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Abstract: Spinal cord injury (SCI) promotes brain inflammation; conversely, brain injury promotes
spinal neuron loss. There is a need to identify molecular biomarkers and therapeutic targets for central
nervous system (CNS) injury. CDGSH iron-sulfur structural domain 2 (CISD2), an NF-κB antagonist,
is downregulated after injury in vivo and in vitro. We aimed to examine the diagnostic value of
CISD2 in patients with CNS insult. Plasma and cerebrospinal fluid (CSF) CISD2 levels were decreased
in 13 patients with CNS insult and were negatively correlated with plasma IL6 levels (associated with
disease severity; r = −0.7062; p < 0.01). SCI-induced inflammatory mediators delivered through CSF
promoted mouse brain inflammation at 1 h post-SCI. Anti-CISD2 antibody treatment exacerbated SCI-
induced inflammation in mouse spine and brain. Lipopolysaccharide-stimulated siCISD2-transfected
EOC microglial cells exhibited proinflammatory phenotypes (enhanced M1 polarization, decreased
M2 polarization, and increased intranuclear NF-κB p65 translocation). Plasma and CSF CISD2 levels
were increased in three patients with CNS insult post-therapeutic hypothermia. CISD2 levels were
negatively correlated with plasma and CSF levels of inflammatory mediators. CISD2 inhibition and
potentiation experiments in cells, animals, and humans revealed CISD2 as a biomarker for CNS
insult and upregulation of CISD2 anti-inflammatory properties as a potential therapeutic strategy for
CNS insult.

Keywords: CISD2; CNS insult biomarker; anti-inflammatory effect; therapeutic target

1. Introduction

High-grade and low-grade central nervous system (CNS) insults, such as CNS in-
juries (including traumatic brain injuries (TBIs), spinal cord injuries (SCIs), and hemor-
rhagic/ischemic stroke) and CNS diseases (including neurodegenerative diseases and
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neoplasms) [1] promote the pathological activation of microglia and neuroinflammation.
Microglial cells are the resident immune cells of the CNS [2]. The inflammatory cascades
activated by microglial cells promote mitochondrial dysfunction [3,4] and the production
of reactive oxygen species (ROS), which further augment proinflammatory responses [5].
Pathological neuroinflammation and mitochondrial dysfunction regulate each other and
promote irreversible neuronal deficits in the CNS.

CDGSH iron-sulfur domain 2 (CISD2), which is encoded by CISD2 located at position
24 on the long arm of human chromosome 4 (4q24) [6], is one of the three members
(CISD1–3) [7–9] of the human NEET family (with the proposed amino acid sequence
asparagine-glutamate-glutamate-threonine) [10,11]. Additionally, CISD2 is characterized
by the presence of a CDGSH iron-sulfur domain [12], which comprises CDGSH sequence
motifs and [2Fe-2S] clusters connected by the coordinates of 3-cysteine-1-histidine [13]. The
structure of the CISD2 protein comprises homodimers with each monomer containing a
CDGSH domain (class I NEET protein) [14]. The specific CDGSH motif is highly conserved
in archaea, bacteria, plants, and humans [15].

The CISD2 protein is localized to the outer membrane of mitochondria (OMM) [16],
endoplasmic reticulum (ER) membrane [7], and mitochondrion-associated ER membranes
(MAMs) [17]. Previous studies have reported that CISD2 regulates mitochondrial redox
reactions and mitigates mitochondrial overload and ROS toxicity by functioning as a trans-
port conduit for labile iron [18,19] and calcium [20] across the ER, MAMs, mitochondria,
and cytosol. Additionally, CISD2 exhibits cytoprotective activities against calcium excito-
toxicity [21,22], apoptosis [23,24], OMM breakdown, and mitochondrial dysfunctions [25].

Previously, we particularly found that the expression of CISD2 was reduced upon
exposure to insults, including injury [26–28] or the aging process [1]. Based on the above,
we aimed to examine the diagnostic value of CISD2 in patients with CNS insult. The
findings of this study revealed that CISD2 expression was decreased in patients with
CNS insult (e.g., trauma to the brain and spinal cord and stroke). The decrease in CISD2
levels was significantly correlated with the severity of CNS insults, implicating CICD2 as a
potential biomarker of CNS insult.

Moreover, we demonstrated that CISD2 exerts anti-inflammatory effects [29] by regu-
lating the upstream elements of the peroxisome proliferator-activated receptor-β (PPAR-
β)/IκB/NF-κB signaling pathway [26]. To explore whether the anti-inflammatory effects
of CISD2 are beneficial in the treatment of patients with CNS injury, in vivo models for
inhibiting and potentiating CISD2 functions were established. As shown in Scheme 1,
the expression levels of CISD2 were decreased in the injured spinal cord (left panel, left
row), brain, blood, and cerebrospinal fluid (CSF) (right panel, left row), with a concomitant
increase in the levels of proinflammatory mediators at these sites in mice with SCI-induced
inflammation in the brain (left panel) as well as in patients with CNS injury (right panel).
Treatment with neutralizing anti-CISD2 antibodies enhanced the inflammatory response in
the injured spinal cord and brain (left panel, right row). Increase in CISD2 function through
targeted temperature management (TTM, i.e., therapeutic hypothermia) in patients with
CNS insult attenuated CSF and blood levels of inflammatory mediators (right panel, right
row). As such, we highlight that the upregulation of CISD2, which exerts anti-inflammatory
effects by functioning as an NF-κB antagonist, is expected to directly inhibit the inflam-
matory cascade in the CNS and mitigate inflammation-induced neurological sequelae in
patients with CNS injury or disease.
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Scheme 1. Illustration of Cisd2 depletion in the mouse model of spinal cord hemisection injury and 
CISD2 potentiation in patients with central nervous system (CNS) insults. As indicated in the left 
panel, spinal cord injury (SCI) decreases the expression of Cisd2 and promotes inflammation in the 
spinal cord and brain. Inhibition of Cisd2 using the anti-CISD2 neutralizing antibody exacerbated 
SCI-induced inflammation in the brain and spinal cord. Right panel shows a schematic represen-
tation of a patient with CNS insults exhibiting decreased plasma and cerebrospinal fluid (CSF) 
levels of CISD2 and elevated levels of inflammatory mediators. Therapeutic hypothermia potenti-
ates CISD2 function and decreases the plasma levels of CRP and the CSF levels of IL6. The results 
of CISD2 inhibition and potentiation studies revealed the anti-inflammatory properties of CISD2. 

2. Materials and Methods 
2.1. Ethics Statement 

All patients in the study cohort provided their written informed consent. The ex-
perimental protocols were approved by the Institutional Review Board (IRB) of Kuang 
Tien General Hospital (IRB Approval No.: KTGH 10626, 14 August 2017), and the ex-
periments were conducted according to the guidelines of the Declaration of Helsinki. 

2.2. Patients 
In this study, 13 consecutive patients with CNS injury aged 18–77 years were re-

cruited between August 2017 and August 2018. Hemorrhagic stroke, TBI, brain tumor, 
and SCI were observed in five, five, one, and two cases, respectively. The vital parame-
ters of these 13 patients were stable at the time of hospital admission. The patients did not 
exhibit damage to any other systems. Out of the 12 surgically treated patients, 11 un-
derwent emergent decompression surgery within 3 h of hospital admission and 1 un-
derwent conventional brain tumor surgery. The clinical characteristics of the patients are 
presented in Table 1. Blood samples from 11 patients with CNS insult were collected 
during decompression surgery, whereas the sample from one conservatively treated pa-
tient (case 7, Table 1) was collected immediately after admission. CSF samples from eight 

Scheme 1. Illustration of Cisd2 depletion in the mouse model of spinal cord hemisection injury and
CISD2 potentiation in patients with central nervous system (CNS) insults. As indicated in the left
panel, spinal cord injury (SCI) decreases the expression of Cisd2 and promotes inflammation in the
spinal cord and brain. Inhibition of Cisd2 using the anti-CISD2 neutralizing antibody exacerbated
SCI-induced inflammation in the brain and spinal cord. Right panel shows a schematic representation
of a patient with CNS insults exhibiting decreased plasma and cerebrospinal fluid (CSF) levels of
CISD2 and elevated levels of inflammatory mediators. Therapeutic hypothermia potentiates CISD2
function and decreases the plasma levels of CRP and the CSF levels of IL6. The results of CISD2
inhibition and potentiation studies revealed the anti-inflammatory properties of CISD2.

2. Materials and Methods
2.1. Ethics Statement

All patients in the study cohort provided their written informed consent. The experi-
mental protocols were approved by the Institutional Review Board (IRB) of Kuang Tien
General Hospital (IRB Approval No.: KTGH 10626, 14 August 2017), and the experiments
were conducted according to the guidelines of the Declaration of Helsinki.

2.2. Patients

In this study, 13 consecutive patients with CNS injury aged 18–77 years were recruited
between August 2017 and August 2018. Hemorrhagic stroke, TBI, brain tumor, and SCI
were observed in five, five, one, and two cases, respectively. The vital parameters of these
13 patients were stable at the time of hospital admission. The patients did not exhibit dam-
age to any other systems. Out of the 12 surgically treated patients, 11 underwent emergent
decompression surgery within 3 h of hospital admission and 1 underwent conventional
brain tumor surgery. The clinical characteristics of the patients are presented in Table 1.
Blood samples from 11 patients with CNS insult were collected during decompression
surgery, whereas the sample from one conservatively treated patient (case 7, Table 1) was
collected immediately after admission. CSF samples from eight patients were obtained
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during external ventricular drainage or lumbar drainage. Three patients (cases 2, 12, and
13) underwent TTM on day 2 post-surgery. CSF samples from these patients were collected
after the completion of TTM. The severity of brain insults and SCI was quantified using the
Glasgow Coma Scale (GCS) and the American Spinal Injury Association Impairment Scale
(AIS) grade. Hypothermia treatment:

All patients who underwent decompression surgery were subjected to TTM within
24 h of surgery according to the published therapeutic hypothermia protocol with modifi-
cations [30,31]. To perform TTM, the patients in the intensive care unit were wrapped with
cold water-circulating wrapping garments (Arctic Sun Temperature Management System;
Medivance, Louisville, CO, USA) equipped with a surface cooling device. The core body
temperature was measured with bladder catheters in all patients. Cooled saline solution
was applied to achieve rapid induction of hypothermia. The target temperature was 35 ◦C,
which was maintained for 120 h. The temperature of the circulating water in the Arctic
Sun system was adjusted to maintain the target temperature. The rewarming procedure
was performed at a rate of 0.05–0.1 ◦C/h. During TTM, the patients were intubated and
adequately sedated. Anti-shivering protocol [32] was adopted in shivering cases.
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Table 1. Demographic data of patients with CNS insults and healthy controls.

Patient Age (Years) Sex Etiology of
CNS Insults

Cause of
Injury

Hematoma
Location

GCS Score at
the Time of
Admission

Surgery TTM
Treatment

Plasma
CISD2
Levels

(ng/mL)

CSF CISD2
Levels

(ng/mL)

Plasma IL6
Levels

(ng/mL)

CSF
IL6 Levels

(ng/mL)

Plasma CRP
Levels

(ng/mL)

1 77 F Hemorrhagic
stroke - ICH, right BG E1V1M1 CN+HR+

EVD - 2.04 0.25 133.28 1379.27 -

2 54 M Hemorrhagic
stroke - ICH, right BG E1V1M4 EVD + 3.13 0.30 69.57 1477.40 18.68

2 post-TTM 4.89 0.63 559.69 1160.13 7.43

3 53 F Hemorrhagic
stroke - Cerebellum E2V1M5 EVD - 2.45 - 15.82 - -

4 16 M TBI Motor vehicle
accident

Acute
EDH,SDH,
right F-T

E2V1M5 Uni + HR
+ EVD - 2.09 0.45 77.70 242.59 -

5 53 M TBI Fall Acute SDH,
right F-T E1V1M1 Uni + HR

+ EVD - 1.36 0.29 177.98 1374.02 -

6 18 F TBI Motor vehicle
accident

Acute SDH,
right F-T E1V1M1 Uni + HR

+ EVD - 0.46 - 1312.53 - -

7 44 M Parasagittal
meningioma - - E4V5M6 Removal of

tumor - 3.21 - 9.53 - -

8 20 F TBI Motor vehicle
accident

Acute SDH,
right F-T E4V5M6 - - 3.68 - 22.78 - -

9 57 M Hemorrhagic
stroke - ICH, left BG E3V1M5 EVD - 2.41 0.62 9.86 624.83 -

10 23 M

Burst fracture
of the first

lumbar
vertebra with
spinal EDH,
SCI (AIS-B)

Fall Spinal EDH E4V5M6 HR+ fusion
procedure - 3.30 - 41.79 - -

11 66 M Hemorrhagic
stroke - ICH, left BG E1V1M1 Uni + HR +

EVD - 3.12 0.24 81.08 1367.49 -

12 21 M

Burst fracture
of the fifth
and sixth
cervical

vertebra, SCI
(AIS-A)

Motor vehicle
accident - E4V5M6

Cervical
corpectomy

+ fusion
procedure
+ lumbar

drain

+ 1.78 0.39 3.51 1254.79 1.06

12 post-TTM 2.38 0.54 27.64 284.05 0.46

13 57 M TBI Motor vehicle
accident

Acute SDH,
right F-T-P E1V1M3 Uni + HR

+ EVD + 2.85 0.34 105.32 867.87 3.28

13 post-TTM 3.12 0.37 231.25 112.38 1.30
Control

1 45 M 3.60 - 0.00 - -
2 39 M 4.33 - 0.21 - -
3 37 M 3.12 - 1.63 - -

The raw data were rounded off to the second decimal place. CNS, central nervous system; GCS, Glasgow Coma Scale; TTM, Targeted temperature management (therapeutic hypothermia);
CRP, C-reactive protein; M, male; F, female; TBI, traumatic brain injury; SCI, spinal cord injury; EDH, epidural hematoma; SDH, subdural hematoma; ICH, intracerebral hematoma; BG,
basal ganglion; F, frontal; T, temporal; P, parietal; Uni + HR, unilateral craniectomy + removal of hematoma; CN, craniotomy; EVD, external ventricular drain; AIS, American Spinal
Injury Association Impairment Scale.
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2.3. Animals

Adult BLTW: CD1 (ICR) male mice aged 8 weeks and weighing 31–33 g were obtained
from the BioLASCO Experimental Animal Center (Taiwan Co., Ltd., BioLASCO, Yilan,
Taiwan). Male Sprague–Dawley rats with a bodyweight of 280–330 g were purchased
from Academia Sinica, Taipei, Taiwan. The animals were housed in cages (five mice or
two rats per cage) for at least 5 days after arrival at the laboratory. Additionally, the
animals had free access to food and were maintained under a regular circadian cycle (12-h
light/dark cycle). Rats with SCI were used to collect CSF and to investigate the potential
mechanisms involved in injury-induced decreases in CISD2. Rats were subjected to CSF
collection because of the easy access to the cisterna magna and foramen magnum. Mice
with SCI were used for other animal studies. This study was performed according to the
guidelines outlined by the Experimental Animal Laboratory and approved by the Animal
Care and Use Committee at National Ilan University, Yilan, Taiwan (IACUC approval
number: 103-31).

2.4. Spinal Cord Hemisection

An animal model of spinal cord hemisection was established as described previ-
ously [33]. Briefly, the animals were anesthetized with isoflurane and fastened to a stereo-
taxic apparatus (David Kopf Instruments, Los Angeles, CA, USA). Under a dissecting
microscope, resection of the lamina was performed at the 9th to 10th thoracic vertebrae
that did not disrupt the integral dura. To perform a spinal cord resection, the wire knife
guide is located along a vertical plane, near the lateral surface of the spinal cord at the
inferior thoracic level. The knife is medially rotated and lengthened for 1.5 mm. An ele-
vation of 4.0 mm is applied to the guide to allow for spinal cord hemisection. The sham
group underwent only laminectomy without a hemisection. The wound was closed with
sutures in layers. Animals were kept on a heating pad at 36.5 ◦C to recover and placed on
fasting for 3 h after the procedure. For postoperative care, the animals were administered
subcutaneous saline for fluid supplementation. Following surgical procedures, the animals
were delivered back to their preoperative residence environment.

2.5. Collection of CSF from Rats with SCI

CSF was collected from rats according to a previously described method with mod-
ifications [34]. Rats were anesthetized by intraperitoneal injection of Zoletil™ (Zoletil
50, Virbac, Carros, France) at 4 h post-laminectomy (sham control group) or spinal cord
hemisection (SCI4 group) (Figure 2A, lower panel) (n = 3 in each group). The neck hair was
removed, and the surgical field was disinfected with alcohol. The neck skin was removed
to expose the translucent dura mater of the brain. CSF was collected using a 30 G injection
needle inserted into the dura mater at a 30◦ angle. The collected CSF was transferred to a
microcentrifuge tube and stored in a deep freezer (−80 ◦C).

2.6. Cytokine Antibody Array Assay

The cytokines in the CSF samples of the rats belonging to the sham operation and
SCI groups were analyzed using a cytokine antibody array kit (catalog: ab133992, Abcam,
Cambridge, MA, USA), following the manufacturer’s instructions. Briefly, the membrane
was incubated with blocking buffer. Next, the array pools with 34 targets were incubated
with 1 mL CSF diluted to 70 µg/mL overnight to allow the binding of the anti-cytokine
antibodies that are fixed at the membrane surface. The membrane was washed thrice
with washing buffer I and twice with washing buffer II (5 min/washing step). The array
pools were incubated with 1 mL of 1× biotin-conjugated anti-cytokine antibodies for
2 h, followed by incubation with 2 mL of 1× horseradish peroxidase (HRP)-conjugated
streptavidin for 2 h. The membrane was imaged using an ImageQuantTM LAS 4000 (GE
Healthcare Life Science, Marlborough, MA, USA), and the densities were quantified using
ImageQuant TL software.
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2.7. Experimental Groups of the Mouse SCI Model

As illustrated in Figure 2A (upper panel), the mice were divided into the following
groups: sham operation control group, animals underwent laminectomy (Sham control
group) (n = 15); anti-CISD2 antibody-treated sham operation group, sham-operated mice
intravenously administered with anti-CISD2 antibody(ShamT group) (n = 12); vehicle-
treated 1 h post-SCI group (SCI1 group), animals underwent spinal cord hemisection and
were administered with physiological saline and the brain and spinal cord were harvested
at 1 h post-SCI (n = 12); vehicle-treated 4 h post-SCI group (SCI4 group), animals underwent
spinal cord hemisection and were administered with physiological saline and the brain
and spinal cord were harvested at 4 h post-SCI (n = 15); anti-CISD2 antibody-treated 4 h
post-SCI group (Sham T group), animals underwent spinal cord hemisection and were
administered with anti-CISD2 antibody and the brain and spinal cord were harvested at
4 h post-SCI (n = 15); vehicle-treated 12 h post-SCI group (SCI12 group) (n = 15); anti-
CISD2 antibody-treated 12 h post-SCI group (SCI12T group) (n = 15); vehicle-treated 24 h
post-SCI group (SCI24 group) (n = 9); vehicle-treated 36 h post-SCI group (SCI36 group)
(n = 12); anti-CISD2 antibody-treated 36 h post-SCI group (SCI36T group) (n = 12); and
vehicle-treated 48 h post-SCI group (SCI48 group) (n = 6).

The brain and spinal cord of animals belonging to different treatment groups were
harvested for messenger RNA (mRNA) and protein analyses. Reverse transcription quan-
titative polymerase chain reaction (RT-qPCR), Western blotting, and enzyme-linked im-
munosorbent assay (ELISA) were performed using six, three, and six mice from each group,
respectively.

2.8. Administration of Anti-CISD2 Neutralizing Antibody in Mice

Mice belonging to the sham operation and anti-CISD2 antibody-treated groups were
intravenously injected with anti-CISD2 antibody (100 µg/kg bodyweight) at different time
points post-SCI. Furthermore, the mice in the SCI group were intravenously administered
with physiological saline post-SCI.

2.9. Histology, Immunohistochemistry, and Cell Count

The second day following SCIs, rats were deeply anesthetized by isoflurane and thor-
oughly perfused with phosphate-buffered saline (PBS), followed by cold 4% paraformalde-
hyde in 0.15 M sodium phosphate buffer. The spinal cords were removed, cleared in xylene,
and embedded in paraffin. Five-micrometer sections were cut with a sliding microtome
at the center of spinal cord hemisection. For immunohistochemistry staining, sections
for injured tissues of spinal cords were washed in PBS and incubated in 3% normal goat
serum with 0.3% Triton X-100 in PBS for 1 hr. The free-floating sections were incubated
at 4 ◦C with the antibodies as follows. Anti-Aconitase 1 (ACO1) (Catalog: HPA019371,
Sigma-Aldrich, St. Louis, MO, USA); anti-immunoglobin binding protein (BiP) (Catalog:
IR130-525, iReal Biotechnology, Hsinchu City, Taiwan); anti-C/EBP homologous protein
(CHOP)(Catalog: IR129-522, iReal Biotechnology, Hsinchu City, Taiwan); and anti-CISD2
(Catalog: PA5-34545, Thermo Scientific, Waltham, MA, USA). Afterward, the sections were
washed and then incubated in anti-rabbit HRP secondary antibody (Catalog: GTX224125-01,
Genetex, Hsinchu City, Taiwan). To visualize the bound antibody, the sections were reacted
with diaminobenzidine (DAB) as the chromagen. Cell counting was performed on every
sixth section at the center of spinal cord hemisection stained with the above antibodies at
a magnification of 200×. Only cells with clearly visible stain were counted. All data are
presented as mean + SEM of four consecutive cell quantifications.

2.10. Cell Lines

The microglial cell lines as EOC 13.31 and BCRC 60,490 cells were from the Bioresource
Collection and Research Center (BCRC, Hsinchu, Taiwan). Colony-stimulating factor-1 (CSF-1)
concentration determines the proliferation of EOC 13.31 cells from the brains of 10-day-old
female mice (Mus musculus). We cultured EOC microglia in conditioned medium consisting



Biomedicines 2022, 10, 777 8 of 26

of 70% Dulbecco’s modified Eagle medium, 10% fetal bovine serum, and 20% LDMAC
conditioned medium (BCRC 60489, mononuclear cell line of bone marrow from adult mice).
Conditioned LDMAC medium, containing CSF-1 from LADMAC cells, was collected from the
cultures and filtered through syringes of 0.2 mm before being added to the EOC cell cultures.

2.11. Experimental Grouping of In Vitro Microglial Cells

To elucidate the anti-inflammatory mechanism of CISD2, EOC microglial cells were
divided into the following groups: scrambled short-interfering RNA (siRNA)-transfected
control group (n = 9); control group, EOC cells (1 × 106 in a 35-mm dish) stimulated with
500 ng/mL LPS (Escherichia coli 055:B5, L-2880, Sigma Chemical Co., St. Louis, MO, USA)
(n = 9); and siCISD2-transfected group (n = 9), LPS-stimulated EOC cells transfected with
CISD2-specific siRNA (siCISD2). Three different cell cultures in each group were used for
RT-qPCR, Western blotting, and ELISA.

2.12. RNA Interference

Cisd2 in the cultured microglial cells was knocked down using siCISD2. siRNA trans-
fection was performed according to a previously described method with minor modifica-
tions [1,29,35]. EOC microglial cells were transfected with siCISD2 or scrambled RNA (Silencer
® Pre-designed siRNA, Ambion, Austin, TX, USA) using Lipofectamine™ 2000 reagent (Invit-
rogen, Carlsbad, CA, USA). EOC cells were cultured for 5 days and randomly assigned to the
experimental groups. Lipofectamine™ 2000 reagent and siRNA were individually incubated
with plasma-free medium for 10 min. The transfected cells (2 × 106 cells) were transferred
to individual plates. At 5 h post-transfection, the medium containing Lipofectamine 2000
was replaced with a microglial culture medium and the cells were incubated for 7 h. The
knockdown efficiency of siCISD2 was determined using RT-qPCR.

2.13. RT-qPCR Analysis

Total RNA was extracted from the cultured cells or animal tissues using TRIzol reagent
(Invitrogen). The extracted RNA was reverse transcribed to complementary DNA using oligo-
dT and SuperScript II reverse transcriptase (Invitrogen). RT-qPCR analysis was performed
using the ABI StepOne sequence detector system (Applied Biosystems, Foster City, CA,
USA) with SYBR Green. The expression level of the target gene was normalized to that of a
housekeeping gene [36]. The primers used for RT-qPCR analysis are listed in Table 2.

Table 2. Primers.

Mice

Gene Orientation Sequence

Cisd2
forward 5′-AAAGCAGCTTATTGTAGGTGCTG-3′

reverse 5′-CGCCTGTCAATTCATTATGC-3′

Tnfa forward 5′-GTGAAGGGAATGGGTGTT-3′

reverse 5′-GGTCACTGTCCCAGCATC-3′

Actb
forward 5′-CACTGTGCCCATCTACGA-3′

reverse 5′-ATGTCACGCACGATTTCC-3′

EOC microglial cell

Cisd2
forward 5′-AAAATCCCAAGGTGGTGAATGA-3′

reverse 5′-GGACCGCCAGCACCTACA-3′

Tnfa forward 5′-GGCACTCCCCCAAAAGATG-3′

reverse 5′-GCCACAAGCAGGAATGAGA-3′

Il1b
forward 5′-AAGATGAAGGGCTGCTTCCA-3′

reverse 5′-ATGTGCTGCTGCGAGATTTG-3′

Arg1 forward 5′-CGCCTTTCTCAAAAGGACAG-3′

reverse 5′-CCAGCTCTTCATTGGCTTTC-3′

Gapdh forward 5′-GGCAAATTCAACGGCACAGT-3′

reverse 5′-CGCTCCTGGAAGATGGTGAT-3′



Biomedicines 2022, 10, 777 9 of 26

2.14. Immunoblotting

Total protein was extracted from cultured EOC microglial cells or animal tissues in a
lysis buffer containing 20 mM Tris-HCl, 0.1% sodium dodecyl sulfate, 0.8% NaCl, and 1%
Triton-X 100. The proteins were resolved using a 12% gradient gel. The resolved proteins
were electro-transferred to a nitrocellulose membrane. The membrane was blocked with
a blocking reagent and incubated with the following primary antibodies at 4 ◦C for 12 h:
anti-CISD2 (1:500; catalog: PA5-34545; Thermo Scientific, Waltham, MA, USA); anti-iNOS
(1:2000; catalog: PA3-030A; Thermo Scientific); anti-Arg1 (1:5000; catalog: PA5-29645;
Thermo Scientific); anti-GAPDH (1:500; catalog: #MAB374; Millipore, Billerica, MA, USA);
and anti-α tubulin 4a (1:1000; catalog: GTX112141; Hsinchu, Taiwan); anti-β-actin (1:4000;
Catalog: ab8227; Abcam). Next, the membrane was washed and incubated with goat
anti-rabbit IgG HRP-conjugated secondary antibodies (catalog: #12-348, Millipore) for
1 h. Immunoreactive signals were detected using a chemiluminescence detection kit
(Catalog: WBKLS0500, Millipore). The target bands were visualized and quantified using
ImageQuantTM LAS 4000 (GE Healthcare Life Science, Marlborough, MA, USA).

2.15. Detection of NF-κB p65 Activity

NF-κB p65 activity was examined using an NFκB p65 transcription factor assay kit
(catalog: ab133112, Abcam), following the manufacturer’s instructions. Briefly, the nuclear
proteins were extracted to examine the intracellular NF-κB p65 activity. The absorbance
was detected at 450 nm using a spectrophotometer reader (Synergy HT BioTek, Winooski,
VT, USA).

2.16. ELISA

The plasma and CSF levels of CISD2, IL6, and CRP in patients with CNS insults were
examined using human CISD2 ELISA kit (catalog: MBS7244473, MyBiosource, San Diego,
CA, USA), human IL-6 Quantikine ELISA kit (catalog: D6050, R&D Systems, Minneapolis,
MN, USA), and human CRP Quantikine ELISA kit (catalog: DCRP00, R&D Systems),
respectively, whereas the brain levels of Tnfa in SCI mice were examined using a DuoSet®

mouse TNF-α ELISA kit (Catalog: DY410, R&D Systems). Briefly, 300 µL human plasma or
CSF samples or mouse brain tissue lysates diluted (1:100) in lysis buffer were subjected to
the immunoassay, following the manufacturer’s instructions. The standards of the target
protein were analyzed in duplicates, whereas the samples were analyzed in triplicates. At
least three independent human samples and six independent mouse samples were used for
the analysis.

2.17. Statistical Analyses

The differences in the mean levels of inflammatory mediators in the CSF of rats
between two groups were compared using two-sample independent t-test. The differences
in mRNA and protein expression levels among three or more independent groups were
compared using one-way analysis of variance, followed by Newman–Keuls post-hoc
test. Values are displayed as mean ± standard error of the mean. All statistical analyses
were performed using two-sided tests, and an significance level was determined by 0.05.
Analyses were conducted in the GraphPad Prism software version 5.0 (GraphPad Software,
Inc, San Diego, CA, USA).

3. Results
3.1. Plasma and CSF Levels of CISD2 Were Decreased in Patients with CNS Insult and Negatively
Correlated with the Severity of the Injury

Previous studies have reported that the expression levels of CISD2 are decreased in the
cell injury model and animal models of SCI, and the downregulation of CISD2, which exerts
anti-inflammatory effects, leads to inflammation and mitochondrial dysfunction [1,28,29].
This indicated that the expression level of CISD2 is negatively correlated with the degree
of injury and that CISD2 is a potential biomarker for CNS injury. For clinically validating
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previous in vivo and in vitro findings, the plasma and CSF levels of CISD2 were analyzed
in patients with CNS insult. Additionally, the correlation between CISD2 expression and
inflammatory status was examined in these patients.

The plasma and CSF levels of IL6 and CISD2 in 13 patients with CNS insult, including
11 head injury cases (6 TBI cases, 4 CVA cases, and 1 brain tumor case), 2 SCI cases (1 case
each of AIS grade A [complete] and grade B [sensory incomplete] injuries), and 3 healthy
controls were examined. The samples were collected immediately after hospital admission
or during emergency surgery; therefore, the specimens indicate the inflammatory status
during acute CNS insult.

The plasma CISD2 levels were significantly lower in patients with CNS insult (n = 13)
than in healthy controls (n = 3; * p < 0.05, Figure 1A), whereas the plasma IL6 levels were
increased in patients with CNS insult compared with those in healthy controls (Figure 1B).
Consistent with the findings of previous animal and cellular studies, the plasma levels
of CISD2 in patients with SCI (n = 2) and head trauma (n = 11) were non-significantly
decreased compared with those in healthy controls (Figure 1C). The plasma IL6 levels were
increased in patients with SCI and head trauma compared with those in healthy controls
(Figure 1D). Patients with head trauma (n = 11) were divided into severe and mild groups
(GCS scores of 3–8 and 9–15, respectively) according to the severity of brain injury. The
plasma CISD2 levels in the severe and mild groups were lower than those in the control
group. In addition, the plasma CISD2 levels in the severe group were markedly lower
than those in the mild group (Figure 1E). The plasma IL6 levels were higher in the severe
group than in the mild group (Figure 1F). Thus, compared with patients with CNS injury,
healthy controls exhibited increased plasma CISD2 levels and decreased plasma IL6 levels
(Figure 1C–F).

The CSF samples were available for seven patients (four CVA and three TBI cases) who
underwent brain decompression surgery. Patients with brain trauma were divided into
severe (GCS score of 3; n = 3) and mild groups (GCS scores of 5, 6, 8, and 9; n = 4). Consistent
with the results of plasma analysis, the CSF levels of CISD2 were lower (Figure 1G) and
those of IL6 (Figure 1H) were higher in the severe group than in the mild group. The
analysis of clinical data of patients with CNS insult revealed that the plasma and CSF
levels of CISD2 were decreased, whereas those of IL6 were increased. These results were
consistent with those of previous in vivo and in vitro studies [1,26–28]. The plasma and
CSF levels of CISD2 were negatively correlated with injury severity, whereas the plasma
and CSF levels of IL6 were positively correlated.

Linear regression analysis was performed to examine the correlation between plasma
CISD2 and plasma IL6 levels in 13 patients with CNS insult (11 head trauma and 2 SCI
cases). The plasma CISD2 levels were negatively correlated with the plasma IL6 levels
(r = −0.7062, p < 0.01) (Figure 1I).

These findings indicate that CISD2 is a potential biomarker for CNS insult. This is
because excessive proinflammatory responses induced by CNS injury may inhibit the
activation of CISD2. Next, the protective mechanisms of CISD2 against inflammation and
mitochondrial dysfunction in CNS injury were examined.
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Figure 1. Clinical investigation of the enrolled patients with central nervous system (CNS) insults
(n = 13). (A) The plasma CISD2 levels in patients with CNS insult (n = 13) were significantly lower
than those in the healthy controls (n = 3). Vertical bars indicate mean ± standard error of mean of
enzyme-linked immunosorbent assay (ELISA) results. * p < 0.05 vs. healthy control group. (B) The
plasma IL6 levels in 13 patients with CNS insults were higher than those in healthy controls. (C) The
plasma CISD2 levels in patients with spinal cord injury (SCI) (n = 2) or head trauma (n = 11) were lower
than those in healthy controls. (D) The plasma IL6 levels in patients with SCI and head trauma were
higher than those in healthy controls. (E) The plasma CISD2 levels in the severe group (Glasgow Coma
Scale (GCS) scores of 3–8) were lower than those in the mild group (GCS scores of 9–15). However,
the plasma CISD2 levels in the severe and mild groups were markedly lower than those in the healthy
control group. (F) The plasma levels of IL6 were higher and the plasma CISD2 levels were lower in the
severe and mild groups than in the healthy control group. (G) Among the seven patients with head
trauma, the CSF levels of CISD2 in the mild group (GCS scores of 5–9) (n = 4) were higher than those in
the severe group (GCS score of 3) (n = 3). (H) The CSF levels of IL6 were lower and the CSF levels of
CISD2 were higher in the mild group than in the severe group. (I) The correlation between plasma levels
of CISD2 and IL6 in 13 patients with CNS insult was analyzed using linear regression. The plasma levels
of CISD2 were negatively correlated with those of IL6 (r = −0.7062; p < 0.01). These findings indicated
that CISD2 is a biomarker for CNS insult.
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3.2. Mouse Model of SCI Exhibited Inflammation in the Injured Spine and the Brain

Dynamic 1. SCI mouse model exhibited decreased Cisd2 expression and elevated proinflammatory
response in the spinal cord.

Clinical studies have indicated that SCIs lead to cognitive decline [37,38]; depressive
mood [39]; depression [40]; and neurodegenerative diseases, such as Alzheimer’s disease
(AD) [41] and Parkinson’s disease (PD) [42]. The SCI-induced production of proinflamma-
tory cytokines and neurotoxic molecules promotes brain inflammation [43]. This study
demonstrated that SCI-induced inflammatory mediators are distributed throughout the
brain and spinal cord through the circulation of CSF.

To induce SCI, the spinal cord of mice was subjected to hemisection at T9–T10. The
mRNA expression levels of Cisd2 and Tnfa in the central regions of the spinal cords of
SCI mice were examined using RT-qPCR. Consistent with the results of previous in vivo
and in vitro studies, the spinal cord levels of Cisd2 mRNA in the 1 h (** p < 0.01), 24 h
(** p < 0.01) and 48 h (** p < 0.01) post-SCI groups were significantly decreased compared
with those in the sham operation group (Figure 2B). The spinal cord levels of Tnfa mRNA
were significantly higher in the 1 h (*** p < 0.001) and 24 h (** p < 0.01) post-SCI groups
than in the sham operation group (Figure 2C).

The results of RT-qPCR were consistent with those of Western blotting. As shown
in Figure 2D–E, the spinal cord levels of the Cisd2 protein were significantly decreased
(* p < 0.05) and the spinal cord levels of Nos2 protein were significantly increased (* p < 0.05)
in the 24 h post-SCI group compared with those in the sham operation group.

Dynamic 2. Proinflammatory mediators were detected in the CSF of SCI rats.

Next, this study examined the role of proinflammatory response in the injured spinal
cord in eliciting inflammation in the brain post-SCI. We hypothesized that CSF, which
can circulate in the subarachnoid space around the brain and spinal cord, transports
proinflammatory mediators released from the injured spinal cord to the brain.

To verify this hypothesis, the CSF of rats belonging to the sham operation and SCI
groups were subjected to the cytokine protein array assays. The expression levels of
proinflammatory mediators in the CSF collected at 4 h post-SCI from the sham operation
and SCI groups were determined.

Figure 2F shows the levels of cytokines (indicated based on the intensity of the dots) in
the CSF of the sham control (top left panel) and SCI groups (top right panel). The relative
positions of these mediators in the cytokine protein arrays are shown in the panels below
(Figure 2F).

As shown in Figure 2G, the CSF levels of Ngf (1.55 ± 0.02-fold higher, ** p < 0.01),
Cxcl1 (3.17 ± 0.46-fold higher; *** p < 0.001), Faslg (1.23 ± 0.06-fold higher, ** p < 0.01),
Ifng (1.32 ± 0.06-fold higher, ** p < 0.01), Il6 (1.28 ± 0.06-fold higher, * p < 0.05), Il13 (1.40
± 0.12-fold higher, * p < 0.05), Lep (1.40 ± 0.04-fold higher, ** p < 0.01), Cxcl5 (1.53 ±
0.22-fold higher, * p < 0.05), Sell (1.67 ± 0.06-fold higher, ** p < 0.01), Ccl2 (3.22 ± 0.19-fold
higher, ** p < 0.01), Ccl3 (2.15 ± 0.75-fold higher, * p < 0.05), Mmp8 (3.45 ± 0.21-fold higher,
*** p < 0.001), Pdgfa (1.39 ± 0.11-fold higher, * p < 0.05), Tnfa (1.84 ± 0.34-fold higher,
** p < 0.01), and Vegfa (1.55 ± 0.16-fold higher, ** p < 0.01) in the 4 h post-SCI group were
significantly higher than those in the sham operation group. These findings indicate that
SCI-induced proinflammatory mediators were transferred to the brain through the CSF.

Dynamic 3. Downregulated Cisd2 along with promoted inflammatory response in mouse brain as
early as 1 h following spinal cord hemisection injury.

A previous study reported the activation of astrocytes and the release of proinflammatory
cytokines in the olfactory bulb (OB) at 8 h post-SCI [44]. An impaired sense of smell may
be an early sign of various neurological disorders, such as PD [45], AD [46], stroke [47], and
major depression disorder [48,49]. Interestingly, inflammation is observed in the brain upon
CNS damage even in cases wherein the lesion is at distant sites, such as the spinal cord.
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Figure 2. Spinal cord injury (SCI) downregulates Cisd2 and enhances inflammatory response in the
injured spinal cord of mice subjected to spinal cord hemisection. The secretion of various inflammatory
mediators in the cerebrospinal fluid (CSF) of rats with SCI. (A) Experimental groups and the schedule of
treatment with anti-CISD2 antibody in a mouse model of SCI. (B) The spinal cord levels of Cisd2 mRNA
in the 1, 24, and 48 h post-SCI groups were significantly decreased compared with those in the sham
operation group. (C) Under the same conditions as those in (B), the spinal cord levels of Tnfa mRNA
were significantly increased. For B and C, vertical bars indicate mean ± standard error of mean (SEM)
(n = 6 for each group). * p < 0.05, ** p < 0.01, and *** p < 0.001 (pair-wise multiple comparisons between
groups were performed using the Newman–Keuls test). The spinal cord levels of the Cisd2 protein were
decreased (D) and those of Nos2 were increased (E) in the 24 h post-SCI group compared with those in the
sham operation group. For D and E, the upper panel indicates representative immunoblot of the protein
expression of Cisd2 (15 kDa) (D) and Nos2 (135 kDa); (E) Gapdh (35 kDa) was used as an internal control.
For (D) and (E), vertical bars indicate mean ± SEM of protein levels (n = 3 for each group). * p < 0.05,
sham operation group vs. SCI groups (independent two-sample t-tests). (F) Detection of inflammatory
mediators in the CSF using the cytokine antibody array at 4 h post-SCI in rats. Representative image of the
array assay demonstrating the reactivity of pooled CSF samples (upper left panel, sham operation group;
upper right panel, SCI group at 4 h post-SCI). n = 3 for each group with two replicates for each protein
target. Signals were scanned with ImageQuantTM LAS 4000 (GE Healthcare Life Science, Marlborough,
MA, USA). Blue box, positive controls (high intense spots); red box, negative controls (no spots); lower
panel, schematic illustration of the location of positive (blue box), negative control (red box), and 34 targets.
(G) Signal intensity of inflammatory mediators in the CSF of the sham operation and SCI groups was
comparatively analyzed. Vertical bars indicate mean ± SEM of protein levels (n = 3 for each group).
* p < 0.05, ** p < 0.01, and *** p < 0.001 (sham operation group vs. SCI groups; independent two-sample
t-tests).
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The brain tissue was excised from the sham operation and 1 and 4 h post-SCI groups.
The mRNA expression levels of Cisd2 and Tnfa in the brain tissues of the sham operation
and 1 and 4 h post-SCI groups were examined using RT-qPCR. The brain levels of Cisd2
mRNA were significantly decreased in the 1 (* p < 0.05) and 4 h post-SCI groups (** p < 0.01)
compared with those in the sham operation group (Figure 3A). The brain levels of Tnfa
mRNA were significantly increased in the 1 (*** p < 0.001) and 4 h (*** p < 0.001) post-SCI
groups (Figure 3B). Additionally, the brain levels of Tnfa mRNA in the 4 h post-SCI group
were significantly higher than those in the 1 h post-SCI group (*** p < 0.001; Figure 3B).
This indicated that SCI rapidly induces brain inflammation. The results of ELISA were
consistent with those of RT-qPCR analysis. The brain levels of Tnfa in the 1 (*** p < 0.001)
and 4 h (*** p < 0.001) post-SCI groups were significantly higher than those in the sham
operation group (Figure 3C). Additionally, the brain levels of Tnfa in the 4 h post-SCI group
were significantly higher than those in the 1 h post-SCI group (** p < 0.001; Figure 3C).
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Figure 3. Spinal cord injury (SCI) downregulates Cisd2 and enhances inflammatory response in the
brain of mice subjected to spinal cord hemisection. (A) The brain levels of Cisd2 mRNA in the 1 and
4 h post-SCI groups were significantly downregulated compared with those in the sham operation
group. Additionally, the brain levels of Tnfa mRNA (B) and protein (C) (detected using enzyme-
linked immunosorbent assay [ELISA]) in the 1 and 4 h post-SCI groups were significantly upregulated
compared with those in the sham operation group. Vertical bars indicate mean ± standard error
of mean of mRNA (n = 6 for each group) and protein (n = 6 for each group) levels. * p < 0.05,
** p < 0.01, and *** p < 0.001 (pair-wise multiple comparisons between groups were performed using
the Newman–Keuls test). (D) Schematic diagrams illustrating the pivotal points in Figures 1 and 2
that are indicative of the vulnerability of the central nervous system (CNS) to inflammation. After SCI,
inflammatory mediators delivered through the cerebrospinal fluid (CSF) promote brain inflammation
as evidenced by the upregulation of TNFA and inflammatory mediators. The expression of CISD2 is
decreased in the injured spinal cord and inflamed brain, which exacerbates inflammation.
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Thus, CNS lesion due to spinal injury leads to the downregulation of CISD2 and the
activation of local inflammatory responses in the spinal cord. SCI-induced proinflammatory
mediators enter the brain through the CSF, which leads to the downregulation of CISD2
and the pathological activation of the brain inflammatory response (as early as 1–4 h post-
injury). The expression of CISD2 is consistently decreased after injury. Thus, CISD2 can be
a potential biomarker for CNS insult. Figure 3D shows the induction of inflammation in the
brain after SCI with concomitant decrease in CISD2 expression in the injured spinal cord.

3.3. Inhibition of CISD2 Function Exacerbated Inflammatory Responses in the Brain and Spinal
Cord of SCI Mice

Previous studies have reported the anti-inflammatory activities of CISD2 [1,26,28,29].
In this study, the downregulation of Cisd2 in the brain and spinal cord of SCI mice was asso-
ciated with a concomitant upregulation of inflammatory mediators, which may exacerbate
the CNS damage. To examine the causal correlation between CISD2 and injury-induced
proinflammation in the CNS, mice were treated with anti-CISD2 antibodies to decrease the
expression levels of Cisd2 in the brain and spinal cord of SCI mice. The sham operation and
SCI groups were intravenously injected with anti-CISD2 antibody (100 µg/kg bodyweight)
or physiological saline (vehicle group). The spinal cord levels of Cisd2 and Tnfa in the
4, 12, and 36 h post-SCI groups were examined using RT-qPCR. The downregulation of
Cisd2 was confirmed at the indicated time points in the spinal cord (*p < 0.05; RT-qPCR;
Figure 4A) and brain (** p < 0.01 and *** p < 0.001, respectively; Western blotting; Figure 4C)
of the anti-Cisd2 antibody-treated SCI groups.

Cisd2 downregulation promoted inflammatory responses in the injured spinal cord
and brain of SCI mice. The spinal cord levels of Tnfa mRNA in the anti-CISD2 antibody-
treated sham operation (* p < 0.05) and 4 h (** p < 0.01), 12 h (* p < 0.05), and 36 h
(*** p < 0.001) post-SCI groups were higher than those in the vehicle-treated sham operation
and 4, 12, and 36 h post-SCI groups, respectively (Figure 4B).

Additionally, the brain levels of Tnfa mRNA in the sham operation and 4, 12, and 36 h
post-SCI groups treated with a vehicle or anti-CISD2 antibody were examined using RT-
qPCR. The brain levels of Tnfa mRNA were increased in the anti-CISD2 antibody-treated
sham operation and 4 h (** p < 0.01), 12 h (* p < 0.05), and 36 h (** p < 0.01) post-SCI
groups compared with those in the vehicle-treated sham operation and 4, 12, and 36 h
post-SCI groups, respectively (Figure 4D). The effect of Cisd2 downregulation on Tnfa
protein expression in the brain of SCI mice treated with anti-CISD2 antibody was examined
using ELISA. The brain levels of Tnfa in the anti-CISD2 antibody-treated sham operation
(** p < 0.01) and 4 h (*** p < 0.001), 12 h (*** p < 0.001), and 36 h (** p < 0.01) post-SCI groups
were significantly higher than those in the vehicle-treated sham operation and 4, 12, and
36 h post-SCI groups, respectively (Figure 4E).

The results of Cisd2 inhibition experiments demonstrated that Cisd2 exerts anti-
inflammatory effects in vivo and that the CNS insult-induced downregulation of Cisd2 in
the brain or spinal cord may lead to pathological neuroinflammation.
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Figure 4. Inhibition of Cisd2 using anti-CISD2 neutralizing antibodies exacerbated the inflammatory
response in the injured spinal cord and spinal cord injury (SCI)-mediated inflamed brain of mice
subjected to spinal cord hemisection. (A) The spinal cord levels of Cisd2 mRNA were decreased in the
4, 12, and 36 h post-SCI groups. (B) The differences in the spinal cord levels of Tnfa mRNA between
the anti-CISD2 antibody-treated and vehicle-treated groups increased by each of these time points.
(C) The confirmation of Cisd2 knockdown in the brain of rats subjected to spinal cord hemisection.
The brain levels of Tnfa mRNA (D) and protein (E) in the anti-CISD2-treated SCI group were higher
than those in the vehicle-treated SCI group at each time point. Vertical bars indicate mean ± standard
error of mean of mRNA (n = 6 for each group) and protein (for Western blot, n = 3; for enzyme-linked
immunosorbent assay (ELISA), n = 6) levels. * p < 0.05, ** p < 0.01, and *** p < 0.001 (pair-wise multiple
comparisons between groups were performed using the Newman–Keuls test).

3.4. Cisd2 Suppression Exacerbated LPS-Induced Inflammation in EOC Microglial Cells

The results of in vivo study indicated that injury-induced CISD2 downregulation
promotes inflammatory responses, which was further examined using EOC microglial cells.
The aberrant activation of microglial cells is reported to activate inflammatory cascades
that mediate the pathogenesis of various neurological diseases [50–52]. EOC microglial
cells were stimulated with LPS (500 ng/mL) to induce inflammation and mimic the in vivo
inflammatory response in the CNS.

As shown in Figure 5A, the Cisd2 mRNA levels in the LPS-treated scrambled RNA-
transfected cells were significantly decreased compared with those in the scrambled
RNA-transfected cells (** p < 0.01). Additionally, the Cisd2 mRNA levels in the siCISD2-
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transfected LPS-treated cells were significantly decreased compared with those in the
scrambled RNA-transfected LPS-treated cells at 8 h post-treatment (*** p < 0.001), indicating
the knockdown efficiency of siCISD2.
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Figure 5. siCISD2-mediated Cisd2 knockdown exacerbated the inflammatory response, promoted
proinflammatory M1 phenotype, and enhanced NF-κB p65 nuclear translocation in EOC microglial
cells. (A) At 8 h post-lipopolysaccharide (LPS) treatment, Cisd2 mRNA expression was decreased in the
LPS-stimulated EOC microglial cells. The mRNA expression levels of Tnfa (B) and Il1b (C) were higher
and the mRNA (D) and protein expression (E) levels of Arg1 (M2 microglial cell marker) were lower
in the siCISD2-transfected LPS-stimulated microglial cells than in the scrambled RNA-transfected
LPS-stimulated microglial cells. The upper panel in (E) indicates a representative immunoblot of the
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protein expression of Arg1 (40 kDa). Actb (45 kDa) was used as an internal control. (F) The results
of the enzyme-linked immunosorbent assay (ELISA) revealed that LPS enhanced the DNA-binding
activity of NF-κB p65 subunit upon Cisd2 knockdown. Vertical bars indicate mean ± standard error
of mean of mRNA (n = 3 for each group), protein (n = 3 for each group), and ELISA (n = 3 for each
group) analysis results. * p < 0.05, ** p < 0.01, and *** p < 0.001 (pair-wise multiple comparisons
between groups were performed using the Newman–Keuls test). (G) Schematic diagram of the
mechanism underlying the regulation of the IκB/NF-κB signaling pathway by CISD2 through its anti-
inflammatory effects in the microglia. The downregulation of CISD2 suppresses the inhibitory effects
of CISD2 on IκB (through upregulation of PPAR-β) and consequently promotes the translocation of
the active form of NF-κB (namely P65) to the nucleus. In the nucleus, P65 promotes the expression
of inflammatory genes, such as TNFA and IL1B. SCI induced a decrease in CISD2 and elevated the
expression of Aconitase 1 (ACO1, marker of Fe-S cluster biogenesis), immunoglobin binding protein
(BiP), and C/EBP homologous protein (CHOP) (marker of UPR) expression in the injured spinal cord.
Representative photographs of IHC-stained sections of tissue samples for CISD2 (H), ACO1 (I), BiP
(J), and CHOP (K) obtained from the spinal cords of rats in the sham control group (H–K), and SCI
group (L–O), respectively (H–O: 200×) are shown. For H–O, the proposed protein pattern in the
dashed box (indicated by yellow arrow) was a 12 times magnification of the protein in the solid box
(2400×). Vertical bars indicate the mean (±SEM) number of stained cells for of CISD2 (P), ACO1 (Q),
BiP (R), and CHOP (S) per tissue section in each group (n = 4). * indicate statistical significance. Scale
bar = 200 µm.

The mRNA expression levels of microglial cell-induced proinflammatory mediators,
such as Tnfa (*** p < 0.001; Figure 5B) and Ilb (* p < 0.05; Figure 5C), in the LPS-stimulated
scrambled RNA-transfected cells, were significantly higher than those in the scrambled
RNA-transfected cells at 8 h post-LPS treatment. The expression levels of the LPS-induced
proinflammatory cytokines Tnfa (** p < 0.01; Figure 5B) and Ilb (*** p < 0.001; Figure 5C),
which are M1 microglial cell markers, in the siCISD2-transfected LPS-treated microglial
cells were significantly increased compared with those in the scrambled RNA-transfected
LPS-treated cells. The mRNA (*** p < 0.001; Figure 5D) and protein (* p < 0.05; Figure 5E)
expression levels of Arg1, an M2 microglial cell marker, in the siCISD2-transfected LPS-
treated cells, were lower than those in the scrambled RNA-transfected LPS-treated cells
(representative immunoblot shown in the upper panel; Figure 5E) at 8 h post-LPS treatment.
This indicated that LPS-induced injury downregulates the expression of Cisd2, which
promotes the polarization of microglial cells toward the M1 phenotype and inhibits the
polarization toward the M2 phenotype.

ELISA was performed to verify the effect of Cisd2 knockdown on the DNA-binding
activity of NF-κB p65 subunit in EOC microglial cells. The DNA-binding activity of NF-κB
p65 in the scrambled RNA-transfected LPS-treated cells was significantly higher than that
in the scrambled RNA-transfected cells at 8 h post-LPS treatment (* p < 0.05; Figure 5F).
Additionally, the DNA-binding activity of NF-κB p65 in the siCISD2-transfected LPS-treated
cells was higher than that in the scrambled RNA-transfected LPS-treated cells (** p < 0.01;
Figure 5F). The results of CISD2 function suppression experiments demonstrated that
CISD2 exerted in vitro anti-inflammatory effects in the LPS-treated microglial cells. The
anti-inflammatory mechanism of CISD2 is summarized in Figure 5G. The downregulation
of CISD2 suppresses the CISD2-mediated inhibition of IκB degradation (by activating
PPAR-β), which promotes the nuclear translocation of NF-κB P65. In the nucleus, NF-κB
P65 promotes the expression of proinflammatory genes, such as TNFA and IL1B (Figure 5G).

These findings indicate that the expression level of CISD2 was negatively correlated
with injury severity and that the anti-inflammatory CISD2 protects against injury-induced
inflammation, which adversely affects neural homeostasis.

Next, we would like to ask whether the defect in CISD2 is possibly specific to this
protein itself or caused by a general defect in Fe-S metabolism, and whether the unfolded
protein response (UPR) is involved in this situation as CISD2 is located in the ER. A spinal
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cord resection model in rats was conducted to explore potential factors for injury-driven
decline in CISD2. As shown in Figure 5, IHC staining of CISD2 demonstrated significant
loss in the SCI group after hemisection (Figure 5H), versus sham control (Figure 5L). After
spinal cord hemisection, in the presence of reduced CISD2, the spinal cord lesions showed
enhanced IHC staining for ACO1 (marker of Fe-S cluster biogenesis [53], Figure 5I), BiP
(Figure 5J), and CHOP (Figure 5K) (marker of UPR [54]), as compared to sham controls
(Figure 5M–O, respectively). For Figure 5H-O, the protein pattern in the dotted box
(2400×) is a 12-fold magnification of the protein in the solid box (200×). CISD2, ACO1,
CHOP, and BIP expression were analyzed by one-way ANOVA. The results indicated that
significant differences for the sham control and SCI group occurred in CISD2 [F (1, 6) = 7.02,
p < 0.05, Figure 5P], ACOI [F (1, 6) = 105.07, p < 0.05, Figure 5Q], and CHOP expressions
[F(1, 6) = 5.36, p = 0.06, Figure 5S]. Though there was a trend towards elevated protein, there
were no significant differences for BiP between the sham and SCI groups [F(1, 6) = 3.49,
p > 0.05, Figure 5R]. These findings imply that CISD2 deficits after injury are likely to
indicate the possibility that iron homeostasis could be altered, and are possibly involved in
ER stress and associated UPR.

3.5. Potentiation of CISD2 Function Using TTM Increased CISD2 Expression and Decreased the
Plasma and CSF Levels of Inflammatory Mediators in Patients with CNS Injury

TTM is reported to exert anti-inflammatory effects and enhance the microglial po-
larization toward the M2 phenotype in animal models [55,56]. Previously, we induced
hypothermia in rats with spinal cord hemisection using continuous cryogenic spray cooling
(CSC). CSC-mediated hypothermia mitigated injury-induced CISD2 downregulation and in-
hibited astrocyte activation, glial cell-mediated neuroinflammation, cellular apoptosis, and
neuronal death [27]. Previous studies demonstrated that CISD2 exerts anti-inflammatory
effects by functioning as an NF-κB antagonist and inhibiting injury-induced inflammatory
cascades [26,29]. Thus, hypothermia-induced CISD2 upregulation may mitigate neuroin-
flammation and apoptosis.

The plasma and CSF levels of CISD2 and inflammatory mediators, such as IL6 and
CRP, were examined in three patients with CNS injury (cases 2, 12, and 13 in Table 1; 1 case
each of TBI, CVA, and SCI [AIS-A (complete)]). These three patients were subjected to TTM
after decompression surgery. Hypothermia set in <30 h post-decompressive operation and
was maintained for 5 days with a target temperature of 35 ◦C, followed by slow rewarming
(0.25 ◦C/h).

In these three patients with CNS injury, the plasma (Figure 6A) and CSF (Figure 6C)
levels of CISD2 after TTM were significantly higher than those before TTM. Addition-
ally, TTM significantly mitigated the injury-induced upregulation of plasma CRP levels
(Figure 6B) and CSF IL6 levels (Figure 6D).

Thus, therapeutic hypothermia exerted anti-inflammatory effects by increasing the
levels of CISD2. These findings indicate that CISD2 is a biomarker for the anti-inflammatory
effect of therapeutic hypothermia in patients. The results of CISD2 potentiation studies
were consistent with those of in vitro and animal studies and demonstrated that CISD2
exerts anti-inflammatory effects in the CNS.

These findings reveal that the extent of neural damage can be monitored based on the
expression levels of CISD2. To mitigate injury-induced inflammation, the expression level
of CISD2 must be increased, indicating that CISD2 is a potential prognostic marker for CNS
injury.
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Figure 6. Three patients with central nervous system (CNS) injury (cases 2, 12, and 13; Table 1)
who underwent decompression surgery were subjected to targeted temperature management (TTM)
immediately after the surgery. The plasma (A) and cerebrospinal fluid (CSF) (C) levels of CISD2 after
TTM were higher than those before TTM. The plasma CRP levels (B) and the CSF IL6 levels (D) after
TTM were significantly lower than those before TTM. The prognostic assessment of the three patients
after therapeutic hypothermia treatment revealed that TTM mitigated inflammation. The levels of
anti-inflammatory CISD2 increased after TTM, which demonstrated that CISD2 is a biomarker for
CNS insult.

4. Discussion

Damage to the brain or spinal cord must not be managed as an individual disease in a
clinical setting but as a CNS disease. Inflammatory mediators, such as TNFA, are reported
to enter the blood–spinal cord barrier after SCI [42,57]. TNFA and various SCI-driven
proinflammatory mediators [58] accumulate in the CSF, which circulates between the spinal
cord and brain. TNFA disrupts the integrity of the blood–brain barrier (BBB), which results
in enhanced permeability of the BBB and inflammation in the hippocampus of mice with
depression [59]. In rodent models of SCI, neuroinflammation is mediated by the activation
of microglial cells in the thalamus, hippocampus, and cerebral cortex [60]; the production of
proinflammatory cytokines/neurotoxic molecules [43]; and the impaired secretion of brain-
derived neurotrophic factor (BDNF) [61], which affects neuronal plasticity and promotes
neurodegeneration in the brain. Clinical observations have indicated that SCI promotes cog-
nitive impairment [37–39], which leads to the development of neurodegenerative diseases,
such as AD [41] and PD [42]. Conversely, lesions in the brain can promote dysfunctions in
the downstream systems. One study reported that corticospinal tract atrophy and motor
neuron loss in the anterior horn of the spinal cord in a rat fluid percussion injury model of
TBI were higher than those in the sham operation group at 12 weeks post-TBI [62].

Previously, we transfected the SH-SY5Y neuron-like and EOC microglial cells with
siCISD2 to knock down the expression of CISD2 and demonstrated the anti-inflammatory
properties of CISD2. The knockdown of CISD2 enhanced the secretion of inflammatory
mediators (NOS2 and the chemokine regulated on activation, normal T cell expressed
and secreted) and led to mitochondrial dysfunction, including decreased mitochondrial
membrane potential (∆ψm), enhanced ROS release, and ultimate cellular apoptosis in
SH-SY5Y cells [1,28]. Transfection of EOC microglial cells lines with siCISD2 augmented
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the proinflammatory M1 phenotype (TNFA, IL1B, NOS2, and COX2) and downregulated
the anti-inflammatory M2 microglia phenotype (ARG1, YM1, and IL10) [29]. Additionally,
we found that CISD2 acts on the upstream components of the PPAR-β. Data showed that
siCISD2-transfected cells exhibited decreased expression of PPAR-β [26] and augmented
the DNA-binding activity of NF-κB P65 subunit [29]. More detailed, PPAR-β has been
shown to stabilize IκB and prevent it from degradation, which in turn suppresses NF-κB
signaling pathway [63]. As a consequence, CISD2 acts through the PPAR-β/IκB/NF-κB
signaling pathway to exert its anti-inflammatory effects.

OB, which is the sentinel of neurodegeneration in the brain [45,64,65], mediates the
olfactory projection among various functional nuclei [48,49,66] and stores neural stem
cells (NSCs) [67]. Lesions at distant sites, such as the spinal cord [44] or other peripheral
sites, increase the vulnerability of OB to injury [68]. OB injury decreases the signal trans-
duction of olfactory projection and impairs neurogenesis, which leads to dysfunctional
neurotransmission [65,69] and impairment of cognition and memory [70]. Pathological
alterations in the OB post-SCI or injury at the remote peripheral sites are considered early
signs of neurodegeneration in the brain. The infiltration of peripheral immune cells, such
as lymphocytes, neutrophils, macrophages, and plasma cells, and the accumulation of
proinflammatory cytokines in the OB were observed in rats intravenously administered
with LPS at 6 h post-LPS [68]. Pathological changes in the OB were observed in mouse mod-
els of SCI at 8 h post-SCI. The SCI-induced micropathologies in the OB included reactive
astrocyte-driven neuroinflammatory response, olfactory dysfunction, and dysregulated
generation of NSCs and associated neurotrophic factors, such as BDNF [44]. In this study
(Figure 3B,C), the mRNA levels of Tnfa in the brain (not restricted only to the OB) were
increased at 1 h post-spinal cord hemisection injury in mice. This indicates that trauma
may rapidly activate the proinflammatory cascades in the entire CNS and subsequently
promote inflammation in the brain.

The above-mentioned phenomenon was confirmed in our results. The decreased
CISD2 expression post-CNS injury results in the downregulation of CISD2-mediated anti-
inflammatory responses in the CNS and the exacerbation of proinflammatory responses in
the CNS. The brain levels of Cisd2 mRNA were decreased (Figure 3A), whereas the brain
levels of Tnfa mRNA (Figure 3B) and protein (Figure 3C) were significantly increased in the
1 and 4 h post-SCI groups compared with those in the sham operation group. In SCI-driven
inflammatory brain, the expression level of Cisd2 gradually decreased from 1 h to 4 h post-
injury. However, the expression of Tnfa significantly increased from 1 h to 4 h post-injury.
Thus, spinal injury-induced brain inflammation decreases the expression of CISD2 and
consequently contributes to the degeneration of the brain. Accordingly, investigation of
injury biomarkers or exogenous/endogenous anti-inflammatory mechanisms, including
CISD2-dependent mechanisms, is mandatory for the theranostics of CNS injury and disease.

Previous studies reported that the expression of CISD2 is decreased in cell or animal
models of inflammation-induced injury [28] or aging [1]. The expression of CISD2 was
decreased upon exposure to various insults, including injury or the aging process. For
example, the expression of CISD2 is downregulated in mice [26,28] or rats [27] after spinal
cord hemisection, lipopolysaccharide (LPS)-stimulated astrocytes [26,28], and SH-SY5Y
neuron-like cells [28], and in 104-week-old mice [1] and astrocytes after long-term culture
(35 DIV) [1]. Hence, in this study, we reasonably hypothesized that CISD2 is a potential
biomarker for the degree of damage in the CNS and that CISD2 exerts anti-inflammatory
effects in the CNS. The expression of CISD2 was examined in patients with CNS insults.
The plasma and CSF levels of CISD2 were lower in patients with CNS insults than in
the healthy controls. Additionally, the plasma and CSF levels of CISD2 were negatively
correlated with the severity of CNS insults. A linear regression model was used to examine
the correlation between the plasma levels of CISD2 and IL6 (a proinflammatory cytokine
that is positively correlated with the severity of CNS injury). The correlation coefficient
was −0.7062, which indicated a strong negative correlation [71]. Therefore, CISD2 was
demonstrated to be a biomarker for CNS insult.
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The results of experiments on the inhibition and potentiation of CISD2 functions
demonstrated the anti-inflammatory activities of CISD2, which will enable the application
of CISD2 in neuroscience research. In this study, CISD2 was downregulated using siCISD2
in LPS-stimulated EOC microglial cells (to mimic microglial cell-induced inflammation)
or the anti-CISD2 neutralizing antibodies in mice (to mimic SCI-driven inflammation of
the brain and spinal cord) (Figures 4 and 5). Treatment with LPS shifted the polarization
of microglial cells toward the inflammatory M1 phenotype. Additionally, Cisd2 knock-
down exacerbates the proinflammatory responses in both in vivo and in vitro models. The
function of CISD2 in patients with CNS insults was potentiated using TTM. TTM downreg-
ulated the plasma and CSF levels of proinflammatory mediators (Figure 6). These findings
provide more evidence of the anti-inflammatory properties of CISD2. Moreoveer, CISD2
can regulate the upstream proinflammatory molecules, such as IκB and NF-κB, in the cas-
cade of proinflammatory responses [26,29]. Thus, strategies that increase CISD2 expression
levels can directly achieve widespread and effective anti-inflammatory effects. Previous
studies have reported various strategies, including Cisd2 overexpression in AD mice [72],
experimental cryogen spray cooling in SCI rats [27], and administration of curcumin [1,28]
and Momordica charantia Linn. var. Abbreviata Ser. [26], to increase the expression of
CISD2 and enhance its neuroprotective effects. In this study, the expression of CISD2 was
increased in patients with CNS insults who underwent TTM.

This study has several limitations. This study included a relatively small number of
patients, especially the controls, in spite of the fact that the data obtained is statistically
significant. Further quantification studies with a wide range of patients should be con-
ducted to consider CISD2 as a potential biomarker for clinical implementation. Second,
our findings in cells, animals, and clinical patients suggest that CNS insult downregulates
CISD2. However, the mechanism underlying injury-induced CISD2 downregulation has
not been thoroughly elucidated. As a family of Fe-S proteins, CISD2 protects against ER or
mitochondrial stress by mediating the transport and homeostasis of labile iron, calcium,
and ROS across the ER, mitochondria, and MAMs [18,20,24]. The current study found
that injury-driven CISD2 depletion was probably related to ER stress and part of the UPR.
Further studies are warranted in the future to determine whether the protein folding and
modification of CISD2 is influenced after injury, to further determine if it is involved in the
UPR process, and to detail the depletion mechanism. Furthermore, ACO1, the Fe-S bifunc-
tional protein, acts as catalytically aconitase enzyme in the the Krebs cycle [73] or mRNA
binding protein in regulating iron uptake and utilization [74] at respective high or low iron
levels. Because of the increased levels of ACO1 in SCI of our data, we suggest that CISD2
deficits after injury are possibly related to alterations in iron homeostasis; however, whether
the deregulation of iron homeostasis is also involved in SCI and its potential relationship
with reduced CISD2 is a concern to be further investigated. Nevertheless, the results of this
study showed that the expression of CISD2 was negatively correlated with the severity of
the disease. Accordingly, CISD2 is a biomarker of CNS injury. The novel findings of this
study provide a basis for the development of CISD2-dependent diagnostic strategy for the
nof CNS insults and will enable the establishment of CISD2-based anti-inflammatory drug
intervention in clinical practice.

5. Conclusions

We previously reported that CISD2 is downregulated after injury. Consistently, this
study demonstrated that CISD2 is a biomarker for CNS insult and that CISD2 expression is
negatively correlated with the severity of the disease. The CNS is susceptible to external
influences. Inflammatory responses were observed in the brain at 1 h post-SCI. Thus, CISD2-
mediated neuroprotective effects are suppressed in the CNS after injury. The findings of
this study will enable the development of novel therapeutic strategies for CNS injury, which
may involve the upregulation of anti-inflammatory CISD2.
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