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Background: Hormone-dependent cancers (HDC) are among the leading causes of
death worldwide among both men and women. Some of the established risk factors
of HDC include unhealthy lifestyles, environmental factors, and genetic influences.
Numerous studies have been conducted to understand gene–cancer associations.
Transcriptome-wide association studies (TWAS) integrate data from genome-wide
association studies (GWAS) and gene expression (expression quantitative trait loci –
eQTL) to yield meaningful information on biological pathways associated with complex
traits/diseases. Recently, TWAS have enabled the identification of novel associations
between HDC risk and protein-coding genes.

Methods: In the present study, we performed a TWAS analysis using the summary
data-based Mendelian randomization (SMR)–heterogeneity in dependent instruments
(HEIDI) method to identify microRNAs (miRNAs), a group of non-coding RNAs (ncRNAs)
associated with HDC risk. We obtained eQTL and GWAS summary statistics from the
ncRNA-eQTL database and the National Human Genome Research Institute–European
Bioinformatics Institute (NHGRI-EBI) GWAS Catalog.

Results: We identified 13 TWAS-significant miRNAs at cis regions (±1 Mb) associated
with HDC risk (two, five, one, two, and three miRNAs for prostate, breast, ovarian,
colorectal, and endometrial cancers, respectively). Among them, eight novel miRNAs
were recognized in HDC risk. Eight protein-coding genes targeted by TWAS-identified
miRNAs (SIRT1, SOX4, RUNX2, FOXA1, ABL2, SUB1, HNRNPH1, and WAC) are
associated with HDC functions and signaling pathways.

Conclusion: Overall, identifying risk-associated miRNAs across a group of related
cancers may help to understand cancer biology and provide novel insights into cancer
genetic mechanisms. This customized approach can be applied to identify significant
miRNAs in any trait/disease of interest.
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INTRODUCTION

According to the World Health Organization (WHO), cancers
cause one in six deaths worldwide, representing a major public
health issue (Ferlay et al., 2015). Hormones such as testosterone,
estrogen, and progesterone play an important role in the risk
to multiple common cancers, such as prostate, breast, ovarian,
endometrial, and colorectal (La Vecchia and Franceschi, 1991;
Riman et al., 1998; Emons et al., 2000; Risbridger et al.,
2010). Only hormones and their molecular functions cannot
solely explain these hormone-dependent cancers (HDC). Other
elements such as genetic variants, environmental factors (sunlight
and ionizing radiation, organic and inorganic materials, viruses
and bacteria, and air and water pollution) and unhealthy lifestyles
also contribute to the biology of disease risk and progression.

Different analytical methods have been introduced to
characterize the genetic mechanisms of these cancers. Genome-
wide association studies (GWAS) have been successful in
uncovering thousands of associations between genetic variants
and different cancer types (Sud et al., 2017). However, these
associations are often challenging to interpret and translate into
knowledge about cancer biology because GWAS studies alone
cannot provide functional evidence of causal genes mediated
by GWAS-recognized single-nucleotide polymorphisms
(SNPs; Visscher et al., 2017). This has motivated the development
of new methods to prioritize causal genes at GWAS loci.
Transcriptome-wide association studies (TWAS) integrate
GWAS summary statistics with gene expression data (expression
quantitative trait loci – eQTL) to discover gene expression–
disease association (Wainberg et al., 2019). Early TWAS
methods, such as PrediXcan, require individual-level GWAS and
eQTL (Gamazon et al., 2015). Recent theoretical advancement
has led to the use of GWAS and eQTL summary statistics, such
as MetaXcan (Barbeira et al., 2016), FUSION (Gusev et al., 2016),
and SMR (summary data-based Mendelian randomization)–
HEIDI (heterogeneity in dependent instruments) (Zhu et al.,
2016). Both MetaXcan and FUSION require expression weights
from trained models using a gene expression reference panel
along with GWAS summary statistics. In contrast, SMR–
HEIDI considers only GWAS and eQTL summary statistics for
efficient computing. SMR–HEIDI is a two-step analysis that
can distinguish causal/pleiotropic associations from linkage
models, whereas most other TWAS methods do not address
this issue. Zhu et al. (2016) proposed the SMR–HEIDI theory

Abbreviations: BRCA, breast invasive carcinoma; ceRNA, competing endogenous
RNA; COAD, colon adenocarcinoma; DNA, deoxyribonucleic acid; E2C2,
Epidemiology of Endometrial Cancer Consortium; ECAC, Endometrial Cancer
Association Consortium; ER, estrogen receptor; FDR, false discovery rate;
GDC, genomic data commons; GWAS, genome-wide association studies; HDC,
hormone-dependent cancers; HEIDI, heterogeneity in dependent instruments;
LD, linkage disequilibrium; MCF-7, Michigan Cancer Foundation-7; MHC,
major histocompatibility complex; miRNA, microRNA; mRNA, messenger
RNA; NHGRI-EBI, National Human Genome Research Institute–European
Bioinformatics Institute; OV, ovarian serous cystadenocarcinoma; PRAD,
prostate adenocarcinoma; READ, rectal adenocarcinoma; RNA, ribonucleic acid;
SMR, summary data-based Mendelian randomization; SNP, single-nucleotide
polymorphism; TCGA, the Cancer Genome Atlas; TWAS, transcriptome-wide
association studies; UCEC, uterine corpus endometrial carcinoma; WHO, World
Health Organization.

using the principles of Mendelian randomization (MR). MR
uses genetic variants as instrumental variables to provide
information about the relationship between the causal effect
of a (non-genetic) risk factor and the outcome of interest.
MR analysis can reduce confounding and reverse causation
and various biases that are associated with randomized
controlled trials. Moreover, the SMR–HEIDI method can be
applied for multiple-omics studies such as transcriptomics
[messenger RNA (mRNA), ribosomal RNA, and non-coding
RNA (ncRNA) such as microRNA (miRNA)], epigenomics
[deoxyribonucleic acid (DNA) methylation and histone
modification], metabolomics (metabolite levels), and proteomics
(protein expression).

Previous HDC TWAS studies profiled a large set of protein-
coding genes associated with genetic risk variants (Mortlock
et al., 2020). In 2018, a large-scale TWAS on breast cancer was
conducted using the MetaXcan method (Barbeira et al., 2016; Wu
L. et al., 2018). The authors identified 48 genes at Bonferroni
threshold of p-value < 5.82 × 10−6, including 14 genes:
ZSWIM5, LRRC3B, SPATA18, UBD, KLHDC10, and MIR31HG
(long non-coding), RIC8A, B3GNT1, and RP11-867G23.10 (long
non-coding), RP11-218M22.1 (long non-coding), and GALNT16,
PLEKHD1, MAN2C1f, and CTD-2323K18.1f (long non-coding)
at loci not previously reported for breast cancer. Ferreira
et al. (2019) integrated eQTL information across various tissues
(adipose, breast, immune cells, spleen, and whole blood) with
breast cancer GWAS results using EUGENE, conceptually similar
to the PrediXcan method. The outcome of the study highlighted
88 genes as likely targets; among them, 26 were novel, and some
of these novel genes (HLF, PTPN22, RHBDD3, and IRF) play a
role in cancer cell elimination or inflammation. Moreover, 24
genes were found as likely targets of estrogen receptor-negative
(ER-) risk variants (defined as the absence of ERs in breast
cancer cells), and 11 were unique for ER- cases. In 2019, a
large-scale TWAS on colorectal cancer using the SMR–HEIDI
method identified four SNP loci – 11q23.1 [SNP located at
locus 23.1 of the long arm (q) of chromosome 11], 3p21.1,
19q13.33, and 6p21.31 – responsible for colorectal cancer risk
through the differential expression of three (COLCA1, COLCA2,
and C11orf53), one (SFMBT1), one (FUT1), and one (class II
HLA) gene transcripts, respectively (Law et al., 2019). In the
same year, a TWAS study on high-grade serous epithelial ovarian
cancer was conducted using FUSION (Gusev et al., 2019). The
authors reported 25 candidate susceptibility genes of ovarian
cancer and experimentally validated one of the genes, CHMP4C,
by associating a variant that induces allele-specific exon inclusion.
A large-scale TWAS study on prostate cancer identified 217
candidate susceptibility genes at 84 independent 1-Mb regions
(Mancuso et al., 2018). The authors introduced a Bayesian
probabilistic approach to prioritize genes at regions with multiple
TWAS signals. The 90%-credible gene sets have been calculated,
optimizing a maximum number of genes for a given credible
set. Therefore, the list of 217 genes was reduced to 109 genes.
The studies described above provide compelling evidence that
TWAS could be successfully applied into HDC using protein-
coding RNA expression (Mancuso et al., 2018; Wu L. et al., 2018;
Ferreira et al., 2019; Gusev et al., 2019; Law et al., 2019).
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TWAS applications on ncRNA transcriptomic data, such
as miRNAs, remain elusive in literature. MiRNAs are small,
endogenous, ncRNAs composed of 19–25 nucleotides in
length (Bhaskaran and Mohan, 2014). Disruption of regulatory
functions of miRNAs has been implicated in HDC etiology,
making miRNAs promising biomarker and therapeutic
candidates (Peng and Croce, 2016). The aim of this study
is, therefore, to prioritize miRNAs at known risk regions
of distinct HDC types by repurposing an existing TWAS
approach, SMR–HEIDI.

In the present study, we identify causal or pleiotropic miRNA–
HDC risk associations using the SMR–HEIDI method. In breast
cancer, we extend the TWAS analysis for ER+ and ER- subtypes.
Identifying biomarkers for ER subtypes would be beneficial
in diagnosis, determining the risk of recurrence, and selecting
treatment methods for breast cancer. In this study, the eQTL
summary statistics were taken from the “ncRNA-eQTL,” in which
original miRNA expression data was derived from the cohorts
of The Cancer Genome Atlas (TCGA; Li et al., 2020). The
GWAS summary statistics were downloaded from the datasets
published in the National Human Genome Research Institute–
European Bioinformatics Institute (NHGRI-EBI) GWAS catalog
(Buniello et al., 2019). Two downstream analyses were carried
out to identify TWAS-significant miRNAs that are involved in
important pathways. First, TWAS-significant miRNA differential
expression levels (between tumor and normal groups) were
profiled using TCGA miRNA-seq expression data. Second, we
predicted target genes for TWAS-significant miRNAs using three
miRNA target prediction tools: miRDB, TargetScan 7.1, and
miRTarBase (Agarwal et al., 2015; Chou et al., 2018; Chen and
Wang, 2019). The intersecting results across three databases
were considered as possible miRNA–target interactions. Cancer-
related functions/pathways of predicted genes were found using
the CancerMine database, the latest literature-mined database for
cancer–gene associations (Lever et al., 2019). In conclusion, we
used the statistical power of TWAS to identify the association of
genetic risk and miRNA expression dysregulation and their target
genes associated with complex diseases such as HDC.

MATERIALS AND METHODS

Genome-Wide Association Studies
Summary Statistics of HDC
The SMR–HEIDI method requires both GWAS and eQTL
datasets from a similar population. Therefore, in this study,
we collected data from European ancestry to satisfy one of
the major assumptions of SMR–HEIDI analysis. The GWAS
summary statistics of HDC were obtained from the NHGRI-
EBI GWAS catalog (Buniello et al., 2019). The prostate
cancer dataset was obtained from the latest GWAS study by
Schumacher et al. (2018). The given study contains meta-
analyzed genotype data from a custom high-density array of
46,939/27,910 (cases/controls) in prostate cancer from European
ancestry, with previously genotyped data 32,255/33,202 also of
European ancestry. We used the latest GWAS meta-analysis
on breast cancer, consisting of 1,37,045/1,19,078 dominated

by European ancestry (Michailidou et al., 2015). The breast
cancer GWAS summary statistics are available for both overall
and subgroups by ER status: ER + and ER-. The GWAS
summary statistics of colorectal cancer were acquired from a
recent study that included 4,562/3,82,756 participants of white
British ancestry (Zhou et al., 2018). The endometrial cancer
GWAS summary statistics were collected from a meta-GWAS
analysis (accessed under the consent of the author) that used
12,906/1,08,976 samples of European ancestry (O’Mara et al.,
2018). This cohort was taken from 17 studies identified via
the Endometrial Cancer Association Consortium (ECAC), the
Epidemiology of Endometrial Cancer Consortium (E2C2), and
the UK Biobank. We gathered ovarian cancer GWAS summary
statistics from a combined study which included the epithelial
ovarian cancer GWAS study pooling data from multiple genome-
wide genotyping projects totaling 25,509/40,941 of European
ancestry (Phelan et al., 2017).

MicroRNA-Expression Quantitative Trait
Loci Summary Statistics
The miRNA eQTL summary statistics were retrieved from the
ncRNA-eQTL database (Li et al., 2020). The ncRNA-eQTL
database was developed using miRNA sequencing data and
genotype data consisting of 8,734 TCGA samples. These samples
are collected across 33 cancer types in European ancestry.
In the ncRNA-eQTL pipeline, cis-eQTL, and trans-eQTL were
identified by a computationally efficient analysis called matrix
eQTL (Shabalin, 2012). In the matrix eQTL approach, significant
eQTL SNPs are selected after adjusting for multiple testing
using the Benjamini–Hochberg method, known as false discovery
rate (FDR < 0.05) (Benjamini and Hochberg, 1995). cis-eQTL
were defined when the SNP was within 1 Mb from the
gene transcriptional start site and regulates the corresponding
gene expression. In contrast, trans-eQTL were defined if the
eQTL was beyond that region or on another chromosome.
Here we used summary statistics for 7,463 (233 probes), 6,112
(286 probes), 1,651 (111 probes), 703 (50 probes), and 3,188
(177 probes) cis-eQTL SNPs from prostate, breast, ovarian,
endometrial, and colorectal cancers, respectively, at a per-tissue
FDR < 0.05. The trans-miRNA eQTL are not described as
they failed to identify significant miRNAs in any HDC after
HEIDI analysis. Both GWAS and eQTL SNPs were annotated
using GRCh37 (hg19) to avoid misinterpretations. The “UCSC
Genome Table Browser” was used for converting the SNP
annotations (Karolchik et al., 2004).

Transcriptome-Wide Association
Using summary-level datasets for miRNA-eQTL and GWAS, we
assessed the association between miRNA expression level and
HDC risk using the SMR method, followed by a heterogeneity
test – HEIDI (Zhu et al., 2016). The SMR applies the principle
of MR theory and further described it in the SMR–HEIDI
theoretical paper (Zhu et al., 2016). In SMR, the phenotypic trait
is the outcome (Y), the expression level of a gene is the exposure
(X), and the top associated cis-eQTL SNPs that are strongly
associated with gene expression are used as an instrumental
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variable (Z) (PeQTL < 5 × 10−8). The derived SMR test statistic
(TSMR) is given in Equation 1.

TSMR =
(
z2
zyz

2
zx

)
/
(
z2
zy + z2

zx

)
(1)

where Zzy and Zzx are the Z-statistics from the GWAS and eQTL
studies, respectively. In the SMR test, we used the FDR-adjusted
p-value for multiple testing correction that provides a good
balance between discovering statistically significant miRNAs
and the limitation of false-positive occurrences (Benjamini and
Hochberg, 1995). The significant miRNA–HDC risk associations
were identified at 0.05 threshold. SMR introduces three models
to describe the miRNA expression–trait association: pleiotropy
(Z→X and Z→Y), causality (Z→X→Y), and linkage (Z1→X,
Z2→Y), where Z1 and Z2 are two distinctive variants which are
in a linkage disequilibrium (LD) within a cis-eQTL region (see
Figure 1).

In Figures 1A,B, associations are considered as pleiotropic
associations when a single genetic mutation affects both the
miRNA expression and the trait of interest. The characterization
of these pleiotropic mechanisms helps to explain the shared
genetic architecture among different traits and diseases. A greater
understanding of pleiotropy inevitably contributes to advances
in precision medicine. Figure 1C illustrates a linkage association
where the top-associated eQTL is in LD with two distinct causal
variants, one affecting miRNA expression and the other affecting
trait variation. These two linkage-associated causal variants are
in less biological interest as they independently affect miRNA
expression and the trait of interest. To exclude SMR results that
may exhibit linkage, HEIDI test was introduced (Pavlides et al.,
2016). Deriving HEIDI test statistic is available in the Methods
section of Zhu et al. (2016). Recent SMR–HEIDI method-based
studies have demonstrated that PHEIDI > 0.01 provides better
predictions compared to the PHEIDI > 0.05 threshold defined in
the original paper (Zhu et al., 2016; Wu Y. et al., 2018; Adolphe
et al., 2021). Therefore, we used PHEIDI > 0.01 to exclude miRNA
genes that belong to the linkage models. At the interpretation
of output, the positive/negative sign of SMR effect size, b̂xy =
b̂zy/β̂zx,where b̂zy is the estimate of a SNP effect from GWAS for
a trait and β̂zx is the estimate of a SNP effect on the expression
level of a gene from an independent eQTL study, has been utilized
to predict the oncogenic/tumor suppressive role of miRNAs,
respectively. Figure 2 illustrates the study design of our analysis.

Profiling Expression Levels of HDC
Risk-Associated miRNAs
Previous experimental and computational studies have shown
that aberrant miRNA expression levels facilitate and abrogate
the tumorigenic process. Our TWAS study identified significant
miRNAs in HDC risk utilizing the expression of tumor tissues.
We checked whether TWAS-identified miRNAs are differentially
expressed between tumor and normal samples. The differential
expression analysis was conducted using the DESeq2 R package
(Love et al., 2014; R Development Core Team, 2017). The
DESeq2 method tests for differential expression based on a model
using the negative binomial distribution (Love et al., 2014).

miRNA expression changes between tumor and normal tissues
were visualized using MA plot (ggmaplot function in ggpubr
R package1) (Wickam, 2016). The MA plot shows the log-
transformed mean expression (A) on the X-axis and the log fold
change (M) on the Y-axis. miRNAs with a similar expression
between the normal and tumor groups will cluster around the
M = 0 value, which means that miRNA expression does not
exhibit a significant difference between two conditions: tumor
and normal. If a miRNA is upregulated or downregulated, the
point is above or below the M = 0 line, respectively. We used
the genomic data commons (GDC) data portal to download
the miRNA expression data reposited from HDC TCGA studies
(Grossman et al., 2016).

Identification of miRNA Target Genes
To identify miRNA target genes in likelihood, significant
HDC risk-associated miRNAs were subjected to three miRNA
target prediction tools: miRDB, TargetScan 7.1, and miRTarBase
(Agarwal et al., 2015; Chou et al., 2018; Chen and Wang,
2019). The predicted genes were filtered based on two
criteria recommended in previous studies: (i) 80 < miRDB
score ≤ 100 and (ii) cumulative weighted context score
(TargetScan 7.1) ≤ −0.2 (no lower bound) (Xue et al.,
2018). Genes common among the three databases were
selected and searched for cancer-associated literature using the
CancerMine, a literature-mined database of drivers, oncogenes,
and tumor suppressors in cancer (Lever et al., 2019). The genes
that were significantly recorded in relevant HDC molecular
functions/pathways are described in this work.

RESULTS

In our work, 13 miRNAs exhibited significant causal/pleiotropic
associations with HDC risk (see Table 1).

The above-mentioned significant miRNA list was chosen by
the FDR multiple testing correction method. The FDR method
have improved the TWAS outcome compared to Bonferroni
correction. The miRNAs significant from Bonferroni correction
have been marked by an asterisk as described in Supplementary
Tables 1–5. Among the listed 13 miRNAs, five miRNAs have been
previously studied using computational and/or experimental
methods (Li et al., 2010; Fils-Aimé et al., 2013; Liu et al., 2016;
Lin et al., 2017; Yang et al., 2017). In contrast, the remaining
novel set of eight miRNAs could be subjected to further study
for their tumor-suppressive/oncogenic role in cancers. In the next
subsections, we describe the TWAS results of each HDC in a
detailed manner.

Prostate Cancer
In prostate cancer eQTL data, 142 probes out of 233
were included in the analysis, with at least one cis-eQTL
at PeQTL < 5 × 10−8 (excluding probes in the major
histocompatibility complex, MHC region). This probe exclusion
criterion was followed for all HDC types to select strongly

1https://rpkgs.datanovia.com/ggpubr
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FIGURE 1 | The possible associations between gene expression (X) and trait/disease (Y) through a causal variant single-nucleotide polymorphism (SNP-Z). If both X
and Y are affected by SNP (Z), it is called “pleiotropy” (A). If Y is affected by Z through X, it is known as causality (B). In linkage models, two distinct causal variants
(Z1 and Z2) can be in a linkage disequilibrium (LD) that causes X and Y independently (C). Pleiotropy and causality of interest should be extracted from linkage
models for a better transcriptome-wide association studies (TWAS) interpretation. The concept for the image was adapted from Zhu et al. (2016).

associated eQTLs with miRNA expression. In SMR, we identified
six significant miRNAs (hsa-miR-22-5p, hsa-miR-5699-5p, hsa-
miR-4661-5p, hsa-miR-155-5p, hsa-miR-194-3p, and hsa-miR-
204-5p), where FDR < 0.05 (see Supplementary Table 1). After
applying the HEIDI test, this reduced to two miRNAs, which are
hsa-miR-4661-5p and hsa-miR-204-5p.

Breast Cancer
We included 185 significant probes out of 286 into the breast
cancer analysis. In breast cancer, three separate SMR tests
were performed for the GWAS summary statistics from overall,
ER+, and ER- analyses (see Supplementary Table 2). Nine
miRNAs (hsa-miR-584-5p, hsa-miR-3129-3p, hsa-miR-196a-3p,
hsa-miR-4746-5p, hsa-miR-548aw, hsa-miR-29a-5p, hsa-miR-
944, hsa-miR-4766-3p, and hsa-miR-3615) passed the SMR
analysis, and three of them (hsa-miR-584-5p, hsa-miR-3129-
3p, and hsa-miR-196a-3p) were further selected from HEIDI
analysis when miRNA eQTL are integrated with the overall
GWAS summary statistics. In ER + and ER-, 13 (hsa-miR-944,
hsa-miR-196a-3p, hsa-miR-4766-3p, hsa-miR-4772-5p, hsa-miR-
3615, hsa-miR-425-3p, hsa-miR-101-3p, hsa-miR-3129-3p, hsa-
miR-584-5p, hsa-miR-548aw, hsa-miR-6842-3p, hsa-miR-29a-
5p, and hsa-miR-101-5p) and seven (hsa-miR-584-5p, hsa-miR-
570-3p, hsa-miR-376b-5p, hsa-miR-376c-5p, hsa-miR-3129-3p,
hsa-miR-328-3p, and hsa-miR-4781-3p) miRNAs passed the
SMR analysis, respectively. These miRNAs were further analyzed
by the HEIDI test to avoid linkage associations. Four and three
miRNAs from the ER + and ER- groups, respectively, remained
significant after the HEIDI test. We observed that hsa-miR-
584-5p, hsa-miR-196a-3p, and hsa-miR-3129-3p were common

to both overall and ER + groups. The hsa-miR-4772-5p was
significant only in the ER+ group. The hsa-miR-584-5p and hsa-
miR-3129-3p were common in both the overall GWAS and ER-
groups. The hsa-miR-570-3p was found to be significant only in
ER- breast cancer.

Endometrial Cancer
In endometrial cancer, 26 probes were chosen from 50 probes.
We identified three miRNAs (hsa-miR-1343-3p, hsa-miR-3117-
3p, and hsa-miR-3131) from the SMR test, and all of them were
recognized as pleiotropically significant by HEIDI analysis (see
Supplementary Table 3).

Ovarian Cancer
We included 46 probes out of 111 for the SMR analysis.
There were three significant probe–trait associations (hsa-miR-
4660, hsa-miR-4758-5p, and hsa-miR-576-5p) that were selected
from the SMR test, and they were further analyzed by the
HEIDI method (see Supplementary Table 4). We identified
hsa-miR-4660 as the only pleiotropic (non-linkage) miRNA
from the HEIDI test.

Colorectal Cancer
Herein we have integrated colon (152 probes) and rectal (25
probes) cancer eQTL to prepare the eQTL summary statistics
of colorectal cancer. There were 73 probes in the SMR analysis
after excluding low-expressed and MHC region probes. Among
them, seven miRNA eQTLs (hsa-miR-144-5p, hsa-miR-144-3p,
hsa-miR-153-5p, hsa-miR-1228-3p, hsa-miR-4772-3p, hsa-miR-
3651, and hsa-miR-4772-5p) passed the SMR test, and two of
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FIGURE 2 | A summarized diagram for the analytical framework used in this study. We have integrated the genome-wide association studies (GWAS) summary
statistics for the five most common hormone-dependent cancers (HDC) and microRNA expression quantitative trait loci (miRNA eQTL) summary statistics from the
non-coding RNAs (ncRNA)-eQTL database, where the original miRNA expression data were collected from the miRNA-seq data of the Cancer Genome Atlas
(TCGA). TCGA study names PRAD (prostate adenocarcinoma), BRCA (breast invasive carcinoma), OV (ovarian serous cystadenocarcinoma), UCEC (uterine corpus
endometrial carcinoma), COAD (colon adenocarcinoma), and READ (rectum adenocarcinoma) denote prostate cancer, breast cancer, ovarian cancer, endometrial
cancer, colon cancer, and rectal cancer, respectively (the combined miRNA eQTL data of colon and rectal cancers are considered as colorectal cancer eQTL data).

them, hsa-miR-4772-3p and hsa-miR-4772-5p, passed the HEIDI
test (see Supplementary Table 5). We observed that both HEIDI-
significant miRNAs originate from the same family, hsa-miR-
4772. One of them, hsa-miR-4772-5p, was also observed as
significant in ER+ breast cancer.

Profiling Expression of HDC
Risk-Associated miRNAs
Aberrant miRNA expression profiles may heavily impact the
development, differentiation, and control of growth, leading to
cancers. Therefore, profiling the expression of identified HDC
risk-associated miRNAs will strengthen our TWAS outcome. For
each HDC, TWAS-identified miRNAs were contrasted between
tumor vs. normal samples at FDR < 0.05 threshold. MA plots
were drawn to visualize the differential expression analyses
results. In MA plots in Figure 3, red- and green-circled points

denote statistically significant (FDR < 0.05) and insignificant
(FDR ≥ 0.05) miRNAs, respectively.

As reported by the differential expression analyses, the FDR-
adjusted p-values of hsa-miR-204-5p, hsa-miR-4661-5p, hsa-
miR-196a-3p, hsa-miR-570-3p, hsa-miR-584-5p, hsa-miR-3129-
3p, hsa-miR-4772-5p (BRCA – breast invasive carcinoma), hsa-
miR-4772-3p (COAD – colon adenocarcinoma), hsa-miR-4772-
5p (COAD), hsa-miR-1343-3p, hsa-miR-3117-3p, and hsa-miR-
3131 are 1.14 × 10−40, 8.07 × 10−6, 1.01 × 10−21, 2.48 × 10−2,
1.47 × 10−25, 6.41 × 10−9, 2.30 × 10−1, 8.67 × 10−2,
2.07 × 10−2, 8.49 × 10−12, 9.54 × 10−1, and 2.05 × 10−7,
respectively. The miRNA expression data were collected from
the relevant HDC study of TCGA – for instance, hsa-miR-204-
5p expression data were gathered from the prostate cancer study
of TCGA. In the colorectal cancer-associated MA plot, the most
significant adjusted p-values were chosen among COAD and
READ (rectum adenocarcinoma) studies.
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TABLE 1 | Summary data-based Mendelian randomization (SMR)–heterogeneity in dependent instruments (HEIDI) test results for significant microRNAs (miRNAs) in
hormone-dependent cancers (HDC).

Cancer type Chr: base pair
position (top SNP)

rs ID (top SNP) Associated miRNA Effect size Standard error FDR (SMR) P-value (HEIDI)

Prostate 8:92060665 rs6999873 hsa-miR-4661-5p −0.0898 0.0377 0.0174 0.2017

Prostate 9:73282815 rs10124022 hsa-miR-204-5p −0.0517 0.0252 0.0401 0.8918

Breast 12: 54420098 rs4759318 hsa-miR-196a-3p −0.0578 0.0221 0.0088 0.3310

Breast 2: 190013146 rs9288163 hsa-miR-3129-3p −0.1011 0.0355 0.0044 0.1789

Breast 5: 148441321 rs36047 hsa-miR-584-5p −0.1713 0.0564 0.0024 0.5121

Breast ER- 3: 195750742 rs9820939 hsa-miR-570-3p −0.2441 0.0927 0.0085 0.3981

Breast ER+ 2: 103068156 rs917998 hsa-miR-4772-5p −0.0606 0.0253 0.0166 0.0547

Endometrial 11: 34894166 rs2915232 hsa-miR-1343-3p 0.0779 0.0373 0.0367 0.1240

Endometrial 1: 67088603 rs10789211 hsa-miR-3117-3p 0.0949 0.0432 0.0278 0.2559

Endometrial 2:219920412 rs3731881 hsa-miR-3131 −0.0933 0.0385 0.0155 0.0235

Ovarian 8: 8346690 rs2976909 hsa-miR-4660 −0.275 0.0987 0.0053 0.3963

Colorectal 2: 103066858 rs11465730 hsa-miR-4772-3p 0.1803 0.0809 0.0259 0.3620

Colorectal 2: 103034749 rs4851581 hsa-miR-4772-5p 0.0803 0.0414 0.0426 0.2020

SMR, summary data-based Mendelian randomization; HEIDI, heterogeneity in dependent instruments; miRNAs, microRNAs; HDC, hormone-dependent cancers; Chr,
chromosome number; SNP, single-nucleotide polymorphism; FDR, false discovery rate, adjusted p-value; ER, estrogen receptor; hsa, Homo sapiens (human organism);
miR, mature microRNA; 3p, 3-prime; and 5p, 5-prime.

Identifying HDC Risk-Associated miRNA
Target Genes
The miRNA target genes that appear common (shared) among
miRDB, miRTarBase, and TargetScan 7.1 are presented in Table 2.
The target genes that have strong evidence with relevant HDC-
associated studies (highlighted in Table 2) will be explained in
the section “Discussion.”

DISCUSSION

Our study is the first TWAS-level study in identifying miRNAs
in multiple hormonal cancers. Herein each TWAS analysis
was followed by two downstream analyses: (i) tumor-control
expression profiling analysis (differential expression analysis and
MA plot) and (ii) investigation of tumor-suppressive/oncogenic
role of miRNA-targeted genes from the literature curated
databases. Using SMR, we initially identified 38 miRNA–HDC
risk associations, and 13 of them were selected by a subsequent
HEIDI test after removing linkage associations.

Six significant miRNAs were observed in prostate cancer
analysis, and only two of them passed the HEIDI test, hsa-
miR-204-5p and hsa-miR-4661-5p. In both miRNAs, the SMR
effect sizes’ signs are negative, predicting them as tumor-
suppressive miRNAs. Previous studies confirmed that miR-204-
5p promotes apoptosis by targeting BCL2 in prostate cancer
cells, validating its tumor-suppressive role (Lin et al., 2017).
The role of hsa-miR-4661-5p in the tumor environment has
not been reported in the literature to date. According to MA
plots drawn by differential expression analysis, hsa-miR-204-5p
and hsa-miR-4661-5p have been downregulated and upregulated
in prostate cancer, respectively. The downregulation of hsa-
miR-204-5p supports for its tumor-suppressive role described
in previous experimental studies (Lin et al., 2017). We found
29 target genes for hsa-miR-204-5p that were recorded in

miRDB, miRTarBase, and TargetScan 7.1, and none of the hsa-
miR-4661-5p target genes were common among these three
databases. Among these hsa-miR-204-5p target genes, SIRT1,
SOX4, and RUNX2 exhibited a tumor-suppressive/oncogenic
role in previous prostate cancer studies. SIRT1 is involved
in androgen-mediated transcriptional repression and growth
suppression of prostate cancer cells (Dai et al., 2007). The SOX4
gene has been identified as a critical component of the PTEN-
PI3K-AKT pathway in prostate cancer (Bilir et al., 2016), and
RUNX2 is a type of oncogene that unusually increases in prostate
cancer cells, promoting their metastatic phenotype (Baniwal
et al., 2010). Further experimental work is required to understand
the combined effect of hsa-miR-204-5p and given target genes in
prostate cancer pathways and networks.

Recently, Larson et al. (2020) performed a miRNA-based
TWAS analysis of prostate cancer using the TWAS–FUSION
method. The authors reported two (miR-941 family and miR-
3617-5p) and one (hsa-miR-16-2-3p) significant miRNA from
normal and tumor expression models, respectively. None of these
miRNAs were found in our study. The absence of common
miRNAs between the study of Larson et al. (2020) and ours
can be due to applying different statistical approaches over
different populations. The miRNAs found from the above-
mentioned study have previously been reported as having tumor-
suppressive/oncogenic properties in other cancers, but not in
prostate cancer.

We performed the SMR–HEIDI test for three GWAS
summary statistics datasets of breast cancer. Three miRNAs were
significant – hsa-miR-196a-3p, hsa-miR-584-5p, and hsa-miR-
3129-3p – when the overall GWAS summary statistics were
applied in the SMR–HEIDI analysis and predicted as tumor-
suppressive by their negative effect sizes. Among them, hsa-
miR-196a-3p and hsa-miR-584-5p were previously reported as
tumor suppressors in breast cancer. Three members of the
miR-196 family where the resulting miR-196a-3p belongs –
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FIGURE 3 | MA plots for the differential expression analysis of TWAS-identified miRNAs. (A–D) MA plots for prostate, breast, colorectal, and endometrial cancers,
respectively. The red and green circled data points represent statistically significant [false discovery rate (FDR) < 0.05)] and insignificant (FDR ≥ 0.05) miRNAs from
the DESeq2 differential expression analysis (Love et al., 2014). According to the four figures in the panel, six miRNAs have shown upregulations, whereas three
miRNAs have exhibited downregulation.

miR-196a-1, miR-196a-2, and miR-196b – could suppress breast
cancer cell migration and metastasis by inhibiting HOXC8,
which promotes tumorigenesis by regulating the expression of
cadherin-11 in breast cancer (Li et al., 2010). miR-584 has
been identified as a novel target of TGF-beta that plays a
role in breast cancer progression as a prometastatic factor
(Fils-Aimé et al., 2013). The upregulation of hsa-miR-3129 is

known to suppress epithelial ovarian cancer through CD44. The
CD44 gene is highly expressed in many cancers and regulates
metastasis (Sun et al., 2018). In the SMR–HEIDI analysis of
ER + and ER- breast cancer subgroups, hsa-miR-4772-5p and
hsa-miR-570-3p were recognized as tumor-suppressive miRNAs,
respectively. Further experiments are required to establish the
role of hsa-miR-4772-5p and hsa-miR-570-3p in breast cancer. In
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our study, hsa-miR-4772-5p was TWAS significant in both breast
(ER+) and colorectal cancer risk.

As reported by the differential expression analysis of breast
cancer, hsa-miR-584-5p and hsa-miR-3129-3p have shown a
statistically significant downregulation in breast cancer. The
tumor-suppressive role of hsa-miR-584-5p described in literature
is supported by observing its downregulation in our differential
expression analysis (Fils-Aimé et al., 2013). Two miRNAs – hsa-
miR-196a-3p and hsa-miR-570-3p – have shown upregulation
in breast cancer. Among five TWAS-identified miRNAs, hsa-
miR-4772-5p did not exhibit a statistically significant expression
level difference between breast tumor and normal samples.
The target genes of five miRNAs were searched across three
miRNA–gene target prediction tools – miRDB, TargetScan 7.1,
and miRTarBase. We found six, one, one, 12, and three possible
target genes for hsa-miR-584-5p, hsa-miR-196a-3p, hsa-miR-
3129-3p, hsa-miR-570-3p, and hsa-miR-4772-5p, respectively.
One gene targeted by hsa-miR-584-5p – FOXA1 – and two genes
targeted by hsa-miR-570-3p – ABL2 and SUB1 – have been
described in previous breast cancer studies. FOXA1 positively
regulates gene expression by altering the gene methylation
status in human breast cancer Michigan Cancer Foundation-
7 (MCF-7) cells (Zheng et al., 2015). Knocking down of
ABL2 in breast cancer cells (using a mouse xenograft model)
leads to increased tumor cell proliferation and a significantly
enlarged tumor size in breast cancer (Gil-Henn et al., 2013).
The SUB1 gene can promote breast cancer proliferation
and metastasis through the c-Myc-mediated Warburg effect
(Luo et al., 2019).

In colorectal cancer, hsa-miR-4772-3p and hsa-miR-4772-
5p were significant from TWAS analyses, and both originate
from hsa-miR-4772 precursor miRNA. These two miRNAs
could be predicted as oncogenic by their positive SMR effect
sizes. Previous studies have shown that the under-expression
of serum exosomal hsa-miR-4772-3p could discriminate colon
cancer recurrence patients from non-recurrence (Liu et al.,
2016). Thus, it might serve as a prognostic biomarker for
colon cancer patients with tumor recurrence. hsa-miR-4772-5p
has been differentially expressed in Fusobacterium nucleatum,
which increases the proliferation of colorectal cancer cells
and tumor development (Yang et al., 2017). Conforming to
differential expression analysis, hsa-miR-4772-5p has shown a
statistically significant upregulation, whereas hsa-miR-4772-3p
was insignificant. Across the three miRNA–gene target prediction
tools, we found three and one gene targeted by hsa-miR-4772-
5p and hsa-miR-4772-3p, respectively. Among them, HNRNPH1
and WAC, targeted by hsa-miR-4772-5p, have been described
in previous colorectal cancer studies. A recent study has shown
that the HNRNPH1-induced stabilization of SGPL1 mRNA
promoted tumor progression by inhibiting p53 phosphorylation
in colorectal cancer cells (Takahashi et al., 2020). The WAC
gene has been mutated in murine colorectal cancer mutagenesis
screens, and that reduction in WAC expression reduces cell
growth (Clark et al., 2016).

Three significant miRNAs in endometrial cancer – hsa-
miR-1343-3p, hsa-miR-3117-3p, and hsa-miR-3131 – were not
recorded in previous endometrial cancer studies. Among them,
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two miRNAs – hsa-miR-1343-3p and hsa-miR-3117-3p – and
one miRNA – hsa-miR-3131 – can be predicted as oncogenes
and a tumor suppressor, due to positive and negative SMR
effect sizes, respectively. The differential expression analysis
has shown that both hsa-miR-1343-3p and hsa-miR-3131 have
been upregulated in endometrial cancer. One TWAS-identified
miRNA in endometrial cancer – hsa-miR-3117-3p – did not
show a statistically significant expression level difference between
the tumor and normal cohorts. The three prediction tools
provided six, one, and one target gene for hsa-miR-1343-3p,
hsa-miR-3117-3p, and hsa-miR-3131, respectively. None of these
target genes were reported in endometrial cancer literature. In
ovarian cancer, hsa-miR-4660 was identified as a novel risk-
associated miRNA that can be predicted as an onco-suppressor
due to its negative SMR effect size. We could not perform
a differential expression analysis of ovarian cancer as normal
cohort data was not accessible from TCGA. We found three
target genes for hsa-miR-4660, and none of these genes have
been reported in past ovarian cancer studies. Both endometrial
and ovarian cancer TWAS/SMR–HEIDI analyses resulted in
four novel miRNAs into the stream of cancer studies that
could be further validated using cancer-associated miRNA
functional experiments.

We acknowledged that our approach has certain limitations,
and these apply equally to the application of SMR–HEIDI in
an epidemiological context. In this work, the sample sizes are
limited (472 cis-eQTL probes) compared to the protein-coding
eQTL summary statistics (most are in thousands/ten thousands
scale). This minimizes our TWAS results compared to that of the
large-scale protein-coding gene expression analyses. This SMR–
HEIDI method has assumed the existence of a single causal
variant per locus. It is possible to find multiple causal SNPs for a
given locus according to the recent theory of allelic heterogeneity
(Jansen et al., 2017). An alternative method, the generalized SMR
(GSMR), is available for multi-SNP MR analysis. GSMR cannot
be used in this work as it requires summary-level data only from
GWAS studies (Zhu et al., 2018).

Our study did not consider the effect of distal SNPs and
mediating biomarkers, such as CpG sites, copy number alteration,
and transcription factors (Bhattacharya et al., 2021). In HEIDI
analysis, a few SMR associations were not considered as their
top-associated cis-eQTL had only one or two SNPs in the cis
region. Furthermore, the HEIDI method cannot distinguish
causality from pleiotropy. We had a limited set of target genes
for HDC risk-associated miRNAs at miRNA target predictions
in downstream analyses. The functions of these miRNAs are
not/less reported in previous experimental/computational work.
Therefore, the number of target genes identified across three
prediction tools was inadequate for a functional enrichment
analysis/protein–protein interaction analysis. Despite these
caveats, our findings shed a new light on the role of miRNAs in
HDC risk using a customized TWAS approach.

In summary, we repurposed an existing TWAS approach,
SMR–HEIDI, to analyze miRNA expression data. We identified
13 miRNAs (miRNA SNPs) that are associated with HDC
risk. Among them, one (hsa-miR-4661-5p), three (hsa-miR-
3129-3p, hsa-miR-570-3p, and hsa-miR-4772-5p), one (hsa-
miR-4660), and three (hsa-miR-1343-3p, hsa-miR-3117-3p, and

hsa-miR-3131) miRNAs were novel for prostate, breast, ovarian,
and endometrial cancers, respectively. The differential expression
analysis of TWAS-identified miRNAs has shown that 9 out of
13 miRNAs are differentially expressed in HD tumor tissues of
interest. Some of the protein-coding genes targeted by TWAS-
identified miRNAs have been reported as tumor repressors or
oncogenes in previous HDC studies. These observations provide
confidence to our statistical miRNA predictions. This study has
used miRNA eQTL information from tumor tissues only. In a
future work, we will focus the TWAS analyses on identifying
miRNA–HDC risk associations using miRNA eQTL generated
from normal tissues subject to the availability of datasets. The
set of HDC risk-associated miRNAs found in this study needs
to be functionally characterized further and may potentially be
utilized to develop biomarkers and therapeutic drug designs.
Importantly, the same analytical approach can be implemented
to detect associations between miRNA expression and other
traits of interest.

CONCLUSION

We customized an existing TWAS approach to identify risk-
associated miRNAs in HDC types. Our approach prioritized 13
miRNAs associated with individual HDC, and such a method
could be extended to study other complex traits/diseases. The
putative miRNAs and their target genes identified in our study
will enable us to understand the HDC biology better. This
study was conducted utilizing a limited number of miRNA
eQTL originated from European ancestry-based genetic datasets.
Future miRNA-based TWAS analyses are warranted for diverse
datasets generated from different populations/ancestries.
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