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ABSTRACT
Adoptive cell transfer (ACT) is an emerging anticancer therapy that has shown promise in various
malignancies. Redirecting antigen specificity by genetically engineering T cells to stably express receptors
has become an effective variant of ACT. A novel extension of this approach is to utilize engineered T cells
to produce and deliver anticancer therapeutics that enhance cytotoxic T cell function and simultaneously
inhibit immunosuppressive processes. Here, we review the potential of using T cells as therapeutic-
secreting vehicles for immunotherapies and present theoretical and established arguments in support of
further development of this unique cell-based immunotherapy.
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The field of gene therapy has advanced rapidly since its advent
in the 1970s. Yet, the in vivo delivery of recombinant genes in
humans remains restricted by various technical limitations and
safety concerns. One gene therapy niche that circumvents
many of these limitations is the development of cell vehicles
genetically engineered to secrete bioactive therapeutics. These
cell vehicles can be prepared ex vivo and are subsequently
infused into individuals. Initially developed in the 1990s, the
earliest examples of cell-mediated drug delivery systems cen-
tered on mesenchymal stem cells (MSC) and T cells engineered
to secrete various cytokines.1-4 Marrying advances in genetic
engineering with T cell ACT is a logical step for the improve-
ment of ACT as this approach has the potential to circumvent
many of the limitations associated with systemic drug delivery.
The therapeutic success of this method hinges on two critical
factors: (1) the selection of appropriate cell carriers that are
well-suited for target applications and (2) the synthesis of spe-
cific products that will exert their intended therapeutic
function.

A wide variety of cells have been used as drug-delivery
vehicles. Perhaps the most extensively studied cell vehicle
system is based on adult stem cells such as MSC (reviewed
in refs. 4–6).1,4-6 MSCs have been thoroughly evaluated as
therapeutic-delivering cells in cancer models but their abil-
ity to promote tumor growth, lack of persistence after
transplantation in humans, immunosuppressive qualities,
and inability to home to specific targets have tempered sup-
port for MSC use in cancer therapy.4,7,8 Nevertheless, ther-
apy-delivering MSCs remain a focus in cancer research.9,10

Meanwhile, endothelial precursors, macrophages, neutro-
phils, and microglia have also been used or proposed to
deliver therapeutics to tumors.8,11-14 However, various chal-
lenges limit the use of these cells as therapeutic

vehicles.8,11,14 Conversely, T cells have been used for several
years as therapeutic-delivering cell vehicles. A seminal study
of T cells secreting IL-2 was published in 2001, and in the
following years streamlining of the genetic manipulation of
T cells has allowed this niche field to evolve and advance
rapidly.2 The following review focuses on the advantages
and future challenges of using genetically engineered T cells
to deliver and secrete products to enhance antitumor
immunity, particularly in the context of adoptive T cell
transfer for cancer. These T cells, from hereon will be
referred to as producer T cells.

Adoptive cell transfer and synthetic T cell receptors

Recent progress in ACT to treat cancer patients has bol-
stered enthusiasm for therapeutic strategies that utilize the
immune system’s ability to selectively target and destroy
malignant cells. One form of ACT consists of using tumor-
specific T cells obtained from tumors, referred to as tumor-
infiltrating lymphocytes (TILs), or from circulating periph-
eral T cells. T cells are then expanded ex vivo and infused
back into lymphodepleted patients (Fig. 1A). The details of
this approach have been refined over several years so that
TILs can now be successfully generated in a majority of
patients.15 However, expanded TILs represent a heteroge-
neous population of T cells with T cell receptors (TCR) spe-
cific for a variety of antigens.

To address the heterogeneity in TILs and improve tumor
targeting, genetic engineering has been used to create T cell
populations that express not only native TCRs, but also a
tumor-specific recombinant a/b-TCR or chimeric antigen
receptor (CAR).16–19 CARs are artificial recombinant receptors
composed of an extracellular antigen-binding domain and one
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or more cytosolic T cell signaling domains. The expression of
a/b-TCR or CAR artificial receptors allows for the generation
of tumor-reactive T cells that have high affinity for tumor anti-
gens. In addition, CARs uniquely bypass the need for T cells to
interact with MHC and can bind directly to targets on the cell
membranes of tumors. Yet, this form of therapy is not without
shortcomings. Generating sufficient numbers of genetically
engineered T cells requires that cells remain in ex vivo culture
for prolonged periods, which can reduce in vivo T cell function
and persistence.20 Additionally, a/b-TCRs and CARs increase
the risk for “on-target off-tumor” (the binding of engineered
cells to target proteins on non-malignant tissues) toxicities and
must be evaluated thoroughly before clinical use.21–24 Finally,
designing CARs for solid tumors has proven far more challeng-
ing than for hematopoietic malignancies. Nevertheless, encour-
aging CAR T cell clinical trial results have validated the
approach of using genetically engineered T cells for cancer
immunotherapy.25–28 In melanoma, ACT objective response
rates are approximately 50% and promising rates of complete
remission have been observed.29,30 Clinical trials have also
demonstrated utility for ACT in several other malignancies.19,31

Barriers to improving ACT efficacy

T cell migration

Despite promising clinical results, several limitations hinder the
generation of long-lasting and productive antitumor T cell
responses in ACT for solid tumors. One major issue is T cell
migration. To engage tumors, T cells must complete a complex
process involving extravasation from blood vessels and naviga-
tion through interstitial tissues. Several factors limit this pro-
cess, including loss of adhesion molecules on endothelial cells
of the tumor vasculature,32-34 changes to the intratumoral che-
mokine milieu,33,35,36 and expression of inhibitory molecules
such as Fas, transforming growth factor b (TGF-b), and pro-
grammed death ligand 1 (PD-L1) by endothelial cells.33,37,38 In
combination, these mechanisms limit T cell migration and
infiltration to tumor sites.

T cell immunosuppression in ACT

T cells that do reach the tumor environment must persist at the
tumor site while maintaining effector function. T cells, in

Figure 1. Schematic of possible T cell vehicle biologics and their therapeutic targets. (A) TIL are isolated from tumors, expanded, and can be genetically engineered using
a wide variety of transgenes. (B) Immunosuppressive cells generate a tumor microenvironment conducive to tumor cell growth which limits T cell function. (C) Immuno-
suppressive cytokines and bioactive molecules suppress T cell function. (D) Immune checkpoints are activated by interactions between T cells, tumor cells, and other cells
of the tumor microenvironment and suppress effector cell function. (E) Transgenes can be designed with promotors allowing antigen-dependent expression. (F) A wide
variety of transgene products can be selected for various purposes. Abbreviations: APC, antigen presenting cell; BiTE, bi-specific T-cell engager; CAR, chimeric antigen
receptor; CTL, cytotoxic T lymphocyte; MDSC, myeloid-derived suppressive cell; NFAT, nuclear factor of activated T-cells; NK, natural killer; PD-1, programmed death-1;
PD-L1, programmed death ligand 1; pNFAT, NFAT-responsive promoter; PTD, protein transduction domain; TAM, tumor-associated macrophage; TCR, T cell receptor; TGF-
b, transforming growth factor b; TIL, tumor infiltrating lymphocyte; Treg, regulatory T cell; VEGF, vascular endothelial growth factor;.
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particular CD8C cytotoxic T lymphocytes (CTL), are well
equipped for this task. Unfortunately, numerous tumor-associ-
ated immunosuppressive mechanisms reduce antitumor effi-
cacy by inducing T cell dysfunction and/or death.

The results from preclinical and clinical studies have dem-
onstrated that tumor-associated leukocytes such as regulatory
T cells (Treg), myeloid-derived suppressor cells (MDSC),
tumor-associated macrophages (TAM), and tolerogenic den-
dritic cells (DC) limit the function of tumor-reactive T cells
(Fig. 1B).33,39-41 These cells often secrete a variety of immuno-
suppressive cytokines (e.g. IL-6, IL-10, and TGF-b) and express
inhibitory molecules such as PD-L1 and PD-L2 which bind
programmed cell death 1 (PD-1) expressed on T cells (Fig. 1C–
D).33,42-44 In addition to PD-1, several other immune check-
points have now been discovered which limit T cell function
and survival.45 Tumor cells further restrict antitumor T cell
function by promoting the development of immunosuppressive
leukocytes and by expressing immune checkpoint ligands. Ulti-
mately, these immunosuppressive mechanisms (among others)
result in poor T cell proliferation, maintenance, survival, and
cytotoxic function in the tumor microenvironment.

History of therapeutic-delivering T cells

One strategy to overcome the limitations of ACT involves the
generation of therapeutic-secreting tumor-targeted T cells that
would serve as vehicles producing select molecules at the tumor
site. In 2001, for the first time, a human CD8C T cell clone was
transduced with the human IL-2 gene and demonstrated
improved survival over untransduced CD8C T cells.2 This ini-
tial study has been followed by several reports which explored
the effects of T cells engineered to secrete other endogenous
cytokines or therapeutic antibodies.3,46-63 Producer T cells engi-
neered to deliver therapeutics can be used in combination with
TCR- or CAR-modified T cells and offer a number of theoreti-
cal and proven advantages over the use of other producer cells
and systemic cancer therapies (Table 1).

Advantages of T cells as therapeutic-secreting vehicles

Tumor homing and tumor penetration

Unlike most conventional systemic therapies, T cells possess
the ability to specifically home to tumor sites. Despite vascula-
ture-specific immunosuppressive processes which can inhibit
tumor invasion, T cells are capable of penetrating into large
solid tumors.64 Substantial tumor homing and invasion by T
cells is often observed in solid tumors and is typically regarded
as a positive prognostic indicator both in untreated cancer
patients and those treated with ACT.64 This capability allows T
cells to deliver therapeutics throughout solid tumors.

A supplementary T cell asset is the ability to access virtually
any anatomical space. T cells are capable of penetrating the
blood brain barrier (BBB) to reach the central nervous system
(CNS).32,65 The BBB is a complex, multilayered anatomical bar-
rier. That T cells can effectively cross this barrier highlights
their ability to migrate throughout the entire body. In addition
to the CNS and despite the nomenclature, T cells can also
migrate to other immune-privileged sites such as the testes and

eyes.66,67 This effective tissue-penetrating characteristic allows
for the use of engineered T cells to treat tumors which have
been historically difficult to access such as primary brain
tumors, brain metastases, and prostate malignancies. In addi-
tion, the ability to home to specific targets throughout the body
makes T cells ideal for patients with widespread metastatic
disease.

Localized and inducible drug production

The ability for T cells to accumulate in tumors offers the
unique advantage for localized and continuous production
of therapeutics confined within the tumor environment.
This is in contrast with the use of systemic drugs that dis-
tribute throughout the body exposing both malignant and
non-malignant tissues which can result in toxicity and limit
the ability to supply an effective dose (Table 1).68 Further,
the amount of drug required to reach an effective dose can
be limited by variations in the tumor vasculature and inter-
nal pressures within solid tumors.68 Finally, traditional sys-
temic therapies often suffer from notoriously poor
penetration of physiologic barriers such as the BBB.

An additional benefit of localized therapeutic production is
that the secreted therapeutic is not subjected to systemic meta-
bolic processes prior to encountering the tumor. These pro-
cesses often limit the bioavailability and half-life of drugs
(Table 1). Traditionally administered therapeutics must be
titrated to account for tissue distribution, biotransformation,
degradation, and renal clearance. In contrast, a therapeutic
secreted by producer T cells is initially only exposed to the iso-
lated metabolic pressures of the tumor environment.

Table 1. Advantages of producer T cells.

Challenges With Systemic
Drug Delivery Advantages of T Cell Vehicles

Drug is systemic. Affects
cancerous and non-
cancerous tissues.

T cells home and accumulate
in tumor. Local drug
secretion.

Cannot preferentially localize
drugs to tumor site.

T cells home and accumulate
in tumor. Local drug
secretion. Inducible
expression of biological
after T cells reach tumor
site.

Require multiple rounds of
treatment.

T cells proliferate and
continually produce
biological.

Cannot effectively penetrate
certain anatomical sites.

T cells can infiltrate virtually all
anatomical sites and can
efficiently penetrate and
accumulate in tumors.

Must account for
pharmacokinetics and
pharmacodynamics.

Localized drug secretion
results in limited metabolic
pressures within the tumor
but not systemically.

Therapeutics may limit or
reduce T cell antitumor
activity.

Biologicals can be selected to
enhance T cell efficacy.

Easily interchange what
molecule is expressed. A
wide variety of molecules
can be selected.
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The localized production of therapeutics can be further
refined using a technique in which only T cells which have
engaged tumor cells are able to secrete therapeutics. To this
end, multiple studies have shown that a promoter consisting of
several nuclear factor of activated T cells (NFAT) binding
motifs can be used to drive transgene expression only upon T
cell activation (Fig. 1E).55,69 In 2000, the NFAT-responsive pro-
moter system was developed to select for antigen-specific T
cells from a heterogeneous T cell pool.69 In producer T cells,
this strategy offers several advantages over models which use T
cells that constitutively express their transgene products. The
first and most obvious advantage of this system is that it allows
for the production of therapeutics only upon stimulation with
tumor antigen. Therefore, secretion is confined within and
around tumors. This approach also allows for a much broader
selection of therapeutics that would otherwise be toxic if
administered systemically. For example, while systemic IL-12
administration is excessively toxic, localized intratumoral IL-12
administration has been shown to be clinically well-tolerated
and effective as a cancer immunotherapy.70,71 These findings
on IL-12 have been extended to producer T cells.55 In a mouse
model of melanoma, the administration of 5£105 T cells con-
stitutively expressing IL-12 resulted in transient body weight
loss in mice, but a 6-fold increase (3£106) of NFAT-driven T
cells did not result in any observable toxicity or change in body
weight.

Potential transgene therapeutics and their ability to
enhance T cell immunotherapies

To our knowledge, all of the published reports on producer T
cells for ACT have focused on cytokine or bispecific antibody
secretion. Yet, countless therapeutic possibilities remain unex-
plored (Fig. 1F). Each of the strategic avenues discussed below
has the potential to address major impediments to T cell
immunotherapies.

Cytokines

One technique to combat the multitude of redundant immuno-
suppressive signals in the tumor microenvironment is to tip the
balance in favor of T cell proliferation and activity. Cytokines
are logical choices to achieve this goal. The seminal preclinical
reports on producer T cells secreting IL-2 were established in
2001 and culminated in a 13 patient clinical trial
(Table 2).2,3,46,47 The clinical trial did not result in significant
responses in part due to the fact that IL-2 increases activation-
induced cell death (AICD) of T cells.33 Furthermore, because
Treg depend on IL-2 for their survival and function, it is likely
that IL-2 negatively impacted treatment efficacy by driving Treg

function and survival.33,49,72

Multiple groups have examined the effects of other cytokines
such as IL-15, which acts similarly to IL-2 on T cells, but can
also prevent AICD and drive memory CD8C T cell differentia-
tion.46,48–51,61 IL-15-producing T cells have demonstrated
potent antitumor activity in a murine melanoma model and
have been examined in both human T cell in vitro experiments
and mouse models of cancer (Table 2).46,48,49,51,61 Notably,
human T cells transduced with constitutively expressed IL-15
did not require exogenous IL-2 for in vitro maintenance and
expansion.49 A later study revealed the unintended possibility
of generating transformed human T cell clones, which exhib-
ited logarithmic growth independent of exogenous cytokine
support in vitro.50 Thus, although IL-2 and IL-15 may not be
appropriate biologics, these studies serve as a proof-of-concept
that T cells can indeed serve as drug-delivering vehicles.

The most extensively studied cytokine in producer T cells is
IL-12. IL-12 is a proinflammatory cytokine which enhances T
cell function, drives Th1 immune responses, and inhibits Treg.
These attributes have led to systemic administration of IL-12 in
cancer clinical trials, but severe dose-dependent toxicities
including thrombocytopenia, leukopenia, and hyperbilirubine-
mia among others have prevented efficacious clinical applica-
tion of IL-12. The synthesis of producer T cells is a reasonable

Table 2. Literature review on producer T cells.

TransgeneProduct Organism Cell Type(s) Disease Model Reference

IL-2 Human Primary T cell / PBMC / CD8C T cell clone Melanoma Liu and Rosenberg, 2001
IL-2 Human TIL Melanoma Liu and Rosenberg, 2003
IL-2/IL-15 Human PBMC N/A Quintarelli et al., 2007
IL-2 Human TIL Melanoma (Clinical trial) Heemskerk et al., 2008
IL-15 Murine Tumor reactive T cells Melanoma Hsu et al., 2005
IL-15 Human Sup T1 (human T lymphocyte) N/A Klebanoff et al., 2005
IL-15 Human PBL N/A Hsu et al., 2007
IL-15 Human PBMC Lymphoma / Leukemia Hoyos, et al., 2010
IL-12 Human CD8C CTL Hodgkin’s lymphoma Wagner et al., 2004
IL-12 Murine Tumor reactive T cells Melanoma Kerkar et al., 2010
IL-12 Murine T cells Melanoma / Sarcoma / Colon carcinoma Chinnasamy et al., 2012
IL-12 Murine/Human Murine tumor reactive T cells / Human PBL Melanoma Zhang et al., 2011
IL-12 Human PBMC / PBL / TIL N/A Zhang et al., 2012
IL-12 Murine T cells B cell malignancies Pegram et al., 2012
IL-12 Human PBMC Ovarian cancer Koneru et al., 2015
IL-12 Human Umblical cord blood B-cell acute lymphoblastic leukemia Pegram et al., 2015
IL-12 Human TIL Melanoma (Clinical trial) Zhang et al., 2015
IL-2/IL-7/IL-15/IL-21 Human PBL CD19Cmalignancies Markley and Sadelain, 2010
Anti-CD3/CEA BiTE Human PBMC Colon carcinoma Compte et al., 2007
Anti-CD3/EphA2 BiTE Human PBMC Glioma / Lung cancer Iwahori et al., 2015

Abbreviations: CTL, cytotoxic T lymphocyte; PBMC, peripheral blood mononuclear cell; TIL, tumor-infiltrating lymphocyte; PBL, peripheral blood leukocyte; BiTE, bi-specific
T-cell engager; N/A, not applicable.

e1122158-4 A. K. TSAI AND E. DAVILA



approach to bypass systemic toxicity and has been pursued
comprehensively in various cancer models (Table 2).52–59 Ini-
tially, IL-12 transgenic Epstein-Barr virus (EBV) specific
human T cells were used to target Hodgkin’s lymphoma in a
preclinical model where they exhibited increased cytotoxic
function and resistance to TGF-b.52 Importantly, an early study
revealed one of the unique drawbacks of IL-12 by demonstrat-
ing that proliferation was reduced in transduced T cells when
compared to untransduced counterparts.55 Subsequent studies
have elaborated on these results. IL-12 transduced murine T
cells had potent preclinical anti-melanoma activity despite
administering as few as 1£104 cells.53 Further, the IL-12-modi-
fied T cells increased tumor infiltration and recruitment of
endogenous CD8C T cells along with natural killer (NK) cells.
In 2011, the transduction of an NFAT-IL-12 transgene into T
cells was found to be less toxic and more effective than consti-
tutively expressed IL-12 in a murine model.55 These studies
have been extended to human T cells where it appears that this
antigen-inducible approach can be used to expand transduced
human T cells without interference from constitutively
expressed IL-12.56 In addition, constitutively expressing IL-12
transduced murine T cells are effective in ACT without lym-
phoablative preconditioning, which is typically necessary for
efficient engraftment of transferred T cells.57 Finally, IL-12 pro-
ducer T cells have now been shown to be effective in preclinical
cancer models beyond melanoma, including ovarian cancer
and leukemia.58,59

The results of these reports led to a phase I clinical trial
using NFAT-responsive IL-12-secreting TIL for adoptive trans-
fer.60 Eleven of 32 trial participants experienced objective
responses, which appeared to be strongly dependent on the
total number of IL-12-engineered TIL infused. Sixty-three per-
cent of patients treated with at least 3£108 transduced TIL
experienced objective responses. Notably, the T cell numbers at
which objective responses were typically observed were 10- to
100-fold lower than the number required to achieve responses
in adoptive transfer with genetically unaltered TIL. Further, IL-
2, which is typically infused along with expanded TIL was not
used in the clinical trial. Despite relatively high response rates
in patients treated with higher numbers of T cells, evidence of
T cell persistence was limited. More troubling however, were
the high-grade adverse events, particularly in patients infused
with higher amounts of TILs, some of which were life-threaten-
ing. The poor TIL persistence and high toxicity have been
attributed to IL-12. These results highlight the complexity and
difficulty of selecting proper transgenes for T cell modification
in ACT. Future clinical trials, including a proposed phase I clin-
ical trial for ovarian cancer using MUC-16ecto targeting CAR T
cells modified to secrete IL-12 will likely need to refine this
therapeutic strategy in humans.73

Antibodies

An additional approach to simultaneously augment T cell tar-
geting and function has been the use of bi-specific T cell engag-
ers (BiTE). BiTEs are recombinant synthetic antibodies which
contain two distinct antigen-binding domains, one of which
targets a tumor surface antigen while the other binds to T cell
activation molecules. This method has been used to generate

BiTEs against carcinoembryonic antigen (CEA) and CD3e
using transduced human peripheral blood lymphocytes
(PBL).62 Anti-CEA £ anti-CD3 antibodies were effective at
redirecting T cell cytotoxicity against human colon cancer in
vitro and in a xenograft model.62 Additionally, producer T cells
secreting BiTEs specific for CD3 and erythropoietin-producing
hepatocellular carcinoma A2 (EphA2) were shown to be effec-
tive in treating animal models of brain and lung cancer.63 These
studies demonstrate that using BiTE antibody-secreting tumor-
specific T cells can amplify the antitumor activity of both trans-
ferred and endogenous T cells.

Theoretically, producer T cells engineered to secrete anti-
bodies could be used to achieve a diverse set of therapeutic
strategies. Antibodies could be used to mask T cell inhibitory
molecules such as PD-L1 or costimulate T cells by engaging
receptors such as 4–1BB. Alternatively, T cells could be engi-
neered to secrete antibodies to activate DCs (e.g., agonistic
anti-CD40 antibody) and in turn potentiate tumor antigen pre-
sentation to endogenous T cells.

Chemokines

As discussed above, the disruption of molecules involved in T
cell migration often limits T cell tumor infiltration. Thus, T
cells engineered to manipulate chemokine signaling pathways
may promote T cell tumor homing and accumulation, which is
vital for ACT efficacy. To achieve this, T cells could be engi-
neered to produce chemokines such as CCL5, CXCL1, and
CXCL16, all of which have been shown to increase T cell tumor
infiltration.35 Other chemokines such as CCL19 and CXCL12
have been shown to strengthen T cell interactions with DC,
and could be used to promote activation of both endogenous
and infused T cells.35 In addition, because homing to different
types of malignancies appears to depend on distinct chemokine
signatures, T cells could be tailored to different tumor
types.35,36 These approaches would allow for T cells which suc-
cessfully home to tumors to amplify responses by recruiting
supplementary tumor-reactive T cells or professional antigen-
presenting cells which could further activate endogenous T
cells. Notably, the use of NFAT-driven promoters in these
approaches would be essential to prevent systemic chemokine
release and disordered T cell migration. To date, T cells have
only been engineered with chemokine receptors such as CCR2b
and CXCR2 in order to augment their target homing abili-
ties.74,75 Yet, using T cells to actively secrete chemokines to
either amplify T cell tumor infiltration or recruit other antitu-
mor effector cells has not been examined and remains a prom-
ising therapeutic tactic.

Other strategies

While the selection of transgenes in producer T cells has
remained limited to cytokines and antibodies, a number of
interesting yet unexplored strategies exist. One approach would
be to engineer T cells which secrete inhibitors of immunosup-
pressive cytokines such as IL-6, IL-10, and TGF-b. Indeed, T
cells engineered to express a dominant negative of TGF-b to
protect them from tumor-derived TGF-b are being examined
in clinical trials (NCT00368082, NCT02065362) following
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promising preclinical results.76,77 Notably, a soluble inhibitor
might be more effective by inhibiting TGF-b signaling in T cells
along with potentially oncogenic TGF-b signaling in tumor
cells or other cells of the tumor microenvironment.

Inhibiting vital intracellular signaling molecules represents
another strategy to potentiate antitumor T cell responses.
STAT3 signaling in tumor cells as well as immunosuppressive
cells such as MDSCs plays a central role in the development of
an immunosuppressive tumor environment.78,79 Furthermore,
many tumor types rely on STAT3 signaling for survival or pro-
liferation.80 Therefore, identifying relevant molecules that can
be produced by T cells to inhibit STAT3 signaling could poten-
tiate antitumor effects by sensitizing tumor cells and simulta-
neously reshaping the tumor environment toward one that
promotes T cell effector function.

An additional possibility includes the secretion of toll-like
receptor (TLR) agonists including ligands to TLR1, TLR2, and
TLR5. TLR1 and TLR2 bind to bacterial lipoproteins, whereas
TLR5 recognizes bacterial flagellin. These ligands are peptide/
protein-based, and could be useful in strategies designed to
activate potent but localized antitumor responses when pro-
duced by tumor-reactive T cells.81 A major advantage to using
TLR ligands is their ability to activate antigen presenting cells
which can subsequently reciprocally activate tumor-reactive T
cells to create an amplifying process. Furthermore, TLR ligands
can enhance T cell responses by costimulating TLRs directly on
T cells.81 We have shown that producer T cells secreting TLR5
ligand improve antitumor function in part by reshaping the
tumor microenvironment. The TLR5 producer T cells were
found to limit the expression of T cell exhaustion markers,
increase chemokine receptor expression on T cells, and reduce
the number of MDSCs in the spleen.82

Other attractive options might include inhibitors of immu-
nosuppressive cells (e.g., MDSC and Treg), immunosuppressive
signaling pathway inhibitors, and antitumor proteins (Fig. 1F).
For example, antibodies to neutralize a variety of factors
involved in immunosuppression or the generation of MDSCs
or Treg, including GM-CSF, IL-6, IL-10, and VEGF could serve
to potentiate antitumor T cell responses. The therapeutics
could be designed to target numerous cell types, including T
cells, tumor-associated leukocytes, and tumor cells.

Limitations and potential challenges in producer
T cells

The field of producer T cells for ACT is still in its infancy, and
future studies will undoubtedly reveal unique limitations to this
strategy, many of which are predictable (Table 3). A major con-
cern with the use of genetically engineered cells is the potential
for malignant transformation, which has been observed in HSC
clinical trials. Initial studies with IL-15 transduced T cell clones
unintentionally generated a seemingly immortalized clone that
proliferated without exogenous IL-2 support and was resistant
to apoptosis.50 However, studies in mice comparing T cells to
HSCs transduced with known T cell oncogenes has revealed
that T cell transformation seems unlikely to occur.21 Clinical
data supports this notion as no case of malignant transforma-
tion has been reported among the hundreds of patients enrolled
in clinical trials using engineered T cells.21 Nevertheless, steps

to prevent this outcome should be taken, and transgenes should
be selected carefully. To this end, producer T cells could be
engineered with kill switches such as herpes simplex virus thy-
midine kinase or inducible apoptosis systems.46,83 Alternatively,
producer T cells engineered to express unique surface markers
could be depleted using antibodies specific to the markers.

Reaching effective intratumoral drug concentrations may be
an additional limitation. The quantity of transgene that can be
expressed by T cells may be somewhat limited when compared
to other cell types, particularly when using NFAT-based sys-
tems. Indeed, the quantity of NFAT-driven IL-12 produced in
vitro was decreased in comparison to a similar constitutively
expressed vector.55 Comparing human TIL transduced with
constitutively produced IL-12 and NFAT-driven IL-12 revealed
that NFAT-driven cells produced markedly less IL-12 upon
stimulation (~70,000 pg/mL in constitutively expressing cells vs.
~20,000 pg/mL in NFAT-responsive cells).56 However, the two
transduced populations were not directly comparable due to
potential variations in transgene copy number. Future studies
may be needed to enhance the potency of NFAT-based pro-
moters. In addition, proteins that require high intratumoral
concentrations for efficacy may not be suitable for producer T
cells.

A further limitation to the use of producer T cells is that the
biologic must be encoded by DNA and the final product must
be either a nucleic acid or protein. Thus, the approach excludes
the possibility of using chemical small molecules.

To date, all investigations in producer T cells for ACT have
examined therapeutics that bind to cell surface molecules or

Table 3. Limitations and challenges of producer T cells.

Challenges/Limitations Potential Solutions

Potential for malignant
transformation due to genetic
engineering.

Low risk of this occurring. Use
of selection markers or “kill
switches.”

Limited biologic output, particularly
when using NFAT antigen-
inducible system.

Use of highly potent biologics.
Development of stronger
antigen-inducible promoter
systems.

Therapeutic must be encoded by
DNA and product must be a
nucleic acid or protein.

None.

Therapeutics that require
internalization may necessitate
modifications, potentially
reducing efficacy.

Use of molecules naturally
internalized by target cells.
Development of highly
efficient internalization
signals.

Autoreactive T cells modified with
NFAT-driven systems would
constitutively express transgenes.

Use of thoroughly investigated
CARs or TCRs.

When using antigen-inducible
systems, transgene expression
would be activated upon
endogenous TCR engagement on
receptor-modified T cells.

None.

In a clinical trial using NFAT-driven IL-
12, remarkably high levels of
circulating IL-12 were observed in
some patients.

Refinement of the NFAT
system or development of
new antigen-inducible
promoter systems.

Unexpected consequences of
genetically engineering T cells
(e.g., IL-12 reduces T cell
proliferation; IL-15 potentially
generates transformed T cells).

Thoughtful selection and
thorough investigation of
transgenes in preclinical
models before clinical use.
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receptors. Therapeutics that must be internalized into target
cells will require protein modifications such as internalization
signaling domains. Protein transduction domains (PTD) have
been used for the delivery of various biologically active mole-
cules, including protein- and nucleic acid-based molecules.84

These PTDs could be easily incorporated into T cell transgenes.
Additionally, the identification of PTDs that selectively direct
therapeutic internalization into tumor cells could enhance ther-
apeutic efficacy. Nevertheless, the finite efficiency of PTDs or
other cell internalization signals will likely limit the quantity of
therapeutic that can be delivered to target cells.

Conclusion

ACT is an emerging clinical immunotherapy which holds great
promise for cancer therapy. Genetic manipulation of T cells to
improve tumor targeting has been a clear advancement for the
field. Yet, many biological and practical limitations must be
addressed in order to improve ACT efficacy. To this end, using
genetically engineered T cells to also improve their own activ-
ity, modulate or recruit other effector cells, reduce tumor-
dependent immunosuppressive processes, or a host of other
opportunities remains unexplored but merits further investiga-
tion. This unique approach offers several potential advantages
over the use of bulk tumor-reactive T cell populations, and pro-
vides a practical avenue to bring T cell adoptive transfer closer
to a clinical mainstay for cancer treatment.
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