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Enhanced spin-phonon-electronic coupling
in a 5d oxide
S. Calder1,*, J.H. Lee2,3,*, M.B. Stone1, M.D. Lumsden1, J.C. Lang4, M. Feygenson5, Z. Zhao2,6, J.-Q. Yan2,6,

Y.G. Shi7,8, Y.S. Sun8,w, Y. Tsujimoto9, K. Yamaura8,10 & A.D. Christianson1,11

Enhanced coupling of material properties offers new fundamental insights and routes to

multifunctional devices. In this context 5d oxides provide new paradigms of cooperative

interactions that drive novel emergent behaviour. This is exemplified in osmates that host

metal–insulator transitions where magnetic order appears intimately entwined. Here we

consider such a material, the 5d perovskite NaOsO3, and observe a coupling between spin

and phonon manifested in a frequency shift of 40 cm� 1, the largest measured in any material.

The anomalous modes are shown to involve solely Os–O interactions and magnetism

is revealed as the driving microscopic mechanism for the phonon renormalization. The

magnitude of the coupling in NaOsO3 is primarily due to a property common to all 5d

materials: the large spatial extent of the ion. This allows magnetism to couple to phonons on

an unprecedented scale and in general offers multiple new routes to enhanced coupled

phenomena in 5d materials.
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T
ransition metal oxides with 3d ions host a remarkable
variety of intriguing phenomena, such as unconventional
superconductivity, multiferroic behaviour, colossal

magnetoresistance and the Mott metal–insulator transition
(MIT)1. These properties arise from the strong electron
correlations and localized orbitals characteristic of 3d ions.
Materials with 5d ions reside in an alternative regime of
intermediate electron correlations, extended orbitals, enhanced
spin-orbit coupling (SOC) and large crystalline electric field
splitting. The competition and cooperation of these new sets of
interactions can drive the emergence of novel behaviour beyond
that possible in 3d-based materials2,3. This is manifested in the
insulating states of iridates and osmates. In Sr2IrO4, (ref. 4) and
other iridates5,6, a Mott-like insulating state exists due to
enhanced SOC creating a half-filled Jeff¼ 1/2 electronic band
that can be split by even the reduced on-site Coulomb
interactions of 5d ions. Conversely the neighbouring osmate
NaOsO3, that we focus on here, is believed to host a Slater MIT
with behaviour that falls outside the Mott–Hubbard paradigm
successfully employed to describe 3d transition metal oxides7–10.
In the case of a Slater MIT it is the onset of magnetic order and
the accompanying creation of a periodic potential that acts as a
direct and continuous tuning parameter between metallic and
insulating states. The interactions within the 5d3 ion in NaOsO3

appear central to the occurrence of the MIT, with the first
proposed three-dimensional Slater candidate Cd2Os2O7 sharing
the same 5d3 electronic ground state.

Here we access the collective excitations and fundamental
interactions through the Slater MIT in NaOsO3 by probing the
phonon modes. Our experimental and theoretical results reveal a
high degree of cooperation between the magnetic structure, lattice
and electronic conductivity that results in a spin-phonon-
electronic coupled transition. The magnitude of the phonon
coupling is anomalously large leading us to consider and contrast
our results with 3d transition metal oxides, where investigating
spin-phonon coupling has proven extremely useful in under-
standing multiferroics11,12, systems with the same perovskite
structure as NaOsO3, as well as in a variety of other systems,
including high temperature superconductors13. The largest
reported phonon shift in a perovskite is found in (Sr,Ba)MnO3

with a value of Do¼ 25 cm� 1 in the TO1 polar phonon14,15.
While the investigations of phonon modes in the context of 5d
materials is currently limited, it was recently found that the mixed
3d–5d half-metal double perovskite Ba2FeReO6 hosts a dramatic
spin-electron-phonon coupling as evidenced by a phonon shift of
Do¼ 30 cm-1, (ref. 16) the largest ever reported prior to our
present work on NaOsO3. The phonon shift in Ba2FeReO6 is
reported as being directly linked to the interaction between the 3d
and 5d ions. Conversely, we show here that 5d ions alone can
produce even larger spin-phonon shifts. By considering the
various competing mechanisms in NaOsO3, including the
electronic changes at the MIT and structurally driven charge
disproportionation, we find the microscopic behaviour to be
driven by the G-type magnetic structure that orders in the
perovskite structure. The enhanced nature is promoted by the
extended orbitals of the 5d ion that supports strong coupling
between the magnetic superexchange and phonon vibrations. By
contrasting our results with measurements on Cd2Os2O7, that
show a much reduced spin-phonon shift, we consider the key
ingredients required to achieve even larger spin-phonon coupling
in general in further systems.

Results
Measurement of anomalous spin-phonon coupling in NaOsO3.
To follow the behaviour of collective excitations in NaOsO3

through the magnetic MIT we performed inelastic neutron scat-
tering (INS) measurements. Figure 1a shows the key result of the
temperature dependence of the phonon density of states (pDOS)
whose peaks are related to the underlying phonon modes. We
focus on the region around 700 cm� 1 that covers the essential
physics of interest. The full spectrum is shown in Supplementary
Fig. 1. Three distinct resolution limited peaks in the pDOS are
observed around 700 cm� 1 and fitting these each to a Gaussian,
as shown in Fig. 1a, allows the energy of the modes to be followed
with temperature. The key result of a pronounced phonon fre-
quency shift is observed in Fig. 1a,b. Moreover there is an
anomalous and counterintuitive intensity increase with decreas-
ing temperature through the MIT as shown inset Fig. 1a con-
sidering the entire range of 550–800 cm� 1. The results are
significant in several regards. First, the onset of the phonon
mode shift is concurrent with the magnetic MIT in NaOsO3 at
410 K, indicating a coupling of the phonons to the magnetic and
electronic transitions. Second, the phonons show a shift
of Do¼ 40 cm� 1, the largest measured in any material for a
spin-phonon coupled transition.

To begin to understand the microscopic origin of the
behaviour in NaOsO3 we consider the role of the MIT with
complimentary neutron measurements on Cd2Os2O7. Cd2Os2O7

was chosen since it has the same 5d3 electronic configuration of
the Os5þ ion and hosts a magnetic MIT that is very similar to
NaOsO3, with current debate as to whether the mechanism is
Slater or Lifshitz17,18. The inelastic neutron measurements
through the magnetic MIT in Cd2Os2O7 are shown in
Supplementary Fig. 2. While there is an apparent phonon shift
at the magnetic transition the value of Do¼ 4 cm� 1 is much
reduced from NaOsO3. The disparate results for NaOsO3 and
Cd2Os2O7 indicate that the underlying mechanism for the
anomalously large behaviour in NaOsO3 cannot be attributed
to the occurrence of the MIT, since both host similar MITs with
similar energy scales. Instead, as we support with further results
and calculations, the microscopic mechanism is related to the
magnetic ordering and lattice topology of NaOsO3.

Considering a further pertinent material, the 3d–5d material
Ba2FeReO6 that showed a phonon shift of Do¼ 30 cm� 1, we
note this occurred concurrent with a structural symmetry
change16. No symmetry change has been detected in NaOsO3

(refs 8,9). However, to explore this possibility further we
performed detailed neutron pair density functional
measurements through the Slater MIT, see Supplementary
Figure 3, and found no local symmetry change. Hence, the
enhanced spin-phonon coupling does not appear to arise due to
static long or short range lattice distortions in NaOsO3.

Theoretical demonstration of spin-phonon shift. To gain a
microscopic insight into the origin of the anomalous phonon
mode behaviour in NaOsO3 and disentangle the myriad of
competing interactions at the magnetic and electronic transition
we performed detailed density functional theory (DFT) calcula-
tions. The DFT results show the same three phonon modes
observed with INS between 600 to 900 cm� 1, see Fig. 1c, and as
expected for the orthorhombic structure in NaOsO3 these are
themselves composed of three branches, unresolvable in the
current powder INS measurement. The theoretical shift is in very
close agreement with the measured value of Do¼ 40 cm� 1. This
indicates the calculations that probe only the Brillouin zone
center accurately reproduce the essential physics of the system as
measured by neutrons that probe the entire Brillouin zone. The
thermal behaviour was captured in the calculations by increasing
the magnetic moment oSi.Sj4 to reproduce the onset of G-type
antiferromagnetic order in NaOsO3 with the predicted magnetic
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ordering at 415 K very close to the 411 K observed experimentally.
The DFT results, with the need to include magnetism, immedi-
ately indicate that the mechanism of the phonon shift is entwined
with the onset of magnetic order.

Octahedral B2g breathing mode and charge disproportionation.
The calculations reveal all of the phonon modes and are shown in
Fig. 1d. They all correspond to Os–O vibrations, specifically
breathing modes B1g (in phase) and B2g (out of phase) and two
asymmetric Jahn–Teller stretching modes Ag (in phase) and B3g

(out of phase). To reveal the role of these modes in NaOsO3 we
begin by first considering the static behaviour of the octahedra and
propensity towards Jahn–Teller distortion. This can be quantified
by introducing parameters Q2 and Q3, which are shown sche-
matically in Fig. 2a, and defined as Q2¼ (x1� x4� y2þ y5)/O2
and Q3¼ (2z3� 2z6� x1þ x4� y2þ y5)/O6, where x, y and z are
the oxygen positions19. Thereby the values of Q2 and Q3

reveals the degree of static octahedral anisotropy, with the larger
the value the more distorted the octahedra. Calculations
from experimentally determined atomic parameters for NaOsO3

(ref. 9) reveal Q2 and Q3 to be small at all temperatures,
but counter intuitively decrease through the Slater MIT.
Specifically, at 500 K Q2¼ 0.0114(15) a.u. and at 300 K
Q2¼ 0.0035(11) a.u. While at 500 K Q3¼ 0.0171(18) a.u and at
300 K Q3¼ 0.0114(14) a.u. Therefore this reveals that in NaOsO3

the octahedra actually become more isotropic in three dimensions
within the low temperature insulating regime. This behaviour is at
odds to the normal Jahn–Teller distortions of increased anisotropy

and does not favour the asymmetric stretching modes Ag and B3g.
Instead the increased static octahedral isotropy is more conducive
to the symmetric breathing distortions B1g and B2g. Indeed the
abnormal behaviour of the intensity increase of the pDOS, in inset
of Fig. 1a, is consistent with an increase in vibration with
decreasing temperature, counter to usual thermal behaviour. This
appears most pronounced at the highest frequency, which
corresponds to the breathing mode B2g and consequently
appears central to the behaviour of NaOsO3.

Considering the B2g mode further we find that sufficiently large
breathing distortions of the octahedra, much larger than accessed
in our measurements, offers a potential route to opening the
insulating gap in the paramagnetic regime, see Fig. 2b. Our frozen
DFT results show that in the perovskite structure of NaOsO3 the
gap opening can occur since the octahedral breathing causes
neighbouring octahedra to expand/contract that in turn creates a
periodic charge disproportionation on the Os ion. In addition
there is apparent isosymmetric ordering and coupling between
the G-type antiferromagnet and octahedral B2g mode ordering
(behaviour shown schematically in Fig. 2d). We note that no
other phonon distortion produces similar periodic ordering or
routes to open a gap. For the B2g mode to create a gap the
minimum required oxygen displacement is u¼ 0.2 Å, see Fig. 2b.
This corresponds to 10% of the actual Os–O bond distance and
therefore it is too large to allow this mechanism to drive the MIT
in NaOsO3. However, statically, while not opening a gap the
periodic octahedral breathing ordering creates a strong charge
disproportionation of Dd/Du¼ 7.0 e/Å in the lattice due to the
change of the electronic potential around the Os ion and places
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Figure 1 | Measured and calculated phonon modes in NaOsO3 through the magnetic MIT. (a) Thermal evolution of the phonon mode density of states

measured with inelastic neutron scattering through the magnetic Slater MIT temperature of 410 K. Three modes are resolvable between 550 and 800 cm� 1 at

all temperatures. The data (filled circles) were modelled (coloured lines) to three Gaussian lineshapes with the width of the energy resolution (B15 cm� 1

full width at half maximum). The three resolvable modes are shown for the 490 K data by the grey dashed lines. The different temperature measurements are

shown offset in intensity to aid comparison. The three grey vertical lines indicate the frequencies from the Gaussian fits to the spectra for each temperature.

Inset reveals an abnormal intensity increase with decreasing temperature of the integrated intensity over the region 550–800 cm� 1.

(b) The shaded regions distinguish the low temperature magnetic-insulating and high temperature non-magnetic metallic phases in NaOsO3. The measured

phonon mode frequencies obtained from inelastic neutron scattering and (c) from DFT calculations both show strong agreement and reveal a phonon shift at

the Slater transition of Do¼40 cm� 1. The DFT calculations allow assignment of the responsible modes, as indicated. The breathing modes occur at higher

frequencies than the asymmetric stretching, with B2g occurring at the highest frequency. (d) The separate distortions, that all involve Os–O interactions, are

shown with the directions indicated by the red arrows. Ag (in phase) and B3g (out of phase) correspond to asymmetric stretching. B1g (in phase) and B2g (out

of phase) represent symmetric stretching breathing modes. Error bars throughout the figure represent the s.d. in the data fitting procedure.
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the system on the verge of a MIT. For example considering a
nominal Os–O phonon vibration displacements of the order
0.01 Å as occurring in NaOsO3 then the dynamic charge
disproportionation will be B0.01e. This indicates that suitable
control of the octahedra via pressure or strain is a potential
route to tune the MIT in NaOsO3. We stress that, as shown
in Fig. 2c that substantiates earlier work8, it is the onset of
antiferromagnetic order alone that creates the insulating gap via
the Slater mechanism.

Suppressed role of SOC in NaOsO3. While SOC is often
attributed to anomalous behaviour of 5d materials, in NaOsO3

the 5d3 t2g-degenerate ground state will suppress the effective
SOC20. We nevertheless addressed the role of SOC with X-ray
absorption near edge spectroscopy that allows a quantitative
comparison with SOC enhanced iridates. As expected our
results indicate SOC does not play a dominant role in the
behaviour of NaOsO3 as discussed in the Supplementary
Material (Supplementary Fig. 4 and Supplementary Note 1).

Our first-principle results additionally show the large coupling
without SOC.

Coupling of lattice, magnetic order and MIT. The coupled
properties in NaOsO3 are illustrated in Fig. 3 where experimen-
tally there is a direct scaling of the structural anomaly of the
lattice constants, phonon mode shift, magnetic moment, with the
MIT qualitatively following a similar trend. This reveals a high
degree of cooperation in NaOsO3 via spin-phonon-electronic
coupling. While the realization of numerous overlapping phe-
nomena is currently rare it is likely that additional 5d materials
will host similar rich phase diagrams with the prospect of
enhanced magnitudes.

Discussion
We have presented both experimental and theoretical results that
show an enhanced phonon shift in NaOsO3, which along with
the concurrent magnetic MIT creates a spin-phonon-electronic
transition above room temperature. Considering the collective
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Figure 2 | Charge disproportionation created by B2g breathing mode. (a) The static octahedral distortion can be quantified with parameters Q2 and Q3

that represent the degree of octahedral anisotropy defined as Q2¼ (x1� x4� y2þ y5)/O2 and Q3¼ (2z3� 2z6� x1þ x4� y2þ y5)/O6, where x, y and z are

the oxygen positions labelled 1�6. The red arrows indicate the directions of Os–O distortions. Unusually Q2 and Q3 both show reduced values below the

Slater MIT indicating the octahedra become more isotropic at lower temperature. (b) This counterintuitive behaviour is compatible with the symmetric

three-dimensional B2g distortion, depicted by red arrows, increasing in the low temperature insulating regime. The solid lines are DOS calculations for

oxygen displacements (u), within the paramagnetic regime, of u¼0 Å (black line), u¼0.1 Å (magenta line) and u¼0.2 Å (red line). For the large oxygen

displacement of u¼0.2 Å, much beyond that accessed in our measurements, the breathing distortion can open a band gap as revealed in the DOS from

DFT calculations. (c) We stress by reproducing published results8 that it is solely the onset of G-type magnetic ordering that opens the gap via the Slater

mechanism in NaOsO3. No oxygen displacement, u¼0 Å, (black line) shows no gap in the DOS whereas an insulating gap is created for G-type

antiferromagnet (AFM) order (blue line). This ordering is indicated by the blue arrows. (d) Although the required u displacement is too large to drive the

MIT in NaOsO3, it creates charge disproportionation (d(e)) on the Os ion. As shown schematically the G-type antiferromagnetic ordering (blue arrows)

and periodic expansion/contraction of the B2g breathing mode ordering are isosymmetric in NaOsO3. A consequence of the static ordering of the

octahedra, as shown in frozen DFT calculations, is the creation of charge disproportionation, indicated by the creation of þ d and –d ordering (magenta

sphere). The predicted value in NaOsO3, d(e), is indicated by the blue shaded region.
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results we argue that the occurrence of the anomalous spin-
phonon behaviour is a direct consequence of the extended 5d
orbitals coupling to the magnetic structure via the Os–O–Os
superexchange interactions on an unprecedented scale and is not
driven by the MIT or structural anomalies. The central role of
magnetism is emphasized in our DFT calculations that require
the inclusion of magnetic order to reproduce the experimental
phonon shift. However, as the reduced spin-phonon shift in
Cd2Os2O7 attests, the presence of 5d magnetic order alone is not
sufficient to induce enhanced coupled phenomena. Instead,
within 5d systems, it is not just the onset of magnetic ordering
but the specific type of magnetic structure and the lattice it resides
on that supports enhanced spin-phonon coupling.

By considering the specific modes in NaOsO3 the B2g breathing
mode emerges as central to the behaviour. The mode is
characterized by expansion/contraction of neighbouring octahe-
dra that in NaOsO3 can statically order in a periodic way,
isosymmetric with the magnetic spins (G-type antiferromagnet),
with every nearest neighbouring octahedra oppositely expanded/
contracted (see Fig. 2). The breathing mode ordering causes
charge disproportionation that grows as the B2g vibrations
increase within the low temperature insulating phase and can
promote the opening of a charge gap for sufficiently large
vibrations. However, the distortion under the experimental
conditions we measured falls well short of the value required to
drive a MIT via this alternative non-magnetic mechanism in
NaOsO3. Instead, once the insulating gap develops via solely the
magnetic Slater mechanism, the breathing mode becomes
favourable and the structure subtly alters allowing the octahedra
to become more isotropic as a route to increase the symmetric
breathing mode and consequently enhance the insulating state.

All of the modes uncovered that show an anomalous shift (B1g,
B2g, Ag and B3g) are characterized by simultaneous bond-
stretching/shrinking between the oxygen and osmium ions of
the OsO6 octahedra. Therefore as these modes vibrate they
change the O–Os–O wavefunction overlap. Since the magnetism
in NaOsO3 is mediate by the superexchange interaction this
provides a direct route to couple to the Os–O modes. In the non-
magnetic regime the frequency of the Os–O modes do not

change, as expected. However, as the magnetic order develops via
the Os–O superexchange interactions this couples to the Os–O
modes. The degree of the coupling is governed by the 5d(Os)-
2p(O) orbital overlap, which is much larger in 5d oxides
compared to analogous 3d systems. The consequence is that in
NaOsO3 the large wavefunction overlap results in a magnification
of the spin-phonon coupling, with the expectation that similar
behaviour will be found in further 5d-based systems since the
extended orbitals are an intrinsic property. With this expectation
for designing 5d materials with strong coupling in mind the
reduced spin-phonon coupling in Cd2Os2O7 provides useful
insights. The reduced spin-phonon magnitude in Cd2Os2O7

naturally occurs by considering the differences in the lattice
topology, specifically the Os–O–Os bond that mediates the
emergent behaviour. While the Os–O–Os bond distance is nearly
identical in NaOsO3 and Cd2Os2O7 the bond angles diverge. In
NaOsO3 it is 155�, whereas in Cd2Os2O7 it is 137�, appreciably
further from 180�. Consequently the propagation of y–Os–O–
Os–y vibrations throughout the lattice can be sufficiently
suppressed within the pyrochlore structure resulting in a reduced
coupling of phonons to the magnetic interactions and a smaller,
although still finite, spin-phonon coupling. Collectively our
results indicate that new cases of similarly enhanced spin-phonon
coupling, along with further coupled phenomena, should be
found in cubic 5d perovskites with near ideal 180� Os–O–Os
bonds.

Methods
Synthesis. Polycrystalline samples of NaOsO3 were prepared using a high pressure
solid state synthesis with pressures of 6 GPa, as described in ref. 8. Polycrystalline
Cd2Os2O7 was prepared with isotopic 114Cd for neutron measurements to negate
the extremely high neutron absorption of standard Cd using sold state techniques
from 114CdO and OsO2 powders.

Inelastic neutron scattering. Inelastic neutron scattering measurements were
performed on the ARCS and SEQUOIA spectrometers at the spallation neutron
source on a 5-g polycrystalline sample of NaOsO3 and 7-g polycrystalline sample of
Cd2Os2O7, respectively. The NaOsO3 sample was loaded into a vanadium can and
measurements performed between 300 and 500 K using an incident energy of
120 meV. The Cd2Os2O7 sample was measured in an Al can from 150 to 250 K
using an incident energy of 100 meV. Corrections for the Bose factor, where
appropriate, were performed using the DAVE software21.

DFT. First-principles calculations were performed using density functional
theory within the generalized gradient approximation GGAþU method with the
Perdew–Becke–Erzenhof parameterization as implemented in the Vienna ab initio
Simulation Package (VASP 5.3)22. Theoretical details for spin-phonon coupling are
described in ref. 23. We use the Dudarev24 implementation with on-site Coulomb
interaction U¼ 1.7 eV and on-site exchange interaction JH¼ 1 eV, so Ueff¼ 0.7 eV
to treat the localized d electron states in Os. Within GGAþU, this small U gives
excellent agreement between the experimental Neel temperature (TN¼ 411 K)
and calculated one (TN,MFT¼ 415 K) in mean-field approximation. The projector
augmented wave potentials25 explicitly include 9 valence electrons for Na (2s2 2p6

3s1 ), 14 for Os (5p6 5d5 6s2) and 6 for oxygen (2s2 2p4). To capture spin-phonon
coupling with respect to temperature we employed the method successfully used
for various magnetic perovskites19,23.

Our calculations use the harmonic approximation throughout. This route is
supported by the experimental observation that the peak widths are resolution limit
and do not show any broadening that would be associated with anhormonicity.

Neutron pair density function. Neutron pair density functional measurements
were performed on the Nanoscale-Ordered Materials Diffractometer (NOMAD)
beamline at the spallation neutron source on a powder sample of NaOsO3 from 370
to 460 K. The data were analyzed and modelled with pdfgui26.

X-ray absorption near edge spectroscopy. X-ray absorption measurements were
performed at the advanced photon source on sector 4-ID-D. Spectra were collected
at room temperature on a powder sample (B100 mg) in transmission mode
through the Os L2 and L3 edges. Analysis was performed with the Athena
software27.
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