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Abstract

Diverse, high-dimensional modalities collected in large cohorts present new opportunities for the 

formulation and testing of integrative scientific hypotheses. Similarity-driven multi-view linear 

reconstruction (SiMLR) is an algorithm that exploits inter-modality relationships to transform 

large scientific datasets into smaller, more well-powered and interpretable low-dimensional spaces. 

SiMLR contributes an objective function for identifying joint signal, regularization based on 

sparse matrices representing prior within-modality relationships and an implementation that 

permits application to joint reduction of large data matrices. We demonstrate that SiMLR 

outperforms closely related methods on supervised learning problems in simulation data, a multi-

omics cancer survival prediction dataset and multiple modality neuroimaging datasets. Taken 

together, this collection of results shows that SiMLR may be applied to joint signal estimation 

from disparate modalities and may yield practically useful results in a variety of application 

domains.
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1 Introduction

Healthcare – from both a prevention as well as treatment perspective – is increasingly 

turning to large, mixed datasets to gain a better understanding of the biological complexity 

that influences sensitivity or resistance to disease or injury. These studies promise new 

insights into disease etiology by collecting several related and complementary measurements 

on each subject of interest, i.e. by collecting multi-view data. In more common conditions, 

like Alzheimer’s disease, multi-view datasets are motivated by the need to understand the 
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diversity of the disease process, identify sub-groups and thereby advance personalized 

treatment approaches. Multi-view data can also reveal key features that drive variability 

within the “normal” phenotype e.g. underlying factors that contribute to difference in 

neurobiological age1 or the genetic architecture of quantitative phenotypes as mediated 

through brain structure2.

Multi-view (also known as multiple modality or multi-block) datasets are increasingly 

common in the biomedical sciences. In the idealized case, each view / modality will provide 

a completely unique measurement of the substrate biology. However, it is perhaps more 

common that each view provides a partial and not wholly independent perspective on a 

complex phenomenon. In this case, covariation can be exploited in order to sift through 

noisy measurements and better identify meaningful signal. Moreover, joint relationships 

across systems of the brain or across scale can form the foundation for integrative scientific 

hypotheses.

Pre-specified joint hypotheses allow the scientist to avoid a combinatorial explosion of tests 

for possible interactions. Although powerful in sufficiently large, well-understood datasets, 

prior multivariate hypotheses can be difficult to enumerate with sufficient detail to support 

implementation and testing. Fully multivariate and data-driven dimensionality reduction 

models provide an alternative including principal component analysis (PCA)3,4 and 

independent component analysis (ICA)5–7. However, these popular models, applied directly, 

are not explicitly designed for interpretation across multiple modalities and do not provide 

an easy way for the scientist to regularize the solution with prior knowledge or to visualize 

the feature vectors which are both dense and signed (i.e. have both positive and negative 

weights).

Graph-regularized, imaging-focused dimensionality reduction methods emerged in recent 

years to address the desire for interpretable components8–10. Graph-net10, similar to 

SCCAN11,12, uses ℓ1 regularization to constrain embedding vectors to be sparse and reduce 

over-fitting in high-dimensional problems. Relatedly, graph-regularization has been used to 

improve prediction in imaging genetics10,13,14 and may be combined with canonical 

correlation analysis (as in SCCAN11). Non-negative factorization methods provide a second 

degree of interpretability by guaranteeing that factorizations are unsigned and, therefore, 

these methods allow components to be interpreted in terms of their original units (e.g. 

millimeters)15,16. Other efforts9,17 use prior constraints to guide solutions toward familiar 

sparsity patterns. More generally, regularization is also critical to well-posedness18,19.

The need for joint, interpretable modeling of several (>2) parallel but heterogenous 

datatypes is rapidly increasing20–24. Multi-block data analysis methods such as Kettering’s 

five offerings25 and more recent regularized generalized canonical correlation analysis 

(RGCCA and its sparse variant SGCCA)26–28 and multiway generalized canonical 

correlation analysis29 extend Hotelling’s classical CCA30,31 to multi-view (viz. multi-block) 

data. Joint and individual variation explained (JIVE) is another framework dedicated to data 

fusion32,33 along with MultiLevel Simultaneous Component Analysis (MLSCA)34 and 

Multi-Omics Factor Analysis (MOFA)35. A variation of JIVE, applied to convolutional 

network features, has also been applied to imaging genetics problems36.
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Our contribution, similarity-driven multi-view linear reconstruction (SiMLR), is a joint 

embedding method—targeting biomedical data—that links several of the ideas expressed in 

prior work. SiMLR builds on sparse canonical correlation analysis for neuroimaging 

(SCCAN)12,37,38 and prior-based eigenanatomy17,39. SiMLR goes beyond SCCAN in that it 

takes two or more modalities as input, allows customized regularization models and uses a 

fast and memory efficient implementation appropriate for large datasets. SiMLR outputs 

locally optimal low-dimensional matrix embeddings for each modality that best predict its 

partner modalities. SiMLR achieves this by reconstructing each modality matrix from a 

basis set derived from the partner modalities. One important contribution of SiMLR is that 

the “linking” subspace is computed via a source separation algorithm, e.g. singular value 

decomposition (SVD) or ICA. This sub-algorithm seeks to identify latent signal sources that 

span modalities. The basis set can be forced to be either orthogonal (SVD) or statistically 

independent (ICA) where the latter option may be more appropriate for unmixing signal 

sources in real world data40,41. Simultaneously, the feature vectors may be constrained by 

graph-regularized sparsity and non-negativity. Furthermore, the target energy (measuring the 

similarity between different modalities) is also flexible and builds on classical objective 

functions in SVD and CCA. SiMLR is the only available framework that combines these 

features in an accessible and flexible joint dimensionality reduction algorithm. Although 

SiMLR supports path modeling, only the leave-one-modality-out approach is explored in 

this work.

2 Results

Figure 1 shows a general overview of how SiMLR is applied within the context of scientific 

data. Each evaluation below fits within this general framework. Furthermore, each study 

uses joint dimensionality reduction in conjunction with regression-based supervised learning 

in a training and testing paradigm. Table 1 summarizes the overall findings that are 

presented in this results section.

2.1 Simulated data

SiMLR seeks to solve a multiple modality version of the cocktail party problem43 where the 

hidden source signals are distributed across each modality. Therefore, SiMLR assumes that 

this common latent signal exists across modalities and may be found by linear projections 

into a low-dimensional space. Details of the generative data simulation approach can be 

found in section 7.7.

The evaluation criterion then compares the ability of SiMLR to recapture the known basis 

with respect to: (a) regularized generalized canonical correlation analysis (RGCCA); (b) 

sparse generalized canonical correlation analysis (SGCCA). The primary evaluation 

criterion – accuracy in predicting the true latent signal – exhibits that SiMLR’s use of cross-

modality information and regularization drives the solution closer to the ground truth basis 

in comparison to the other methods. Secondarily, we demonstrate improved robustness to 

data corruption.

2.1.1 Signal recovery—An overview of the results is in Figure 2. In this figure, higher 

scores are better and points above the diagonal dotted line show superior SiMLR 
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performance in pair-wise fashion. Panel (a) shows that SiMLR-CCA-ICA outperforms 

RGCCA and SGCCA. Panel (b) shows that SiMLR-CCA-SVD achieved the best overall 

performance with an average R squared recovery of 0.51 while SGCCA and RGCCA score 

0.45 and 0.35 respectively. Panel (c) shows that SiMLR-regression-ICA does nearly as well 

as the other SiMLR variants. Statistical details are available in supplementary information.

2.1.2 Sensitivity to amount of corrupted data—RGCCA and SGCCA performance 

(R squared) is related to corruption with p-values 0.01179 and 0.0001525, respectively. 

SiMLR-CCA-ICA, SiMLR-CCA-SVD, SiMLR-Reg-ICA and SiMLR-Reg-SVD 

performances are impacted by corruption with p-value 0.01045, 0.04103, 0.0223 and 

0.006516, respectively. As such, SGCCA (in this experiment) is most sensitive of these 

methods to corrupted data and SiMLR-CCA-SVD is least so. Inspection of the R squared 

performance plots indicates that the impact of corruption is not insubstantial with 24 of 120 

RGCCA experiments leading to R squared less than 0.2. For SGCCA, SiMLR-CCA-ICA, 

SiMLR-CCA-SVD, SiMLR-Reg-ICA and SiMLR-Reg-SVD, these totals are 13, 6, 5, 3 and 

4 respectively. From this perspective of a performance cutoff, SGCCA does slightly better 

than RGCCA. However, both methods still are less reliable than all variants of SiMLR. In 

the remaining evaluation studies, we focus on contrasting SGCCA with SiMLR because they 

both involve feature selection which is more appropriate for the p >> n (features >> 

samples) cases that we investigate.

2.2 Cancer survival prediction

We compare methods in the context of a training-testing paradigm for survival 

prediction47,48,49,50 based on multi-omics benchmark data in glioblastoma (GBM)51. The 

biological data includes n = 274 subjects with: gene expression (p = 12,042 predictors)44, 

methylomics/DNA methylation (p = 5,000)45 and transcriptomics/micro RNA expression (p 
= 534)46. GBM also provides survival data, i.e. the number of days since diagnosis and 

whether or not death has occurred at that time.

The benchmark paper above showed that multiple canonical correlation analysis (MCCA 

pairwise CCA across all pairs )52 had the total best prognostic value. Thus, a comparison 

between SGCCA and SiMLR is pertinent. Nevertheless, these approaches should not be 

considered as the best strategy given that single-omic analysis did nearly as well51.

For both SGCCA and SiMLR and over 50 runs, we split the data into 80% training and 20% 

testing sets. In training data, we perform supervised dimensionality reduction where the 

‘omics data is jointly reduced with both death and survival time acting as a fourth matrix. 

We train a Cox model47,48,49,50 with the low-dimensional bases derived from the ‘omics data 

in the previous step. Lastly, we predict the survival outcome in test data and evaluate 

accuracy with the concordance metric49,50.

Under this design, a better method will both produce higher concordance values and produce 

more concordance values that meet or exceed the value of 0.6 which is considered a 

threshold of moderate agreement53 and has been reported in recent studies for reasonably 

performing methods49,50. We repeat the above experiments over 50 splits of the data in order 

to gain an empirical estimate of the difference in performance between SiMLR and SGCCA 
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with different input data. We also test at three different sparseness levels thereby comparing 

the performance of solutions that yield feature vectors with low (25%), moderate (50%) and 

high (75%) sparseness. The study design is further explained in 7.8.

In this evaluation, SiMLR with the reconstruction/regression energy shows an advantage 

over SGCCA in terms of predictive performance as measured by concordance in test data. 

Average concordance for SiMLR with the reconstruction error term is 0.64 (two-sided paired 

t-test comparing concordance performance, p-values < 0.0001 for both source separation 

options at the best performing sparseness levels). The covariance energy and SGCCA 

perform nearly identically and, on average, do not exceed 0.6 concordance (two-sided paired 

t-test, p-values > 0.05 for both source separation options and all sparsenesss levels). Neither 

method was optimized for this problem in terms of data selection, parameter or pre-

processing choices. Moreover, the authors are not domain experts in this field. As such, this 

acts as a fairly unbiased comparison of these tools. In summary, SiMLR with reconstruction 

performs statistically equivalently or better on average than SGCCA in this problem with 

SiMLR-Reg-ICA showing the best results over all sparseness values. SiMLR-CCA 

performed equivalently to SGCCA. Further details may be found in supplementary 

information.

2.3 Brain age prediction

The pediatric template of brain perfusion (PTBP54) includes freely available multiple 

modality neuroimaging consistently collected in a cohort of subjects between ages 7 and 18 

years of age. PTBP also includes a variety of demographic and cognitive measurements. A 

relevant reference analysis of this data is available in55.

We provide pre-processed (machine learning ready) matrix format for three measurements 

taken in 97 subjects: voxelwise cortical thickness56, fractional anisotropy (FA) derived from 

diffusion tensor imaging and cerebral blood flow (CBF) all at the voxel-wise level at 1mm 

resolution. The dimensionality of the matrices are 97 × 515,317 for thickness and CBF and 

97 × 438,394 for FA. The development-related phenotype matrix consists of the subjects’ 

sex, chronological age, total IQ score, verbal IQ score and performance IQ score. The IQ 

variables are highly correlated. The study design is explained in 7.9.

2.3.1 Computation time—In this example, SGCCA and SiMLR demonstrate overall 

similar run-time with a few exceptions. These exceptions are caused by data-dependent 

longer convergence times. SGCCA runs, over each of five folds, for 235, 29, 29, 30 and 33 

minutes. SiMLR with CCA and ICA runs for 105, 46, 46, 41 and 46 minutes. SiMLR with 

CCA and SVD runs for 78, 58, 94, 53 and 56 minutes. SiMLR with regression and ICA runs 

for 44, 47, 55, 39 and 60 minutes. SiMLR with regression and SVD runs for 28, 31, 41, 54 

and 33 minutes. Overall differences in run-time likely depend on convergence settings as 

well as the variability of the energy function combined with the input data.

2.3.2 Prediction outcomes—Figure 3 demonstrates the predictions’ mean absolute 

error (MAE) for each algorithm that we tested. None of the methods perform well for 

predicting IQ-related scores. However, both SiMLR and SGCCA component regression 

produce reasonable predictions of brain age57. These values reported here are competitive 
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with those reported in55. The MAE differences translate to a statistically significant 

improvement in performance between SiMLR (all variants) and SGCCA (best result p-value 

= 0.0002965, worst p-value = 0.04692 ). At the individual prediction level, this means that 

SiMLR produces a more accurate age in 61 of 97 cases for SiMLR-CCA-SVD.

2.4 Imaging-genetics data

Pediatric Imaging, Neurocognition, and Genetics (PING) data58 offers the opportunity to 

jointly study two types of neuroimaging, anxiety and depression related SNPs2 and self-

reported scores of anxiety and depression. The training portion of the data is defined by 

subjects who have only neuroimaging and SNPs. This allows us to perform dimensionality 

reduction in training subjects alone (n=508) to identify a much lower dimensional space that 

encodes the variability induced jointly by SNPs and brain structure. The test set is 

distinguished by individuals who have not only imaging and genetics measurements but also 

self-reported measures of anxiety and depression. We perform inference in the test set 

(n=162) to determine which, if any, of the learned embeddings relate to these scores.

The evaluation criterion, here, is inferential i.e. we prefer the method that leads to 

embeddings with greater relationship to the clinical scores. This exploratory study is shared 

in supplementary information. Primarily, SiMLR identifies more signal related to anxiety 

and depression in the inferential portion of the study, when compared to SGCCA. I.e. more 

components relate to self-report anxiety and depression scores – with both SNPs and brain 

structure (thickness and white matter integrity, like PTBP) contributing – when using 

SiMLR compared to SGCCA. SiMLR leads to 3 components whereas SGCCA only 

identifies a single component related to anxiety. More importantly, however, we noted a 

severe difference in computation time. This study computes 40 components from high-

dimensional data. SGCCA takes over 24 hours to compute these components. SiMLR (all 

variants) takes less than an hour. The primary difference between this study and the others 

included as examples is that the number of rows and the number of columns is relatively 

large (for training, n=508 and pthickness = 66, 565, p2 = 68, 966, p3 = 4,309). As such, the 

advantage SGCCA gains by working in the dual space may be overwhelmed by the 

combined cost of relatively large covariance matrices and the need to perform deflation for 

each set of components. In contrast, SiMLR computes the feature matrix for each modality 

in one pass through the optimization.

We also provide a related supplementary result in multi-omic Alzheimer’s disease 

neuroimaging initiative (ADNI) data. This result shows another way to relate imaging and 

cognition to genetic measurements: through polygenic risk measurements. Polygenic risk 

scores effectively reduce the dimensionality of genetic data based on an a priori weighted 

sum of trait-associated alleles. In supplementary information, we contrast SiMLR, RGCCA 

and SGCCA applied to tabular data where n >> p. The results of this joint reduction repeat 

trends shown elsewhere in this document; however, the difference between sparse and 

unconstrained dimensionality reduction is relatively less due to the more classical setting (n 
>> p). This demonstrates that SiMLR can be used effectively, like RGCCA, even when a 

dataset is already relatively well-powered.
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3 Discussion

Interestingly, in both simulation and real clinical data, SiMLR extracts different signal than 

related methods as judged by the systematic performance trends in our stdies. This feature 

may relate to the method’s core mathematics: high-dimensional embedding vectors are 

constructed purely from within modality data but the low-dimensional bases are derived 

from cross-modality representations determined by a user-selected source separation 

algorithm. If the SVD source separation method is chosen, then this representation will be 

orthogonal; if ICA is chosen, they will be statistically independent where independence is 

defined by measuring non-gaussianity40 (one of the tenets of fastICA is “non-gaussianity is 

independence”). This type of approach will only be effective in datasets that exhibit some 

degree of cross-modality covariation that can be decoded meaningfully into multiple “true” 

source signals. If this is not possible, then SiMLR may obscure rather than extract hidden 

signal.

Performance differences could relate to two other implementation details. SiMLR uses a 

primal formulation that directly optimizes in the high-dimensional feature space in which 

the energy function is defined. In contrast, SGCCA computes solution updates in a low-

dimensional space (see Algorithm 1 in26) and then performs soft-thresholding on the 

resulting vectors after transformation to the high-dimensional feature space. Secondly, 

SGCCA uses deflation to generate multiple components whereas SiMLR operates on full 

feature matrices. That is, SiMLR computes full matrix solutions all at once and uses the 

underlying source separation method to optimize these vectors jointly at each iteration of the 

algorithm. This improves computational efficiency when extracting several components (i.e. 

more than a few) but also marks a clear difference in the objective functions defined by 

SiMLR and SGCCA. These technical factors all contribute to differences in the outcomes 

reported here.

There are several limitations to this study and opportunities for future work. Primarily, we 

believe this approach and the current findings will be strengthened by application in related, 

larger datasets such as those provided by Adolescent Brain Cognitive Development 

(ABCD), the UK Biobank and Human Connectome Project. Furthermore, while we present 

methods for matrix standardization (the usual centering and scaling), this may not be a 

perfect solution for all cases, in particular when data deviates strongly from gaussianity. 

Other alternatives are available (e.g. rank transformations), but those are not explored here. 

While this work provides several automated or semi-automated strategies for selecting 

regularization parameters and the rank (k) for the feature vectors, none of these strategies are 

“perfect”. This is unsurprising, given that technical research continues about parameter 

setting even in more classical methodology (PCA, CCA). While cross-validation approaches 

may also be used, the computational and data expense for these is relatively high and they 

also suffer theoretical as well as practical limitations in terms of effectiveness60. Despite 

these issues that are rather general, we believe the current implementation and interface to 

SiMLR, combined with guidance provided here, may yield a practically useful tool for 

multiple modality analysis of biomedical imaging and related data.
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A second caveat to this study is that the design is explicitly multivariate and, as such, we do 

not interrogate the predictive value of individual embeddings. Our statistical focus is on the 

omnibus models. Other researchers may prefer to study individual embeddings 

independently. This is one known limitation within the current demonstration of SiMLR. 

Future work may explore this research in conjunction with extracting not just joint but also 

individual structure. This latter advantage is one provided by JIVE. SiMLR could also be 

further optimized directly for clustering problems, e.g. by implementing a multi-view 

clustering loss61,62.

Two technical findings from these results are suggestive of directions for future work. First, 

SiMLR’s performance suggests that a primal formulation for large joint matrix learning 

problems is feasible and can achieve competitive results in real and simulated data. Second, 

direct computation of feature matrices (vs. feature vectors as is done with deflation schemes) 

provides computational advantages in our experiments. However, further analysis of the 

differences between these technical approaches within a consistent framework would be 

needed to draw deeper conclusions. As always, we recommend interested users contact 

developers/authors for guidance or with issues arising in the use of this software.

7 Methods

7.1 Terminology

We outline the terminology used in the discussion that follows.

• Multi-view: several modalities collected in one cohort; alternatively, the same 

measurements taken across different studies42. We focus on the first case here.

• Covariation: we use the term in two contexts. As a general concept, we mean 

systematic changes in one modality are reflected in a predictable amount of 

change in other modalities. In the mathematical context, we use the definition of 

covariation for discrete random variables.

• Latent space/embeddings: both terms refer to an (often lower-dimensional) 

representation of high-dimensional data. These are also known as components in 

PCA. In the context of this paper, we are approximating the (hidden) latent space 

with the learned embeddings. Often, the true latent space cannot be known. We 

compute embeddings (or components), here, by multiplying feature vectors 

against input data matrices. Importantly, SiMLR can compute latent spaces that 

target either statistical independence (the ICA source separation algorithm40) or 

orthogonality (the SVD algorithm). Deflation-based schemes, on the other hand, 

only target orthogonality.

• Feature vectors: these are weights on the original features. In SiMLR, the 

feature vectors are the solutions that we are seeking. Projecting the feature 

vectors onto the original data will provide a low-dimensional representation.

These concepts are expanded upon in more detail below.
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7.2 Software platform: ANTsR

The core platform, ANTsR, builds upon the powerful R language to interface and help 

organize raw neuroimaging, genomics and other data. ANTsR uses Rcpp63 to wrap Insight 

ToolKit (ITK, now in version 564) and ANTs (currently in version 2.3.365) C++ tools for the 

R environment.

7.3 Technical background

7.3.1 Data representation—SiMLR assumes “clean” data as input. This data has no 

missing values and is structured in matrix format with each modality matched along rows 

(the subjects/samples) while the columns represent features. Single nucleotide 

polymorphism (SNP) data is often formatted this way after imputing to a common reference 

dataset such as the HapMap. In neuroimaging, we employ region of interest measurements 

or spatial normalization in order to map a high-dimensional image into this common 

representation. For example, if a brain template has p voxels within the cortex and the 

population contains n subjects, then the matrix representation of the population level voxel-

wise, normalized cortical thickness map will be Xthickness with dimensions n × p. SiMLR 

accepts > 1 matrices organized in this manner. A study of m distinct modalities would have 

input matrices with dimensions n × pi (subjects × predictors), noting that pi need not equal pj 

for any i, j ∈ 1, · · ·, m.

We discuss, briefly, the primary algorithms upon which SiMLR is based. We assume data 

matrices, below, are standardized (columns with zero mean, unit variance) and ∥ · ∥ denotes 

the Frobenius norm.

7.3.2 Multiple regression—Multiple regression solves a least squares problem that 

optimally fits several predictors (the n × p matrix X) to an outcome (y). As a quadratic 

minimization problem, we have:

arg minβ y − Xβ 2,

with optimal least squares solution:

β = XTX −1XTy .

Above, we may also add a “ridge” penalty λ∥β∥2 on the βs which is useful if p >> n i.e. in 

the case of complex, multi-view, and multivariate datasets as we propose to model here. In 

this document, n refers to the number of samples or subjects and p to predictors.

7.3.3 Principal component analysis—PCA, like multiple regression, may be 

formulated as the solution to an energy minimization problem. Select k < n, then find U (n × 

k), V (p × k) that minimize reconstruction error (where we add an ℓ1 constraint as in67–69 to 

illustrate sparse PCA):
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arg minU, V X − UV T 2 + ∑
k

λk V k 1,

with additional constraints U = XV and VTV = I where I is the identity matrix. The details of 

these constraints may vary in regularized variants of the method. Each of the columns of X 
is, here, expressed as a linear combination of the columns of U. For several modalities, we 

would compute: X1 = U1V 1
T , ⋯, Xn = UnV n

T . In this case, the “predictors” are the Ui and 

the Vi is analogous to the β in the multiple regression case. The Vi feature vectors will be 

sparse if the ℓ0 or ℓ1 penalty is used.

7.3.4 Canonical correlation analysis—CCA may be thought of as a generalization of 

multiple regression. Denoting Y as a n × q matrix, CCA seeks to find solution matrices U(k 
× p),V (k × q) that maximize correlation in a low-dimensional space between X and Y :

arg maxU, V tr Corr XUT , Y V T ,

where Corr is Pearson correlation and tr is the trace operator. In contrast to our previous 

formulation for PCA, CCA evaluates the objective function (the “energy”) in a reduced 

dimensionality space. Any of the methods above can be made sparse by enforcing the 

penalties on the feature weights as described for sparse PCA with the caveat that optimality 

constraints must be relaxed. Non-convex optimization methods such as alternating 

minimization and/or projected gradient descent must then be used70–72.

7.4 Similarity-driven multi-view linear reconstruction

SiMLR is a general framework that can be specified in forms that relate to either sparse PCA 

(a regression-like objective) or sparse CCA (a covariance-related objective). The primary 

concepts are illustrated in Figure 1. We make two assumptions about datasets to which we 

will apply SiMLR.

• Assumption 1: Real latent signal(s) are independent and linearly mixed across 

the biological system on which we are collecting several measurements (a 

standard assumption for blind source separation).

• Assumption 2: Sparse, regularized feature vectors can relate estimated latent 

signals in assumption 1 to the original data matrices through linear operations.

If data matches these assumptions then methods that can combine modalities have a better 

chance of finding the latent signals; e.g. joint analysis from (for example) genetics, 

neuroimaging and cognition may provide more reliable recovery of the true latent signal 

influencing them all. Furthermore, it is likely that spurious signal will not be shared across 

all modalities – or all elements of the features within a modality – in a consistent manner. 

Natural filtering of noise occurs in joint analysis because (most forms of) noise does not 

covary across measurement instances. Adding regularization goes further in adding 

robustness: methods regularized with sparseness terms (ℓ0 or ℓ1) can down-weight (even to 

zero) features that do not improve the objective function. A caveat of these assumptions is 
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that if no covariation across measurements exists – or if noise overwhelms all modalities/

measurements – then these methods may not be relevant.

7.4.1 The SiMLR objective function—We first present the high-level framework and 

will expand upon details for similarity measurement and regularization below. The core 

concepts in SiMLR include the fact that it incorporates flexible approaches to measuring 

differences between modalities (similarity-driven), can take as input several different 

matrices (multi-view) and that all operations are linear algebraic in nature (linear 

reconstruction). First, we define Xi as a n × pi (subjects by features) matrix for a given 

measurement/view/modality. The i ranges from 1 to m i.e. the number of modalities (or 

views). Then SiMLR optimizes an objective function that seeks to approximate each 

modality from its partner matrices through a sparse feature matrix (Vi) and low-dimensional 

representations (U≠i):

arg minV i ∑
i = 1

m
S Xi, f U ≠ i , V i + Regularization V i ,

where:

• k denotes the rank of Vi and Ui;

• Vi is a pi × k matrix of feature/solution vectors (analogous to βs) for the Xi 

modality;

• ∀i Ui = XiVi;

• U≠i is a n × (k(m − 1)) low-dimensional representation of modalities other than 

Xi i.e. the column-bound matrix U≠2 = [U1, U3] if i = 2 and m = 3;

• f is a function (with output dimensionality n × k) that estimates a low-rank basis 

set from its argument, is related to Assumption 1, and is described in more detail 

below;

• S is a function measuring the quality of the approximation of Xi from the other 

modalities and is related to Assumption 2;

The f U ≠ i = U ≠ i is a key component in the SiMLR framework and is derived by 

performing blind source separation over the set of j ≠ i : {XjVj} embeddings (the U≠i). We 

now provide details for each term and other aspects of the implementation.

Similarity Options.: The default similarity measurement is one of difference. This is akin to 

the reconstruction form for PCA, discussed above. In this case, we have:

S Xi, U ≠ i, V i = Xi − U ≠ iV iT
2 .

Here, SiMLR attempts to reconstruct – in a least-error sense – each matrix Xi directly from 

the basis representation of the other n − 1 modalities.
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We also implement a similarity term inspired by CCA but modified for the SiMLR objective 

function. In prior work, we observed that the CCA criterion – in the under-constrained form 

here where we expect p >> n – demonstrates some sensitivity to the sign of correlations73. 

As such, we implement an absolute canonical covariance (ACC) similarity measurement 

expressed as:

tr( |U ≠ i
T XiV i| )

‖U ≠ i‖ XiV i
.

Both reconstruction and ACC have easily computable analytical derivatives that are 

amenable to projected gradient descent, as used in our prior work11,12,17. This similarity 

term is most closely related to SABSCOR and SABSCOV in multi-block data analysis74,75. 

However, it focuses only on cross-modality signal.

For the reconstruction energy, SiMLR optimizes these feature vectors to reconstruct each 

full matrix from a reduced representation of the other matrices (the U ≠ i). For ACC, SiMLR 

optimizes Vi to maximize covariance of XiVi with the low-rank basis. As such, the latter 

similarity term may be more appropriate for recovering signal that exists more sparsely in 

the input matrices. This is because the operation XiVi is able to completely ignore large 

portions of the given matrix Xi due to the sparseness terms in our regularization (described 

below). The regression energy, on the other hand, will be more directly informed by the raw 

high-dimensional matrix which may have advantages in some cases. Quadratic energies also 

tend to have larger capture ranges.

The method’s performance also depends on the selection for the basis representation. We 

evaluate two options in this initial work:

• fsvd = svdu([U≠i])

• fica = icaS([U≠i])

The notation [U≠i] indicates that we bind the columns together (cbind in R). Below alg will 

represent svdu or icaS. The method icaS indicates that we take the independent components 

matrix (the S matrix) from the ICA algorithm (where ICA produces X = AS). The method 

svdu indicates that we take the U component of the SVD (where SVD produces X = UDVT).

We focus our evaluation on icaS and svdu functions in this work as we have found that they 

produce useful outcomes in example experiments and they are well-proven methods applied 

in several domains. The assumptions underlying ICA and SVD are related. They both fit our 

assumption 1 above of linearly mixed independent signals. The difference is the measure of 

independence. SVD (or PCA) assumes independence is measured by variance which leads to 

orthogonal basis functions. ICA uses non-gaussianity to measure independence. Both are 

valid options, from the theoretical perspective, and we rely on evaluation results to make 

recommendations about how to choose between these in practice.

Regularization options.: Regularization occurs on the Vi i.e. our feature matrices. Denote:

• vik as the the kth feature vector in Vi;
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• Gi is pi × pi a sparse regularization matrix with rows that sum to one;

• γi as a scalar weight which could be used to regularize each component 

differently; effectively, this controls the sparseness and varies in zero to one.

Then the regularization terms take the form:

Regularization V i = ∑
i

∑
k

γi Givik lp
+ ,

where ‖ ⋅ ‖lp
+  is the positivity constrained ℓp norm (usually, p = 0 or p = 1). This term both 

enforces sparseness via ℓp while providing data-adaptive degrees of smoothing via the the 

graph regularization matrix Gi. For neuroimaging, this latter feature means that one does not 

need to pre-smooth images before running SiMLR. In practice, ‖ ⋅ ‖lp
+  induces unsigned 

feature vectors. I.e. all non-zero entries will be either only positive or only negative.

Regularization weights:  The parameterization of the sparseness for each modality is set by 

γi in the range of zero to one, where higher values are increasingly sparse (more values of 

the feature vector are zero). By default, γi is automatically set to accept the largest 50th 

percentile weights but the user may decide to increase or decrease this value depending on 

the needs of a specific study. Alternatively, one may use hyperparameter tuning methods to 

automatically determine γi. For most applications, we recommend default values.

Regularization matrices:  optional Gi are currently set by the user and must be determined 

in a data/application/hypothesis-specific manner. In implementation, we provide helper 

functions that allow the user to employ k-nearest neighbors (KNN) to build the non-zero 

entries of the regularization matrices. We use HNSW76 to compute sparse KNN matrix 

representations for the Gi. HNSW is among the most efficient methods currently available 

and, combined with sparse matrix representations, make graph regularization on large input 

matrices efficient. This aspect of regularization promotes smooth feature vectors where the 

nature of smoothness is typically determined by proximity either spatially or in terms of 

feature magnitude or feature correlation.

Although we provide default methods, choice of regularization should involve some 

consideration on the part of the user. Because there is no single theoretically justified answer 

to these questions, the best general approach would be to use hyper-parameter optimization. 

Alternatively, domain-specific knowledge may be used to guide parameter setting, in 

particular sparseness and regularization. Rules of thumb should be, for regularization, that 

the estimated Vi should appear to reflect biologically plausible feature sets. For sparseness, 

biological plausibility should also be considered although we believe our default parameters 

provide good general performance. As such, regularization (i.e. construction of the Gi) 

should perhaps be given more domain-dependent attention by users. Examples below 

provide clarity on how we set these terms in practice. E.g. in neuroimaging, we may use k = 

5d mask-constrained neighbors for KNN where d is image dimensionality. For genomics or 

psychometrics data, we may set regularization simply by thresholding correlation (or linkage 

disequilibrium77) matrices.
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7.5 Optimization

The overall approach to optimizing the SiMLR objective is that of projected gradient 

descent78. In this context, one derives the optimization algorithm without regularization 

constraints and then, at each iteration, projects to the sub-space defined by the regularization 

terms. The SiMLR objective function for Vi, at a given iteration, depends only on the set 

values for Xi and U ≠ i. As such, we only need the gradient of the similarity term with 

respect to Vi which greatly simplifies implementation. We optimize total energy E via a 

projected gradient descent algorithm:

loop until convergence:
∀iV inew H(Gi ⋆ (V i − ∂S / ∂V iϵi))

∀iUj ≠ i falg ([XjV jnew ] ≠ i )

where:

• [XjV j
new ] ≠ i is the collection of low-dimensional projections resulting from 

multiplying the feature vectors onto the data matrices where ≠ i indicates that the 

ith projection is held out;

• H is the thresholding operation which here is applied separately to each column 

of Vi (see the iterative hard/soft thresholding literature72 and78 which suggests 

that ℓ0 penalties provide greater robustness to noise);

• ϵi is a gradient step parameter determined automatically by line-search over the 

total energy E.

Recall that falg is a dimensionality reduction step that reduces U≠i to a k-column matrix. 

Here, we provide an example gradient calculation for our default reconstruction error:

S = Xi − U ≠ iV iT
2,

∂S / ∂V i = − 2(XiT − V iU ≠ i
T )U ≠ i,

which allows updating the full Vi at each gradient step. SiMLR only allows gradient-based 

updates that improve the total energy; these are arrived at by line search over the gradient 

step size and means that the objective function (driven primarily by the similarity term) is 

improved by the new candidate solution; this process is iterated until the method reaches a 

fixed point. A fixed point is – practically speaking – a convergent solution. I.e. if we further 

iterate the algorithm, the solutions do not change beyond some small numeric fluctuation.

This strategy also allows SiMLR to work directly on the feature matrices themselves even 

when p >> n. When large numbers of components are being computed, this can lead to a 

distinct computational advantage in comparison to deflation methods.

7.6 Parameters and initialization

We summarize default (recommended) parameters and preprocessing steps for the 

methodology.

Avants et al. Page 14

Nat Comput Sci. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• Matrix pre-processing is performed automatically. Unless the user overrides 

default behavior, we transform each matrix such that: ∀Xi:Xi
sc Xi

npi
 where sc 

denotes scaling and centering applied to the matrix columns. Normalizing by np 
controls the relative scale of the eigenvalues of each matrix.

• Number of components (k) – The practice for setting these values is very similar 

to practice in PCA or SVD; it may be determined via statistical power 

considerations, cross-validation or set to be k = n − 1, one less than the number 

of subjects. This is a problem that is currently under active research60.

• Similarity measurement – evaluation and comparison of similarity choices is 

ongoing. Trade-offs are comparable to choosing correlation versus Euclidean 

distance for vectors and better performance may be gained in a data-dependent 

manner. ACC is faster to compute on a per-iteration basis but may require more 

iterations to converge. This latter comment is an empirical observation based on 

our studies which, again, may be data dependent.

• Source separation algorithm – Trade-offs are comparable to choosing between 

SVD and ICA in general. Effectively, ICA should force the multiple component 

solutions toward statistical independence in a non-gaussian sense. SVD would be 

more appropriate for separating purely gaussian sources that are mixed linearly.

The nature of the feature space is impacted by the constraints on the Ui which are 

determined by the user-selected source separation algorithm. SVD produces an orthogonal 

latent space whereas ICA does not. ICA seeks a latent space that demonstrates statistical 

independence, that is, that are maximally non-gaussian40,41. It is an empirical question about 

which is “best” for a given dataset; neither is right or wrong in an absolute sense. SVD and 

ICA are both used in many practical applications in machine learning and statistics. Our 

experiments confirm that both options can produce results that outperform RGCCA. Overall, 

the reconstruction error with ICA source separation appears to give good general 

performance in our experiments.

SiMLR may be initialized with several different approaches:

• random matrices for all or for each individual modality;

• a joint ICA or SVD across concatenated modalities (recommended and default 

behavior);

• Any other initial low-rank basis set e.g. derived from RGCCA, etc which may be 

passed to the algorithm by the user;

Due to the fact that SiMLR cannot guarantee convergence to a global optimum (sparse 

selection is a NP-hard problem), several different starting points should be evaluated when 

using SiMLR in new problems. This is in concordance with the theory of multi-start global 

optimization which we can only approximate in practice79. Other joint reduction methods 

such as SGCCA suffer the same limitation. Our recommended default behavior avoids 

forcing users to explore multiple starting points but does not eliminate this fundamental 

issue that is general to the field of feature selection in high-dimensional spaces.
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7.7 Generation of simulated data

We construct simulated data that matches this setting by constructing 3 matrices from 

different (modality-specific) multivariate distributions. Each matrix contains a common low-

dimensional basis (the true latent signal) which can be recovered by joint dimensionality 

reduction. Matrices are generated by the following steps.

• Generate a rank-K basis set (Sj
K of size K ×pj where j ∈ 1, 2, 3) of gaussian 

distributed signal that is smoothed by a different amount over each simulation 

run; K and pj vary over simulations.

• Generate ground truth latent signal matrix B = [β 1, ⋯, β K] with n rows that will 

weight each basis matrix Sj
K. B is consistent across all modalities but n varies 

across simulations.

• Generate each n × pj data matrix by computing Mj = B Sj
K.

• Replace a percentage of the columns of each matrix Mj with random noise.

• Split the data into 80% train and 20% test and run the candidate algorithms on 

each Mj
train  matrix. Lastly, use linear regression to relate the learned embeddings 

to the true source signal (β 1
train

) and predict β 1
test

 in the test data from the 

learned embeddings.

The above steps produce data where each of the three 3 matrices is generated from very 

different distributions but that contain a common latent signal. The key is that the latent 

signal is at least partially consistent (β 1) and can, in some cases, be recovered by joint 

analysis. Recoverability varies across simulations due to both corruption and the intrinsic 

variability of the underlying generating distributions. Supplementary Figure 1 illustrates the 

overall design of the simulation study.

7.7.1 Signal recovery—For each experiment, we run 120 simulations and evaluate the 

quality of the recovered signal by training a linear regression algorithm to relate the learned 

basis to the true basis. We then predict the latent signal in held-out test data (80 percent of 

subjects are used for training and 20 percent for testing). In this scenario, better performing 

methods will lead to more accurate predictions of the latent signal in the tesing subjects. We 

can evaluate, by two-tailed paired t-test on the recovery (measured by R squared of the fit), 

whether SiMLR performs better than, equal to or worse than other methods.

7.7.2 Sensitivity to amount of corrupted data—As above, for each of the 120 

simulations, a varying degree of corruption to each matrix is performed. That is, a random 

percentage of the matrix that contains true signal is replaced with noise signal with no 

relationship to the latent ground truth. The amount of corruption varies between 10 and 90 

percent of the column entries. This enables us to test the degree to which recovery 

performance can be predicted from the amount of corruption where corruption is represented 

as a 3-vector for each experiment where each entry in the vector codifies the amount of 

corruption.
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7.8 Cancer survival prediction

The hypothesis is that gene expression, methylomics and transcriptomics, which track the 

biological/genetic dynamics of tumor activity, will improve prediction of patient-specific 

outcomes. However, these data are fairly high-dimensional relative to the number of 

subjects. As such, targeted dimensionality reduction is needed to overcome the p >> n 
problem (where p, here, refers to predictors) in order to allow low-dimensional versions of 

these predictors (i.e. embeddings) to be used in a classical regression context47,48,49,50.

We selected the GBM (glioblastoma, brain) set from the multi-omic benchmark collection. 

GBM allows a train-test split with sufficient variability in survival in both train and test 

groups. These data were compiled by the multi-omic cancer benchmark organizers from The 

Cancer Genome Atlas (TCGA).

The statistical model used for training and prediction is a Cox proportional hazards 

regression model implemented in the coxph function in the survival package. We evaluate 

concordance in test data via the survcomp package. Concordance is similar to a rank 

correlation method and is used to assess agreement of the predicted outcomes with true 

outcomes. Its value under the null hypothesis of no predictive value is 0.5. Values greater 

than roughly 0.6 show some evidence of predictive power47,48,49,50.

In the evaluation, graph-based regularization parameters are selected to include roughly 

2.5% of the predictors in each predictor ‘omics matrix (see the call to the regularizeSimlr 

function). As such, regularization is present but neither overwhelming nor optimized for this 

data. I.e. this value was chosen based on the desire for a small amount of denoising in the 

solution space. Neither method was optimized for this problem in terms of data selection, 

parameter or pre-processing choices. As such, this acts as a fairly unbiased comparison of 

these tools.

7.9 Brain Age prediction

Supplementary Figure 2 summarizes the design of the study. First, a 5-fold cross-validation 

grouping of subjects is defined. For each fold, SiMLR and SGCCA are run with parameters 

that are set to select interpretable “network”-like components. In this example, we choose 

these parameters specifically at higher sparseness levels to facilitate interpretability. We 

record computation time as well as the embedding vectors for each modality. We then train, 

within each fold, a linear regression model to predict age and IQ-related variables from the 

neuroimaging embeddings. This is a form of principal component regression. These 

predictions are stored for each fold to facilitate a final comparison of performance across all 

folds. We use this technique, rather than repeated resampling as in prior studies, in part 

because the run-time for this problem can be relatively long, up to 235 minutes for SGCCA.

Data Availability—All visualized plots in the main manuscript are generated from the 

code capsule which contains both the specific data sources and software calls necessary to 

reproduce the figures 80.

Simulation data: The simulation data is built on the fly in ‘R’. The scripts that generate the 

data are publicly available 80.
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Multi-omic cancer benchmark: We downloaded evaluation data from the multi-omic 

cancer benchmark51 website http://acgt.cs.tau.ac.il/multi_omic_benchmark/download.html. 

As with other results in the main body of the paper, data is available in our code capsule 80 

along with the relevant statistical details and calls needed to reproduce results reported here. 

The data is free to use with no restrictions.

Brain age: The brain age data used in preparation of this article were obtained from the 

Pediatric Template of Brain Perfusion (PTBP) 81. These data were originally downloaded 

from https://figshare.com/articles/dataset/

The_Pediatric_Template_of_Brain_Perfusion_PTBP_/923555. The relevant subset is 

available in our code capsule 80. The data is free to use with no restrictions.

PING for imaging genetics study: Supplementary data used in preparation of this article 

were obtained from the Pediatric Imaging, Neurocognition and Genetics Study (PING) 

database (http://ping.chd.ucsd.edu). PING requires a user to register and request data. The 

review of the request may also require institutional support and justification of data use. We 

originally gained access to these data in 2013 as part of the now defunct “PING-in-a-box” 

service.

ADNI for imaging genetics study: Data used in the preparation of this article were 

obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by 

Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test 

whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), 

other biological markers, and clinical and neuropsychological assessment can be combined 

to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s 

disease (AD). For up-to-date information, see www.adni-info.org. As such, the investigators 

within the ADNI contributed to the design and implementation of ADNI and/or provided 

data but did not participate in analysis or writing of this report. A complete listing of ADNI 

investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/

ADNI_Acknowledgement_List.pdf.

ADNI requires a user to register and request data. The review of the request may also require 

institutional support and justification of data use. We originally gained access to these data 

in 2008. The version used in our supplementary study was downloaded in august 2020 from 

LONI.

Code Availability—ANTsR is open source and freely available at https://github.com/

ANTsX/ANTsR. The github version of the code is typically in development. The specific 

release version of the code and scripts used in the analyses and generation of figures in the 

main body of this paper are available in the code capsule 80.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
An overview of SiMLR’s workflow: (a) Two statistically independent signals are shown here 

to represent the hidden latent signal potentially two components of a disease process; (b) 

The latent signal is manifested across three different modalities (each represented by an 

oval) where the joint component of the signal is represented in the overlap. (c) This three-

view data is converted to three matrices XA,XB,XC; in this effort we focus on matrices with 

common number of subject here denoted by n and variable number of predictors (pA, pB, 
pC). (d) Sparse regularization matrices (GA,GB,GC) are constructed with user input of 

domain knowledge or via helper functions; (e) SiMLR iteratively optimizes the ability of the 

modalities to predict each other in leave one out fashion; (f) Sparse feature vectors emerge 

which can be interpreted as weighted averages over selected columns of the input matrices 

that maintain the original units of the data. These are used to compute embeddings in (g) and 

passed to downstream analyses. Alternatively, one could permute the SiMLR solution to 

gain empirical statistics on its solutions.
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Figure 2: 
SiMLR simulation study results: sensitivity to noise and ability to recover signal. In each 

panel, (a-c), the SiMLR signal recovery performance (120 simulations) in terms of R 
squared is plotted against RGCCA and SGCCA performance. (a) Demonstrates performance 

of signal recovery of SiMLR with the CCA energy and ICA source separation method. (b) 

Demonstrates performance of signal recovery of SiMLR with the CCA energy and SVD 

source separation method. (c) Demonstrates performance of signal recovery of SiMLR with 

the regression energy and ICA source separation method. Plots in (d) show how well signal 

recovery (R squared) can be predicted from the amount of matrix corruption. In this case, 

ideally, matrix corruption would minimally impact performance; therefore, lower scores are 

better. The best fit line (computed by generalized additive model (GAM)) is shaded with 

95% confidence intervals.
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Figure 3: 
PTBP fully supervised brain age prediction: comparison to SGCCA. In each panel, we show 

the ability to predict chronological age from the brain. Confidence intervals are shown as 

gray shaded regions around a best-fit linear regression line. R squared for the predicted 

model fit is also shown. Performance ranking is provided on the figure’s right and is based 

on the mean absolute error between the predicted and real age.
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