
ship between CSF flow and diffusivity parameters can also be used
for classification, the axial diffusivity and radial diffusivity in the
internal capsule of AD patients are correlated with the aqueductal
CSF stroke volume, while there is no similar correlation in patients
with iNPH, which may be due to the forced diffusion of CSF in AD
patients and needs to be studied further (Daouk et al., 2014).

The pathogenesis of iNPH is still unclear, and it is generally be-
lieved that it is related to the universal damage of the periventric-
ular white matter due to ventricular dilation and abnormal CSF
dynamics (Jurcoane et al., 2014; Skalický et al., 2020; Wang et al.,
2020). At the initial stage of iNPH, various factors led to the in-
crease in CSF pulsatility (Hayashi et al., 2015; Wagshul et al., 2011)
and made hyperdynamic CSF flow more to the ventricles (Ringstad
et al., 2016), which increased the shearing forces and compres-
sive stress (Capone et al., 2020; Jacobsson et al., 2018) on the in-
ner wall of the ventricles, causing ventricular expansion. At the
same time, the decrease in CSF drainage caused by factors such
as decreased intracranial compliance and increased venous pres-
sure will also promote this process (Jacobsson et al., 2018). Ven-
tricular dilation will increase pressure on a larger surface area
and further reduce CSF drainage, leading to a vicious cycle (Gre-
itz et al., 1994; Rekate et al., 2008). Expansion of the ventricles
with their increased mechanical stress on the surface can cause
compression and deformation of the periventricular white mat-
ter, which in turn leads to the main clinical symptoms of iNPH
(e.g. CST compression causing gait disturbance and urinary in-
continence) (Holodny et al., 2005; Relkin et al., 2005). These DTI-
based method studies all showed that iNPH patients have higher
FA values in the white matter of the paraventricular tracts, which
indicates that axons are densely packed in paraventricular tracts
(Horinek et al., 2016; Hattori et al., 2011; Horinek et al., 2016). The
increase in FA was found limited to the region near the lateral
ventricle of the CST, confirming the previous “compression hy-
pothesis” (Hattori et al., 2011). According to the clinical guidelines,

shunt surgery is the recommended therapy for early iNPH pa-
tients, which can largely modify abnormal CSF dynamics, reduce
mechanical stress and white matter compression on the ventric-
ular wall, and then relieve clinical symptoms (Mori et al., 2012).
Some studies using the DTI-based method confirmed the previ-
ously mentioned changes in white matter microstructure (Kanno
et al., 2017; Scheel et al., 2012). The FA, MD, parallel diffusivity,
and radial diffusivity tended to be normal after shunt surgery, al-
though there were still significant differences from healthy con-
trols, which indicated a recovery of reversible damage caused by
white matter compression (Scheel et al., 2012). Moreover, the closer
the paraventricular tract is to the ventricle, the greater the pre-
operative FA value increases, and the greater the postoperative
FA value decreases, indicating that the closer the paraventricu-
lar tract is to the ventricle, the more obvious the compression is.
Meanwhile, the relative changes in FA and axial diffusivity be-
fore and after shunt surgery can be used as a good tool to pre-
dict shunt response, indicating that the recovery of paraventric-
ular tract compression after surgery is positively correlated with
the improvement of symptoms (Jang et al., 2011). There are also
studies devoted to the prognosis prediction of iNPH patients after
shunt surgery and trying to determine the potential reasons for
poor shunt response. Compared with shunt-responsive (SR) pa-
tients, the volume of the cerebral ventricle in nonresponsive NPH
(NR) decreased slightly after the operation, indicating that the de-
crease in insufficient pressure adjustments or ventricular compli-
ance is a possible cause of NR. Additionally, compared with SR, MD
in the left hemisphere of NR increased after shunt surgery, which
may represent the expansion of interstitial edema and irreversible
damage of white matter microstructure (Kanno et al., 2017). Inter-
estingly, in some NRs, although the axial diffusivity of the CST
was significantly reduced after surgery (representing a decrease
in mechanical stress in the ventricular wall), their clinical symp-
toms were not significantly relieved, which also indicated that NR
caused irreversible damage to periventricular white matter (Jur-
coane et al., 2014). Neuropathological studies have confirmed that,
in addition to the axons themselves packed, the mechanical stress
of ventricular expansion may also lead to decreased blood flow
perfusion (Takeuchi et al., 2007), metabolic abnormalities (espe-
cially the abnormal glymphatic system) (Tan et al., 2021), and neu-
roinflammation (Zhou et al., 2019) in the peripheral white matter
and further cause irreversible axonal damage, which can also ex-
plain the increase in axial damage biomarkers in the CSF of some
patients with iNPH (such as neurofilament light protein) (Jeppsson
et al., 2013). DTI-based methods can be used to find compression
and irreversible damage to the paraventricular tract through dif-
fusion changes before and after shunt surgery and can be used as
promising noninvasive biomarkers to distinguish SR and NR.

In general, DTI-based methods can detect changes in white
matter microstructure (especially CC and periventricular white
matter) in patients with iNPH before structural MRI. On this ba-
sis, we can study the unique pathophysiological changes of iNPH,
which can be used for differential diagnosis with other neu-
rodegenerative diseases (such as AD). Meanwhile, the DTI-based
method can also analyze the changes in white matter microstruc-
ture before and after shunt surgery in patients with iNPH and
serve as a promising, noninvasive diagnostic and prognostic eval-
uation method for iNPH. However, there are still some remaining
limitations requiring further DTI-based research for iNPH, such as
interpretation of conflicting results, significant inter-scanner dif-
ferences and difficulties in processing data of crossing white mat-
ter tracts (Alexander et al., 2001; Lenfeldt et al., 2011; Moura et al.,
2019).
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Phase-contrast MRI (PC-MRI)
MRI was thought to be an effective tool for the detection of CSF
flow. It was first reported that iNPH exhibited hyperdynamic CSF
motion and decreased ventricular compliance and therefore pre-
sented with significant aqueductal signal loss in MR images com-
pared to brain atrophy, termed the “CSF flow void sign” (Bradley
et al., 1986). However, previous studies have found that it has lit-
tle predictive value for shunt responders in patients with iNPH
(Bradley et al., 1996; Krauss et al., 1997). Therefore, a new method
of quantitatively measuring CSF flow by MRI was proposed and ex-
tensively applied in iNPH research, that is, PC-MRI (Edelman et al.,
1986). PC-MRI is the only MRI technique to visualize CSF motion
thus far, and most of the clinical CSF flow measurements have
been carried out in the aqueduct (Connor et al., 2001). Since its
early application in iNPH, multiple studies have sought to answer
the question of "how to distinguish shunt responders from non-
responders" through this technique. Aqueductal stroke volume
(SV) was defined as the total amount of CSF pulsating caudally
(or cranially) through the aqueduct in one cardiac cycle, with a
normal range of 30–50 μl across studies, while iNPH is character-
ized by significantly increased SV (Greitz et al., 1994; Wagshul et
al., 2006; Yamada et al., 2015). Bradley et al. first reported a thresh-
old of 42 μl in differentiating shunt responders from nonrespon-
ders, with a sensitivity of 80% and specificity of 100% (Bradley
et al., 1996). They supposed that this increase in SV may con-
tribute to the squeezing of dilated ventricles, while a continu-
ous pressure gradient further led to the collapse of periventric-
ular arterioles and progressive ischemia, causing irreversible di-
minished pump function and then decreased SV (Bradley et al.,
1996; Scollato et al., 2008). Another study also showed that a CSF
flow rate of >18 ml/min could distinguish iNPH from other forms
of cognitive impairment (Luetmer et al., 2002). Other researchers,
however, have found limited significance when using PC-MRI to
predict shunt outcome (Dixon et al., 2002; Kahlon et al., 2007).
These contradictory results suggest a difficulty in exclusion of AD
hydrodynamics comorbid with iNPH (Bateman et al., 2007; Tak-
izawa et al., 2017) and, moreover, an urgent need in protocol stan-
dardization with the PC-MRI method. The selection of proper se-
quence parameters such as velocity encoding is essential for the
high quality of PC-MR images and their clinical application when
using quantitative measurements (Korbecki et al., 2019). There-
fore, Bradley et al. highlighted that medical centers should es-
tablish their own aqueductal SV cutoff value, which is twice as
high as that derived from healthy volunteers (Bradley, 2015). For
these reasons, quantitative PC-MRI studies may exhibit huge in-
consistency, while they still hold promise for differential diagno-
sis and prognostic prediction for iNPH in an experienced single
center.

Glymphatic MRI
In addition to the aforementioned hydrodynamic changes, iNPH
patients also have disturbed CSF homeostasis. Iliff et al. first re-
ported that there is a kind of system in rodents, where CSF flows
into the brain parenchyma from the periarterial space and flows
out from the perivenous space after material exchange with the
interstitial fluid (Iliff et al., 2012). This system was termed as the
"glymphatic system," as it has a structure and function similar
to those of the lymphatic system, and aquaporin 4 (AQP4) is the
main protein that mediates this material exchange. This system
is believed to be involved in the clearance of β-amyloid, one of
the pathological hallmarks of AD (Iliff et al., 2012; Shokri-Kojori

et al., 2018), and the pathogenesis of many neurological diseases
(Rasmussen et al., 2018).

Following intrathecal injection of a paramagnetic contrast
agent, CSF-ISF exchange across the rat brain was seen using the
dynamic contrast-enhanced MRI method for the first time (Iliff
et al., 2013). The perfusion of the glymphatic system was also
measured by MRI method in stroke mouse models, which demon-
strated significant impairment of glymphatic system perfusion af-
ter subarachnoid hemorrhage and acute ischemic stroke (Gaberel
et al., 2014). Glymphatic MRI was first applied in iNPH patients
and controls in 2017 by intrathecally injected gadobutrol as an MR
contrast agent, to assess brain glymphatic function (Ringstad et al.,
2017). Delayed enhancement and reduced clearance of gadobutrol
at the Sylvian fissure was observed in iNPH patients. They further
interpreted as signs of reduced glymphatic clearance in iNPH pa-
tients (Ringstad et al., 2017). Another study with longer MR scan
time points also demonstrated similar impairments in glymphatic
flux (Ringstad et al., 2018). A more recent survey revealed that
delayed clearance of gadobutrol also occurred in the entorhinal
cortex and adjacent white matter, which is pivotal for cognitive
function (Eide et al., 2019). Hence, it could be conceivably hypoth-
esized that reduced glymphatic clearance may be attributed to
waste accumulation, such as β-amyloid, in these cognitive brain
networks and then induce dementia or comorbidities, such as AD.
Further investigations should be focused on the clinical value of
glymphatic MRI to recognize patients with concurrent AD and
whether there is any association between shunt implantation and
CSF clearance.

Altogether, these MRI methods for evaluating CSF circulation
may contribute to our knowledge of the underlying mechanism
of iNPH pathogenesis but with little evidence of clinical applica-
tion thus far. Further studies are required to determine a set of
standardized protocols for these MRI methods and then testify to
the consistency across studies.

Positron emission tomography
PET is currently one of the most popular methods for investigating
neurodegenerative diseases, especially in the AD research field.
Several PET modalities have already been established in iNPH for
differential diagnosis and prognostic prediction.

In terms of the detection of metabolic changes in iNPH patients,
Jagust et al. first used 18F-fluorodeoxyglucose (FDG)-PET to demon-
strate a different pattern of metabolic abnormalities between
iNPH and AD in 1985. The brains of patients with AD showed bi-
lateral temporoparietal hypometabolism, while those of patients
with iNPH demonstrated global metabolic changes in iNPH (Ja-
gust et al., 1985). Another study in 1995 also demonstrated similar
metabolic changes in iNPH (Tedeschi et al., 1995). A recent retro-
spective study compared the pattern of FDG-PET between iNPH
and several neurodegenerative diseases (including AD) using VBA.
The authors found that AD exhibited cortical hypometabolism,
while iNPH had a pattern of subcortical hypometabolism, includ-
ing bilateral dorsal striatum, even after partial volume correction
(Townley et al., 2018). Differences between these studies may arise
from the improved partial volume correction and patient selec-
tion. Several studies also sought to investigate metabolic changes
before and after shunt surgery. Patients with iNPH underwent
clinical assessment and FDG-PET before and 1 week after a shunt
procedure. These two studies yielded similar results that the cere-
bral metabolic rate of glucose (CMRglu) significantly increased
among shunt responders, and there was a correlation between
metabolic change and clinical symptoms (Calcagni et al., 2012;
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Calcagni et al., 2013). Therefore, FDG-PET serves as an excellent
tool to differentiate iNPH and other neurodegenerative diseases
and as a biomarker of response to intervention, although it can-
not define whether an iNPH patient responds to shunt surgery.

The accumulation of β-amyloid (Aβ) and phosphorylated Tau
protein are considered pathological hallmarks of AD. While an
autopsy study confirmed that AD is a common pathologic co-
morbidity in iNPH patients and may preclude improvement af-
ter shunt surgery (Cabral et al., 2011), it is necessary to develop a
noninvasive method to detect AD pathology in the setting of iNPH.
Thanks to the major improvement of CSF biomarkers and molec-
ular imaging techniques, in vivo detection of AD pathology has
become realized and increasingly applied in the iNPH research
field in the last few decades (Table 2). Common Aβ tracers, in-
cluding 11C-Pittsburgh compound-B (PiB), 18F-Flutemetamol, 18F-
Florbetaben (FBB), and 11C-BF227, were adopted in iNPH patients
to detect amyloid pathology (Hiraoka et al., 2015; Jang et al., 2018;
Leinonen et al., 2008; Rinne et al., 2012). 11C-PiB PET and frontal
cortical brain biopsy were first appied to evaluate Aβ load. A to-
tal of four out of seven iNPH patients have a biopsy-confirmed Aβ

and increased PiB uptake (Leinonen et al., 2008), while the PiB dis-
tribution pattern was different from AD, since PiB retention was
limited to the high-convexity parasagittal areas in iNPH patients
(Jiménez-Bonilla et al., 2018; Kondo et al., 2013). Several studies us-
ing 18F-Flutemetamol and brain biopsy also demonstrated similar
Aβ deposition in iNPH patients, and confirmed the concordance of
Aβ-PET imaging with histopathology (Leinonen et al., 2013; Rinne
et al., 2012; Wolk et al., 2011; Wong et al., 2013). Longitudinal stud-
ies were carried out to evaluate Aβ deposition with clinical im-
provement after shunt surgery. A recent study found a signifi-
cant correlation between neocortical 11C-BF227 SUVR and cogni-
tive improvement reflected by the iNPH grading scale after shunt
surgery (Hiraoka et al., 2015). Other studies using Flutemetamol
or Florbetaben have also indicated that Aβ+iNPH patients have a
higher frequency of CSFTT responder and shunt responsiveness,
as they may be more likely to experience a secondary deterio-
ration after surgery (Jang et al., 2018; Jang et al., 2022). Overall,
these results suggest that Aβ pathology tested by PET was con-
sistent with CSF or histopathology findings and that discriminat-
ing concurrent AD pathology may help in the selection of prob-
able shunt candidates with iNPH. However, the long-term prog-
nostic value of Aβ-PET in postshunt iNPH patients remains to be
elucidated.

In addition, Aβ-PET may be an effective tool in the search for
iNPH pathogenesis. A recent meta-analysis was conducted to clar-
ify the Aβ biomarkers in the CSF of iNPH patients, which illus-
trated a significantly decreased level of CSF Aβ42 compared to
normal controls but a slight increase compared to AD patients
(Chen et al., 2017). Researchers have put forward different opinions
for Aβ level reductions in CSF. Dr. Graff-Radford hypothesized that
the glymphatic pathway was impaired in the setting of iNPH, lead-
ing to decreased clearance of Aβ and its precursors (Graff-Radford,
2014). Another researcher explained it in terms of periventricular
hypometabolism seen on FDG-PET or MRI (Jeppsson et al., 2013).
However, a study found that two iNPH patients with higher corti-
cal PiB retention had the lowest level of CSF Aβ42, thus supporting
the actual Aβ deposition in the cerebral cortex of iNPH patients
(Kondo et al., 2013). Large-scale studies are still needed to clarify
the underlying pathogenesis of altered Aβ biomarkers in iNPH pa-
tients.

Notably, it was reported that Aβ deposition reflected by Aβ-
PET SUVR may be 15–20 years before cognitive symptom onset
(Fleisher et al., 2012). Aβ deposition was proven to reach a plateau;

thus, another pathological protein may mediate cognitive impair-
ment in the AD continuum (Jack et al., 2013). An accumulating
body of evidence has indicated the interaction between Aβ and
Tau, in which they seem to be both the trigger and the bullet in
AD pathogenesis (Bloom, 2014). Several studies suggest that Tau-
PET is a promising tool for predicting cognitive change and is su-
perior to Aβ-PET and MRI (Bischof et al., 2017; Ossenkoppele et
al., 2021). One study explored both Aβ and Tau through biopsy,
CSF analysis and PET imaging. Brain biopsy has confirmed that
Tau accumulation also occurs in iNPH patients (3/14), although
it is relatively rare compared to Aβ (9/14) (Leinonen et al., 2018).
However, further investigation used S-18F-THK-5117 as a Tau-PET
tracer but failed to demonstrate a significant correlation between
S-18F-THK-5117 uptake and biopsy-confirmed or CSF phosphory-
lated Tau (Leinonen et al., 2018). This result may be explained by
the off-target binding or small sample size of this study; thus, fur-
ther research is needed to evaluate different Tau-PET tracers in
larger-scale iNPH patient cohorts.

Limitations
Although previous studies have successfully demonstrated that
radiological methods are becoming a promising tool in evaluat-
ing the prognosis for iNPH patients, a number of limitations need
to be noted (Fig. 2). The principal limitation is the variable defini-
tion of shunt responder. In a recent multicenter randomized trial
SINPHONI-2, researchers defined a favorable outcome as an im-
provement of one or more on the modified Rankin scale (mRS) at
3 months after randomization (Kazui et al., 2015). However, sev-
eral studies have also applied the improvement of MMSE, walking
tests or even subjective reports of improvement (El Ahmadieh et
al., 2019; Kang et al., 2016). The lack of a standardized evaluation
method for shunt responders may result in inconsistencies across
studies. Thus, a multidisciplinary team including a neurosurgeon,
behavioral neurologist, psychiatrist, urologist, and physical thera-
pist is highly recommended for comprehensively evaluating iNPH
patients before and postshunt. Second, imaging techniques and
postprocessing methods for DTI and PC-MRI need to be further
standardized before clinical application. Third, the sample sizes
of previous studies were relatively small, and the follow-up peri-
ods were limited. The generalizability of these findings and the
long-term effects of shunt surgery still need to be validated in
large-scale cohort studies in the future.

Conclusion
Taken together, previous investigations have suggested that iNPH
is a common disease in elderly patients and is prone to concomi-
tant AD. This review concluded that novel radiological biomark-
ers using different methods were effective in evaluating iNPH
pathophysiology and differentiating or detecting concomitant AD,
therefore noninvasively predicting the possible outcome post-
shunt and helping select candidates for shunt surgery. Although
these findings should be interpreted with caution, no single
method could rule out possible shunt responders thus far. There-
fore, multidisciplinary methods and comprehensive evaluation of
clinical symptoms pre- and post-CSFTT and radiological biomark-
ers seem to be the most effective protocols. Since the contribution
of concomitant AD to the long-term outcome of iNPH patients re-
mains elusive, large randomized controlled trials could provide
more definitive evidence in the future.
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Figure 2: Pros and cons of each imaging methods for clinical evaluation of iNPH patients. Note: β, β-Amyloid; SUVR, standardized uptake value ratio.
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