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ABSTRACT
Amino acid homeostasis is maintained by import, export, oxidation, and synthesis of nonessential amino acids, and by the

synthesis and breakdown of protein. These processes work in conjunction with regulatory elements that sense amino

acids or their metabolites. During and after nutrient intake, amino acid homeostasis is dominated by autoregulatory

processes such as transport and oxidation of excess amino acids. Amino acid deprivation triggers processes such as

autophagy and the execution of broader transcriptional programs to maintain plasma amino acid concentrations. Amino

acid transport plays a crucial role in the absorption of amino acids in the intestine, the distribution of amino acids across

cells and organs, the recycling of amino acids in the kidney, and the recycling of amino acids after protein breakdown.
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Introduction
Homeostasis is one of the fundamental concepts in physiology.
The concept was initially developed by Claude Bernard after
observing that the physical and chemical properties of the
“milieu interieur” remained largely unaffected by environmen-
tal changes. Bernard posited that constant internal conditions
liberated animals from the dynamic changes of the environment
(1). The concept was then further developed by Haldane,
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Henderson, and Cannon (2) and remains an overarching theme
in physiology (3).

Like many other metabolites, amino acid concentrations are
kept within narrow limits. Accordingly, standard amino acid
concentrations are routinely used to identify rare disorders
in which amino acid concentrations deviate significantly from
normal amino acid concentrations in plasma or urine (4).
Smaller deviations can also be indicative of disease states
such as diabetes (5). Many inherited disorders of amino acid
metabolism are associated with neurological symptoms due to
disturbances of amino acid homeostasis in the brain, where it is
most critical (6).

Fundamentally, there are 6 contributors to amino acid
homeostasis in mammalian cells, namely 1) import, 2) export,
3) metabolism, and 4) synthesis of nonessential amino acids, 5)
protein synthesis, and 6) protein breakdown (Figure 1). These
processes work in conjunction with regulatory elements that
respond to amino acids or their metabolites. In the following,
these contributors will be discussed to assess their role in amino
acid homeostasis.

Import and Export

The small intestine is the main site of organismic amino acid
absorption in the form of individual amino acids, di-, and
tripeptides (7). Digestion of proteins is an efficient process
ranging from 97% digestibility of crude protein in eggs to
≥70% in cereal (8). Protein absorption is essentially complete
at the end of the ileum, leaving only trace amounts of amino
acids in fecal matter (8, 9). Little absorption occurs in the
colon (10, 11). Figure 2 shows an overview of amino acid
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FIGURE 1 Elements of AA homeostasis. The outer box represents the organism, whereas the inner box outlines a cell. 1) AA import, 2) export
(loss), 3) breakdown, 4) synthesis, 5) protein biosynthesis, 6) protein degradation. Liver and kidney are shown as organ shapes. Image generated
with Biorender. AA, amino acid; cyt, cytosol.

absorption in the small intestine. Di- and tripeptides are
absorbed by the intestinal peptide transporter PepT1 (Peptide
transporter 1, SLC15A1) in the apical membrane of enterocytes
(12). Complete removal is achieved by coupling the peptide
uptake with the cotransport of protons, which have a large
electrochemical gradient in the intestine owing to a low luminal
pH of 6.0 and a membrane potential of −30 mV (13). Only
very small amounts of peptides pass through enterocytes due
to efficient hydrolysis in the cytosol (14). Because of the
close association between membrane-embedded peptidases and
transporters (15, 16), it is difficult to estimate the proportion
of digested protein that is absorbed as individual amino
acids or peptides, but both pathways appear to be of similar
importance.

Concentrative amino acid transporters (Figure 2) are
expressed on the apical membrane for the absorption of neutral
amino acids (B0AT1, broad neutral amino acid transporter 1,
SLC6A19) (17, 18), cationic amino acids (b0,+AT, blastocyst
neutral and cationic amino acid transporter, SLC7A9) (19,
20), glycine and proline (PAT1, proton amino acid transporter
1, SLC36A1; SIT, system imino transporter, SLC6A20) (21,
22), anionic amino acids [excitatory amino acid transporter 3
(EAAT3), SLC1A1] (23), and β-amino acids (PAT1, SLC36A1,
TauT, taurine transporter, SLC6A6) (21, 24). B0AT1 is a Na+–
amino acid cotransporter using the electrochemical gradient of
Na+ to drive absorption (25–27). Although there is competition
between its 16 substrates, expression levels are sufficient to
absorb all substrates even at high protein loads (28). In the

intestine, trafficking of B0AT1 to the apical membrane is
mediated by the brush-border peptidase angiotensin-converting
enzyme 2 (ACE2) (16, 29), with which it forms a dimer of
heterodimers (30). A complex of similar architecture is formed
by rBAT-b0,+AT (31). The absorption of cationic amino acids
via b0,+AT is driven by the efflux of neutral amino acids and the
membrane potential favoring cation import (32, 33). Neutral
amino acids are recaptured by B0AT1 in enterocytes located
further downstream. Glycine and proline, both of which have
low affinity for B0AT1, have additional transporters, namely
the proton-amino acid transporter PAT1 (21) and the 2Na+/Cl−

proline symporter SIT1 (22, 34). PAT1 also contributes to
the uptake of β-amino acids such as taurine and β-alanine
(35), which are otherwise absorbed by the 2Na+/Cl− taurine
transporter TauT (24). SIT1 and TauT use the electrochemical
driving force of 2Na+/1Cl− to accumulate their substrates in
the cytosol (36, 37). The strong vectorial activity of apical
transporters ensures almost complete removal of amino acids
from the lumen of the intestine. It is noteworthy that even
an empty intestine will contain small amounts of amino acids,
owing to shedding of cells, bacterial and enzymatic digestion of
mucins, defensins, and other proteins. Loss of these proteins in
fecal matter or by microbial metabolism is one of the inevitable
losses (route 2 in Figure 1) of amino acids, which in humans
amount to ∼10 g/d (38).

Amino acid release across the basolateral membrane is
mediated by a separate set of transporters (Figure 2). Neutral
amino acids are released through a combination of LAT2 [large
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FIGURE 2 Epithelial AA transport. Absorption is achieved by vectorial transport in the apical membrane and facilitated diffusion and exchange
processes in the basolateral membrane. Transporters are labeled in the cell, ancillary proteins are labeled in the legend. Red labels indicate
alternate transporters in the proximal tubule of the kidney. AA charge is shown as (0) neutral, (+) cationic, or (−) anionic. Image generated with
Biorender. AA, amino acid; AAA, aromatic amino acids; ACE2, angiotensin converting enzyme 2; B0AT1, broad neutral amino acid transporter 1;
b0,+AT, blastocyst neutral and cationic amino acid transporter 1; EAAT, excitatory amino acid transporter; LAT, large neutral amino acid transporter;
PAT, proton amino acid transporter; PepT, peptide transporter; rBAT, related to b0,+AT; SIT system imino transporter; TauT, taurine transporter;
4F2hc, 4F2 heavy chain.

neutral amino acid transporter 2 (39–42)], LAT4 (43), and
TAT1 [T-type amino acid transporter 1 (44, 45)]. Knockout
studies suggest that any of these transporters are redundant
individually (46, 47), but a combination could severely affect
amino acid absorption. TAT1 (45) and LAT4 (48) are uniporters
mediating facilitated diffusion of aromatic and branched-chain
amino acids (BCAAs). LAT2 is an antiporter that accepts all
neutral amino acids except proline (41). As a result it can aid in
the efflux of amino acids not covered by LAT4 and TAT1 (44,
49). The antiporter y+LAT1 (cationic and large neutral amino
acid transporter 1) is designed to facilitate the efflux of cationic
amino acids in exchange for neutral amino acids plus Na+ (50–
52). Owing to the prevalence of sodium ions in blood plasma,
uptake of neutral amino acids via y+LAT1 is in cotransport
with Na+. LAT2 and y+LAT1 form complexes with the ancillary
protein 4F2hc which are very similar to the complex formed
between LAT1 and 4F2hc (53). No efflux pathway for anionic
amino acids has been identified, but enterocytes metabolize
the bulk of glutamate to carbon dioxide and lactate, whereas
the nitrogen is largely transferred onto alanine (54, 55). Efflux
across the basolateral membrane is largely passive and indirectly
driven by vectorial transport across the apical membrane. In
fact, the basolateral membrane contains low expression levels of
amino acid–Na+ symporters, such as SNAT2 (SLC38A2), which

import nutrients from blood plasma during fasting, particularly
glutamine (54).

An important element of organismic amino acid homeostasis
is the glomerular filtration/reabsorption mechanism occurring
in the kidney cortex (56–58). Glomerular filtration generates an
ultrafiltrate of blood plasma, which during passage through the
proximal tubule will be cleared of all amino acids and small
proteins (58). One of the primary roles of the kidney is the
elimination of urea, generated from metabolism of excess amino
acids. As discussed below, amino acid metabolism is tightly
regulated, but never ceases altogether, resulting in unavoidable
losses of 17 g/d amino acid equivalent as urea, creatinine,
and ammonia. The amount of urea increases as the protein
component increases beyond essential replacement or when
amino acids are used for gluconeogenesis. This, together with
fecal losses of 10 g and small losses due to shedding of skin and
hair, results in the minimum requirement of ∼30 g protein/d
to replace unavoidable loss of amino acids. As a result, an
important aspect of amino acid homeostasis is the efficient
recycling of protein amino acids through complex breakdown
via endocytosis, autophagy, and the proteasome (59). At a
steady state, protein synthesis is matched by an equivalent
amount of protein breakdown (60). In the postabsorptive phase
net protein synthesis is observed, whereas during fasting net
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FIGURE 3 Cellular amino acid transport. Green and orange (inducible) indicate loaders. Harmonizers are labeled blue and controllers red.
Amino acids are shown as S, M, and L; charge as indicated by the superscript. Common and solute carrier numbers are given. Image generated
with Biorender. ASCT, alanine-serine-cysteine transporter; CAT, cationic amino acid transporter; L, large; LAT, large neutral amino acid transporter;
M, medium; S, small; SNAT, sodium neutral amino acid transporter; xCT, glutamate-cystine transporter.

protein breakdown occurs. Tubular reabsorption is part of this
extensive recycling of amino acids. It is mediated by almost
the same set of transporters as found in the intestine, with the
exception of PAT2 (61) and PepT2 (62) replacing PAT1 and
PepT1, respectively (Figure 2).

After absorption of amino acids following protein digestion,
the corresponding rise of plasma amino acids is translated into a
corresponding rise of cellular amino acid pools. This is mediated
by a combination of secondary active transporters such as
Na+-symporters, antiporters, and uniporters (63, 64). The
system is more readily understood using functional transporter
definitions (Figure 3) (64). Each cell has transporters that load
amino acids into the cell (loaders). Examples are SNAT1 and
SNAT2 [sodium neutral amino acid transporters (63, 65–67)].
Using the electrochemical gradient of Na+, these transporters
accumulate a group of amino acids against a concentration
gradient. In the case of SNAT1/2, these are small and/or
polar neutral amino acids (68–72), such as glutamine, alanine,
serine, asparagine, and cysteine. Once inside the cell, the
accumulated amino acids serve as exchange substrates to import
other amino acids that do not have a loader (tertiary active
transport). These are many of the essential amino acids such
as BCAAs and aromatic amino acids. For example, SNAT1/2
can import glutamine, which can be used as an exchange
substrate to bring in BCAAs via antiporters (harmonizers).
ASCT1 (73) and ASCT2 [alanine-serine-cysteine transporters
(74–76)] exchange small and medium neutral amino acids,
whereas LAT1 exchanges large neutral amino acids (77–79).
The harmonizing action can be illustrated by assuming that one
amino acid is depleted in the cytosol. In this case, the depleted

amino acid will enter the cell in exchange for an amino acid
that is in abundance. As the deficient amino acid accumulates,
it eventually becomes an exchange substrate itself, thereby
reaching a steady-state equilibrium. This process has the effect
of harmonizing the concentrations of all participating amino
acids. Cationic amino acids can enter cells through loaders,
which exploit the membrane potential to accumulate cations
(80). These work in conjunction with harmonizers, such as
y+LAT2, which exchanges large neutral amino acids for cationic
amino acids (50, 64). Notably, transporters for glutamate and
aspartate are missing in Figure 3. Most cells generate glutamate
from glutamine and aspartate from oxaloacetate and as a
result do not require specific loaders. An exception is the
brain, where glutamate serves as a neurotransmitter and is
actively cleared from the synapse by EAAT1–4 [Excitatory
amino acid transporters (81)]. EAATs are found outside the
nervous system, but only scarcely. Figure 3 indicates the
presence of controllers that can release amino acids. The
function of controllers is to counteract the accumulative power
of the loaders. The sodium electrochemical gradient allows an
∼100-fold accumulation of substrates by SNAT1/2. Because
harmonizers are tied to loaders via exchange [tertiary active
transport (82)], eventually all amino acids would reach a 100-
fold accumulation. The combined plasma concentration of all
amino acids is ∼3 mM, which would generate an osmotic load
of 300 mM—doubling the normal osmolarity—and cause cell
swelling. Not surprisingly, loaders are regulated by osmolarity
(83). Controllers typically have low affinity for their substrates
(in the mM range) and only become functionally relevant
as intracellular amino acid concentrations rise. Owing to the
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FIGURE 4 Extracellular and intracellular amino acid concentrations in A549 cells. (A) Intracellular amino acids were determined by LC-MS
using total cell volume to determine intracellular concentrations. Extracellular amino acid concentrations were those of BME. (B) Accumulation
ratios for different groups of amino acids (log2 scale). BME, Basal Medium Eagle.

combined action of secondary active transporters, cytosolic
amino acid concentrations are 2- to 30-fold above plasma values
(Figure 4A, B).

Metabolically generated amino acids show the highest
accumulation. Loader substrates are next in terms of accumu-
lation in cells followed by harmonizer substrates, confirming
their indirect mode of transport. Even in the presence of
controllers, amino acids accumulate inside the cell, but in a
controlled manner. This can be explained by the transport
mechanism of controllers. SNAT3 and SNAT5, for example,
use a mechanism that combines Na+–amino acid symport with
proton antiport (84, 85). This removes the electrical component
of the Na+-electrochemical gradient, reducing accumulation to
a combination of the Na+ and H+ concentration gradients,
resulting in an ∼15-fold accumulation (86) beyond which net
transport via SNAT3 is reversed. Cationic amino acids show the
lowest accumulation (<10-fold), owing to opposing vectorial
transport by the loader CAT1 and harmonizer y+LAT2. The
mechanism of y+LAT2 is still incompletely understood. The
charge of cationic amino acids is neutralized by cotransport
of neutral amino acids with Na+ but other cations can be
used as well (50). The exchange process, driven by abundant
intracellular amino acids such as glutamine and alanine, would
result in accumulation of cationic amino acids, but the ion
dependence generates an asymmetry. Overall, y+LAT2 displays
faster efflux rates of cationic amino acids than neutral amino
acids (87).

Breakdown
Oxidation of amino acids is the main mechanism by which an
excess of amino acids beyond essential replacement is removed
from the blood circulation (60, 88). As outlined already, an
increase of plasma amino acid concentrations translates into a
corresponding increase of cytosolic amino acid concentrations.
This in turn activates amino acid metabolism. Three examples
of tight regulation of essential amino acid metabolism are
presented here. The branched-chain keto acid (BCKA) dehydro-
genase (BCKDH) is the key regulated step of BCAA catabolism,
because transamination generates a rapid equilibrium between

BCAA and BCKA (89, 90). The BCKDH is analogous to the
pyruvate dehydrogenase complex (91). BCKDH is inactivated
by phosphorylation via BCKDH kinase (BDK) and activated
by dephosphorylation via a BCKDH phosphatase (PPM1K
[protein phosphatase Mg2+/Mn2+ dependent 1K] aka PP2Cm
[PP2C type mitochondrial protein phosphatase] ). BCKAs
inhibit BDK, thus activating the BCKDH and increasing BCAA
oxidation (92). BDK is also transcriptionally regulated by
a carbohydrate response element in its promotor (93). The
BCKDH complex is inhibited by NAD(H) and branched-chain-
acyl-CoA (90). BCAAs bypass the liver, owing to lack of
mitochondrial branched-chain aminotransferase (BCATm) in
this tissue. This allows leucine to be a more powerful activator
of mTORC1 (mechanistic target of rapamycin complex 1) in
peripheral tissues after a meal (94). Global knockout of BCATm
causes a dramatic rise (14- to 40-fold) of BCAA concentrations
in plasma (95). In addition, there is long-term regulation in
response to dietary protein. When rats were fed an 8% protein
diet, the isolated enzyme retained just 6% of its normal activity
(96). Low-protein diets have only a small effect on plasma
amino acid concentration in the fasting state (28), but this can
only be maintained when amino acid metabolism is minimal
and when protein intake is limiting. Elevated concentrations of
BCAAs as observed in type 2 diabetes are most likely caused
by reduced metabolism (5, 97). In addition to the autonomous
regulation of BCAA metabolism, it is also controlled by
insulin-mediated signaling in the hypothalamus, which induces
BCKDH expression in liver via the autonomous nervous system
(98).

The second example is phenylalanine hydroxylase (PAH),
which catalyzes the first step of phenylalanine breakdown
and is a tetrameric enzyme with strongly allosteric behavior.
It responds in a sigmoidal fashion to phenylalanine and is
regulated by phosphorylation/dephosphorylation (99, 100).
More importantly, PAH is maintained in a largely inactive state
by its cofactor tetrahydrobiopterin (101). This inhibition can be
overcome by elevated concentrations of phenylalanine.

Tryptophan catabolism, the third example, occurs to ∼90%
via the kynurenine pathway in the liver (102). The key enzyme
tryptophan 2,3-dioxygenase is highly regulated and has a
short half-life (∼2 h). Elevated concentrations of tryptophan
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TABLE 1 Mitochondrial transporters for amino acids and their metabolites1

Gene Substrates References Mechanism Comment

SFXN1 Ser, Gly, Ala (153) n.d.
SLC1A5var Gln, Ala (154) A? Splice variant of SLC1A5.

Glutamine metabolism not altered by SLC1A5 knock-out in other
studies (65).

SLC25A12 (AGC1) Asp/Glu (155) A (Asp−/Glu− +H+)
SLC25A13 (AGC2) Asp/Glu (155) A (Asp−/Glu− +H+)
SLC25A18 (GC2) Glu (156) S (Glu−/H+)
SLC25A22 (GC1) Glu (156) S (Glu−/H+)
SLC25A2 (ORC2) Orn, Cit, Lys, Arg, His (157) U (also A) Oxidative metabolism
SLC25A15 (ORC1) Orn, Cit, Lys, Arg (157) U (also A) Urea cycle
SLC25A29 (ORNT3) Orn, Lys, Arg, His (158) U (also A) Oxidative metabolism
SLC25A38 Gly (159) n.d.
SLC25A44 BCAAs (160) n.d.
SLC25A21 2-oxoadipate (161) A Tryptophan metabolism
MPC1/2 2-oxobutyrate (162, 163) S (H+ ) Methionine, threonine metabolism

1A, antiport; AGC, aspartate/glutamate carrier; BCAA, branched-chain amino acid; Cit, citrulline; GC, glutamate carrier; MPC mitochondrial pyruvate carrier; n.d. not determined;
Orn, ornithine; ORC ornithine carrier; ORNT, ornithine transporter; S, symport; SFXN1, sideroflexin 1; U, uniport.

activate and stabilize the enzyme (102). This is mediated by an
allosteric tryptophan binding site, occupancy of which reduces
ubiquitination (103).

The critical role of catabolism is illustrated by inborn
errors of amino acid metabolism such as phenylketonuria
(PKU) (104) and tryptophan-2,3-dioxygenase deficiency (102).
PKU is caused by mutations of phenylalanine hydroxylase
(PAH). Ingested phenylalanine is absorbed in the intestine
and the excess cannot be broken down. Because amino acids
are recycled efficiently, phenylalanine accumulates over time.
Reference values for plasma are 35–85 μM in adults but can
rise to >1000 μM in uncontrolled PKU. The upper limit is
generated by phenylalanine transaminase, a minor pathway
of phenylalanine metabolism (105). It generates phenylpyruvic
acid, some of which is further metabolized to phenyllactate,
phenylacetylglutamine, or phenylacetate. These metabolites are
incompletely reabsorbed in the kidney and spill over into the
urine including small amounts of phenylalanine (106). Reducing
absorption in the intestine and reabsorption in the kidney by
knockout of B0AT1 (Figure 2) can normalize phenylalanine
concentrations in blood (106). This is caused by reduced uptake
and almost complete spillover of phenylalanine into the urine.
The study shows how two elements of amino acid homeostasis
can be balanced against each other to ameliorate the clinical
effects of PKU.

The final metabolism of amino acids into carbon dioxide
and water takes place inside mitochondria, but not all require
a dedicated transporter. Histidine for instance is converted to
glutamate in the cytosol and aromatic amino acids are first
converted to oxoacids or fumarate before oxidation inside
mitochondria. Moreover, glucogenic amino acids may first
be converted to glucose before complete oxidation. Table 1
lists the currently known mitochondrial amino acid/amino
acid metabolite transporters. The nutritional intake of pro-
tein typically exceeds essential requirements by ∼30–70 g/d
(107). As a result, an equivalent amount of amino acids is
degraded.

As outlined already, catabolic pathways for essential amino
acids are tightly regulated, increasing in activity as intracellular
amino acid concentrations rise in response to elevated plasma
concentrations. This generates transamination products (serine,
cysteine, methionine, valine, leucine, isoleucine, phenylalanine,

tyrosine, tryptophan, proline, glutamate) or free ammonia
(glycine, glutamine, glutamate, histidine, asparagine, threonine).
If the degradation takes place in extrahepatic tissues, pyruvate
is the dominant acceptor for transamination generating alanine,
whereas glutamate is the acceptor for ammonia, generating
glutamine. Oxaloacetate can also act as an acceptor, but
the resulting aspartate remains within the cell because it
is not an efflux substrate of amino acid transporters. In
muscle, aspartate can be used to replenish tricarboxylic acid
(TCA) cycle intermediates via the purine-nucleotide cycle (108).
Alanine and glutamine are readily released across the plasma
membrane because their transport processes are in equilibrium
(Figure 3). Thus, an increase of intracellular alanine and
glutamine concentrations, due to metabolism of other amino
acids, will translate into a net efflux. This mechanism is
particularly relevant in muscle, which releases alanine and
glutamine during fasting (109). In the liver, glutamine and
alanine are used to generate NH4

+ and aspartate, respectively,
which in turn are used to generate urea (110). The carbon
skeleton of both amino acids is used to generate glucose.
This is an important metabolic fate of amino acids during
fasting, providing glucose and ketone bodies. Carbamoyl-
phosphate synthetase (CPSI) is the key enzyme that regulates
the speed of the urea cycle. Several mechanisms contribute
to an increase of urea cycle activity in response to an amino
acid load. Alanine aminotransferase generates glutamate in
hepatocytes. As a result, glutamate concentrations rise rapidly
upon ingestion of amino acids, although hepatocytes are not
permeable to glutamate. Glutamate in turn is converted into
N-acetyl-glutamate, a potent allosteric activator of CPSI. In
fact, there is an almost linear relation between CPSI activity
and N-acetyl-glutamate concentrations inside mitochondria
(110).

Synthesis of Nonessential Amino Acids

Nonessential amino acids can be synthesized from intermediary
metabolites. As outlined already, many cells do not require
transporters for aspartate and glutamate, owing to metabolic
synthesis either from glutamine or from TCA cycle intermedi-
ates. Glutamine and asparagine can also be synthesized from
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glutamate and aspartate, respectively. The source to generate the
carboxylamide is NH4

+ in the case of glutamine and glutamine
in the case of asparagine. Serine is generated from intermediates
of glycolysis by a 3-enzyme pathway. The transcription of all
3 enzymes is upregulated upon serine or glutamine starvation
(111). This response is mediated by the GCN2–ATF4 (General
control nonderepressible 2/Activating transcription factor 4)
pathway, which responds to nutrient limitation (see below).
Asparagine synthetase (ASNS) is a well-known example of gene
regulation by amino acid response elements (112). Similarly to
glutamine, asparagine can be used as an exchange substrate
to bring in additional amino acids through harmonizers (113),
presumably because its role as an anaplerotic substrate for the
TCA cycle is limited. Silencing of ASNS caused reduced uptake
of serine and cationic amino acids, suggesting a role as an ex-
change substrate for ASCT2 and y+LAT2. Synthesis of l-proline
is also tightly regulated by the GCN2–ATF4 pathway and plays
a critical role in stem cell differentiation (114, 115). Vice versa,
proline appears to be a strong suppressor of ATF4 activation.
During development, cells maintain a low-proline status as
embryonic stem cells, switching to a high-proline status which
increases proliferation and results in a mesenchymal-like state
of high motility and pluripotency. The amino acid transporter
SLC38A2 plays a critical role in providing proline to cells and
is also regulated by the ATF4 pathway (116, 117). Induction of
ASNS by removal of histidine from the media increased intra-
cellular concentrations of nonessential amino acids: aspartate,
glycine, serine and proline, in rat hepatoma cells (118). This is
consistent with the induction of multiple biosynthetic pathways
through the amino acid–regulated arm of the integrated stress
response (ISR) (119). Asparagine itself was not elevated,
suggesting that it had served as an exchange substrate.

Protein Synthesis/Breakdown
mTORC1 is the main regulator of cap-dependent protein
synthesis through eukaryotic initiation factor 4E (eIF4E)
binding proteins 1 and 2 (4E-BP1/2) and the ribosomal S6
kinases 1 and 2 (S6K1/2) (120). The binding proteins 4E-
BP1/2 are phosphorylated by mTORC1 stimulating the release
of eIF4E, thereby allowing translation (121). The mRNAs of
ribosomal subunits are particularly sensitive to this type of
regulation, thus mTORC1 not only regulates translation in
general, but ribosome biogenesis in particular. The combination
of insulin and amino acid supplementation is particularly
powerful for the stimulation of protein biosynthesis in muscle
(122). Insulin through its downstream target AKT (Ak strain
transforming kinase) phosphorylates the tuberous sclerosis
complex (TSC1/2), which prevents its inhibitory action on
mTORC1 (120). mTORC1 senses cytosolic and lysosomal
amino acid concentrations, resulting in its activation when
amino acid concentrations rise (see below). Activation of
protein synthesis by insulin contributes to the removal of amino
acids after a meal. Insulin also increases loader activity in
muscle (123), thus accumulating amino acids for storage and
metabolism (124).

A central inhibitor of autophagy is the mTOR kinase. mTOR
phosphorylates and activates Unc-51-like kinases (ULKs) 1
and 2, which in turn phosphorylate ATG13 and FIP200.
ULKs-ATG13-FIP200 form a stable complex, the activation
of which is essential for autophagy (125). Autophagosomes
can engulf organelles and ubiquitinated proteins and later fuse
with lysosomes for final degradation of their contents. The

identification of lysosomal amino acid transporters is not yet
complete. Table 2 lists the known transporters. Groups of
amino acids that do not have a dedicated lysosomal transporter
may use relocalized plasma amino acid transporters. The
contribution of the listed amino acid transporters to amino
acid efflux remains to be elucidated. Knockout studies show
that lysosomal content of a variety of large neutral amino acids
increases when SLC38A9 is not functional, whereas its sensor
function is quite specific for arginine (126).

Autophagosome formation is induced during nutrient de-
privation. Inactivation of mTORC1 by rapamycin stimulates
autophagy. Induction of autophagy is slow and replenishment
of amino acids through this mechanism requires hours (127).
Autophagy is, however, essential for protein biosynthesis in
early embryonic stages (128). The ubiquitin-proteasomal system
for protein recycling can provide amino acids on a shorter
time scale (129). The system is constitutively active owing to
protein turnover and misfolding. It has been estimated that
30% of newly formed proteins are immediately degraded (130).
However, inhibition of the proteasome reduced translation
only when ≥1 essential amino acid was reduced to 1 μM
in the medium (129). The effect was reduced when amino
acid starvation was prolonged, allowing autophagy to set
in. In NIH3T3 cells, inhibition of the proteasome resulted
in reduction of asparagine/aspartate and cysteine by 20%–
30%. Supplementation with cysteine increased cell survival
and markedly reduced the ISR. Consistently, cell survival
was reduced in media lacking cysteine and asparagine when
proteasome function was inhibited (131).

Sensing Amino Acids

Sensing of amino acids occurs directly and indirectly. The most
important principles are allosteric regulation of enzymes, amino
acid binding proteins, transceptors, and tRNA binding.

For short-term control of amino acid concentrations,
allosteric regulation of metabolizing enzymes is probably the
most important mode of regulation (88). In the absence of
amino acid intake, amino acid metabolism is strictly limited.
Allosteric control can be exerted by amino acids or their
metabolites as outlined earlier.

Amino acid binding proteins work in conjunction with
mTORC1 to sense cytosolic concentrations of arginine and
leucine (132, 133). Sestrin 2 has been identified as a leucine
sensor. When it binds leucine, sestrin 2 dissociates from
GAP (GTPase activating protein) activity towards the Rags
2 (GATOR2). GATOR2 is a positive regulator of mTORC1,
whereas GATOR1 is a negative regulator. Rags are small G-
proteins (heterodimers of RagA/C or Rag B/D) that recruit
the mTORC1 complex to the surface of lysosomes where it
can be activated by Rheb (Ras homolog enriched in brain),
which is also anchored in the lysosomal membrane. To recruit
mTORC1 to the membrane the nucleotide state of Rag proteins
must change, which is regulated by GATOR proteins. SAR1B
(secretion associated ras-related GTPase 1B) has been identified
as an additional leucine sensor (134). It binds to GATOR2 under
conditions of amino acid deficiency. Moreover, leucyl-tRNA
synthetase has been shown to act as another leucine sensor
(135).

The cytosolic arginine sensor CASTOR1 also inhibits
mTORC1 through its interaction with GATOR2. As in the
case of sestrin 2, binding of arginine causes dissociation of
CASTOR1 from GATOR2. Another amino acid sensor is
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TABLE 2 Lysosomal AA transporters1

Gene Substrates References Mechanism Comment

SLC36A1 Pro, Gly, Ala (164) S H+

SLC38A7 Gln, Asn (165) S H+ or U
SLC38A9 Phe, Leu, Ile, Trp, Met, Tyr, Val, Pro (126, 166) U Transceptor for Arg
SLC7A5 Large neutral AAs (167) A DRAM1-dependent relocalization or

(168) LAPTM4b-dependent relocalization
SLC7A14 Arg, Lys, Orn (169) U
SLC1A5 Small neutral AAs (167) A DRAM1-dependent relocalization
SLC15A4 His, peptides (170) S H+

SLC66A1/PQLC2 Arg, Orn, His, Lys (171, 172) U
Cystinosin Cystine (173) S H+

1A, antiport; AA, amino acid; DRAM1, DNA damage regulated autophagy modulator 1; LAPTM4b, lysosome-associated transmembrane protein 4 beta; Orn, ornithine; PQLC2,
PQ-loop repeat containing protein 2; S, symport; U, uniport.

SAMTOR (S-adenosylmethionine sensor upstream of TORC),
which binds S-adenosylmethionine (SAM) and relieves its
inhibitory action on mTORC1 (136). SAM is an important
methyl-group donor and the first step in the oxidation of
methionine. The mTORC1 complex primarily regulates protein
translation and autophagy, but through ATF4 also increases
transcription of genes involved in amino acid transport (137).

The term “transceptor” refers to the dual nature of certain
membrane proteins both acting as a transporter and being
capable of initiating signal transduction like a receptor (138,
139). Although transporters undergo conformational changes
suitable to signaling, the actual mechanism remained elusive
until recently. In the case of SLC38A9 (SNAT9), the N-terminus
of the protein is disordered and can form a loop that inserts
itself into the transporter, similar to the ball and chain model of
ion channel inactivation (140, 141) (Figure 5). Upon binding of
amino acids, presumably to the opposite side of the transporter,
conformational changes release the N-terminus, which can then
bind to the gap at the interface of the RagA/RagC heterodimer.
This affects the nucleotide status of the heterodimer, allowing
mTORC1 to bind and become activated. The amino acid that is
optimal for sensing does not necessarily coincide with the amino
acids that are transported optimally (126).

Imbalances of intracellular amino acid concentrations are
sensed via uncharged tRNA molecules (142). Uncharged tRNA
molecules are generated after the peptidyl-transferase reaction

at the ribosome. Typically, they are immediately regenerated
through a variety of amino acyl tRNA synthetases, but the
ratio between uncharged and aminoacylated tRNAs changes
as a result of amino acid starvation (143, 144). Accumulation
of uncharged tRNAs is detected by the protein kinase GCN2.
It was first observed in yeast that GCN2 has a domain
homologous to histidyl-tRNA synthetases (145). This domain
was subsequently shown to bind uncharged tRNAs, thus
presenting a general mechanism for the detection of amino
acid limitation without directly monitoring individual amino
acid concentrations (146). However, the affinity of tRNA
synthetases for their cognate amino acid is very high, rendering
a bulk increase of uncharged tRNAs difficult to achieve.
Thus, advanced models of GCN2 activation invoke localized
tRNA concentrations and activation by ribosome stalling
(147). Activated GCN2 phosphorylates eIF2α, thereby reducing
CAP-dependent translation initiation (148). At the same time,
certain messenger RNAs containing upstream open reading
frames (uORFs) are induced, such as the transcription factor
ATF4 (149) and the amino acid transporter SNAT2 (150).
The presence of uORFs results in a sequence of translation
initiation–termination–reinitiation processes, which depend on
the presence of eIF2-GTP. Phosphorylated eIF2(αP) acts as a
competitive inhibitor of eIF2B, which prevents the recycling of
eIF2-GDP into eIF2-GTP. This reduces overall translation, but
at the same time favors reinitiation on open reading frames

FIGURE 5 How transceptors regulate mTORC1. The N-terminus of SLC38A9 is normally embedded in the protein. It can be released by
binding/transport of AAs. The N-terminus is liberated to bind to the RagA/C heterodimer, inducing a conformation in which the nucleotide status
changes. This causes mTORC1 to bind to the lysosomal surface. Image generated with Biorender. AA, amino acid. mTORC1, mechanistic target
of rapamycin complex 1.
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downstream of regulatory uORFs (148). The transcription
factor ATF4, in turn, activates hundreds of genes including those
involved in amino acid metabolism and transport. Examples
are CAT3, GlyT1 (Glycine transporter 1), LAT1, ASCT2, xCT
(cystine glutamate transporter), and ASNS (151, 152).

Conclusion

The elements of amino acid homeostasis act together during
the feeding–fasting cycle. Upon nutrient intake, amino acids
are absorbed in the intestine, which results in elevated
concentrations of amino acids in the plasma and, via transport
processes, this raises amino acids proportionally in the cytosol.
In muscle, protein synthesis is activated through mTORC1
and insulin. Rising amino acid concentrations activate amino
acid metabolism in all tissues. This will generate glutamine
(from ammonia) and alanine (from transamination), which
will be released via transport processes, and taken up by
the liver. In hepatocytes urea-cycle activity increases, resulting
in the elimination of nitrogen derived from amino acids.
Together this will bring amino acid concentrations back to
fasting concentrations, where metabolism will be reduced.
Extended fasting increases amino acid metabolism again for
gluconeogenesis.

Metabolism is the primary mode by which an excess
of amino acids is controlled, but transport processes are
critical to translate intake into elevated cytosolic amino acid
concentrations. This is effectively demonstrated in inherited
disorders of amino acid metabolism. In these extreme cases,
the efficient recycling and reabsorption of amino acids acts as a
trap causing excessive accumulation of these solutes over time.
Only at very high concentrations do the affected amino acids
spill over into the urine or they are degraded by noncanonical
pathways. Dysregulated amino acid concentrations also have
the potential to serve as biomarkers for other diseases, such
as diabetes where the elevation of BCAAs is an early sign of
developing insulin resistance and reduced metabolism.

A detailed understanding of amino acid homeostasis can
improve human health in a variety of disease states. Methionine
restriction is being considered as an enhancement of cancer
therapy. Inhibition of tryptophan-degrading enzymes or tryp-
tophan supplementation could influence recognition of tumors
by the immune system. Essential amino acids have long been
used as supplements for muscle improvement but are also being
developed to ameliorate sarcopenia.
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