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The choroid plexus is an important circadian clock
component
Jihwan Myung 1,2,3,4,5, Christoph Schmal6, Sungho Hong 2, Yoshiaki Tsukizawa7, Pia Rose6, Yong Zhang8,

Michael J. Holtzman 8, Erik De Schutter 2, Hanspeter Herzel6, Grigory Bordyugov6 & Toru Takumi1,7

Mammalian circadian clocks have a hierarchical organization, governed by the suprachias-

matic nucleus (SCN) in the hypothalamus. The brain itself contains multiple loci that maintain

autonomous circadian rhythmicity, but the contribution of the non-SCN clocks to this hier-

archy remains unclear. We examine circadian oscillations of clock gene expression in various

brain loci and discovered that in mouse, robust, higher amplitude, relatively faster oscillations

occur in the choroid plexus (CP) compared to the SCN. Our computational analysis and

modeling show that the CP achieves these properties by synchronization of “twist” circadian

oscillators via gap-junctional connections. Using an in vitro tissue coculture model and in vivo

targeted deletion of the Bmal1 gene to silence the CP circadian clock, we demonstrate that the

CP clock adjusts the SCN clock likely via circulation of cerebrospinal fluid, thus finely tuning

behavioral circadian rhythms.
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The suprachiasmatic nucleus (SCN) is the gatekeeper to the
circadian rhythms in the body. Known also as the master
circadian clock, it keeps the bodily rhythms in sync with

the light–dark cycle in the outside environment. The SCN is also
an encoder of seasonal rhythms through phase reorganization
among its subregions, in adaptation to daylength1–3. It propagates
information of these external cycles to a web of internal circadian
cycles in peripheral circadian clocks4. Circadian signaling is
deemed hierarchical because of the assumed one-way flow of
information from the SCN. However, the peak phases of the
circadian gene expression in the peripheral clocks are not aligned
to the sequence of this flow, and for this reason the SCN has been
called the coordinator rather than the originator of rhythms. The
phase reorganization seen in the SCN extends to the system of
master-peripheral clocks. A long daylength causes phase reorga-
nization among peripheral circadian clocks in the body, similarly
to SCN subregions5. Feedback interactions within the SCN are
expected to apply equally to the tissue-to-tissue level6,7. Yet, in
shaping behavioral circadian rhythms the exact role played by
peripheral circadian clocks is unknown.

It was recently found that the choroid plexus (CP) is also a
peripheral circadian clock8,9. The CP, lining the third, fourth,
and lateral ventricles, is one of the circumventricular organs
(CVOs) that produces the cerebrospinal fluid (CSF) by actively
filtering blood plasma through a monolayer of epithelial or spe-
cialized ependymal cells that surround fenestrated capillaries. The
environment of the brain is closely monitored by CVOs. Found in
close contact with CSF, CVOs monitor physiological parameters,

such as osmolarity, and release cytokines to maintain home-
ostasis. The CVOs share a common structure of a tight junction-
protected epithelial cell layer (blood–CSF barrier, BCSFB)
enveloping the blood–brain barrier (BBB)-lacking microvessels,
handling more fluid traffic than the BBB.

Separated from other body fluids, the CSF surrounds the brain
and spinal cord. Tight junctions between brain endothelial cells
form the BBB and keep the CSF from mixing with the blood
plasma. The circulation of the CSF that floods the ventricular
system, the spinal canal, and the subarachnoid cavity until
resorption, is an important mechanism for brain homeostasis10.
However, CSF homeostasis is not static and circadian variations
of its production rate and composition have been demon-
strated11,12. Production and resorption of CSF are an integral part
of the glympathic pathway that clears brain metabolites from the
interstitial fluid during sleep13,14.

Here, we looked at circadian clock activities in explant cultures
from various loci of the brain and found that CVOs harbor robust
circadian clocks in the brain. The presence of circadian clocks in
these loci suggests that homeostatic control of the brain micro-
environment is predictive and follows the circadian schedule15,
although the connection between cytokine release and tran-
scriptional circadian oscillation is often difficult to establish.
Among the CVOs, the CP stood out for its large amplitude and
persistent oscillation in isolated culture. We studied the tissue-to-
tissue interaction between the CP and the SCN using in vitro
cocultures and reporter systems. In the presence of the CP, the
long period of rhythms in the SCN is restored to the level of the
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Fig. 1 Multiple brain loci harbor circadian clocks. a Brain loci expressing Bmal1-ELuc. b Sampled brain loci for isolated explant culture. c Representative
PER2::LUC oscillations in isolated culture, sorted by the rhythmicity score. d The relative circadian component and the noise component in the PER2::LUC
oscillations (upper) and the rhythmicity score calculated by the ratio of the two (lower). Each dot indicates an ensemble average of tissues of the same
kind (green: LV CP, red: 4V CP, and blue: SCN). The spectral power of each component is resolved by a discrete wavelet transform. LV CP choroid plexus
of lateral ventricle, 4V CP choroid plexus of fourth ventricle, 3V CP choroid plexus of third ventricle, Pituitary pituitary gland, SCN suprachiasmatic nucleus,
ME median eminence, Pineal pineal gland, AP area postrema, OVLT vascular organ of lamina terminalis, PAG periaqueductal gray, VTA ventral tegmental
area
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behavioral circadian period. We found the same trend in vivo
sleep–wake cycles in mice lacking the essential circadian clock
gene Bmal1 in the CP and ependymal cells. This indicates that the
CP circadian clock influences the SCN master clock and com-
prises an important component of the brain-wide feedback
interaction of circadian clocks.

The strong oscillation of the CP is due to the high degree of
synchronization of its component cellular clocks, which is sur-
prising because a non-neuronal tissue lacks long-distance cell-to-

cell signaling despite its large geometry. We propose a simple
mathematical description of the single-cell oscillation that
extends to explain the unusual tissue-level synchronization of the
CP clock. Amplitude and period are intertwined in oscillations in
the CP, a phenomenon known as “twist”. Under local coupling
primarily mediated by gap junctions, synchronization can bias
population-level amplitude and period, and improve spatial
coherence of cellular circadian clocks. Together, our results show
that the non-neuronal network of circadian clock in the CP
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Fig. 2 The robust circadian clock in the CP is due to strong synchronization through gap junction coupling. a Single-cell level circadian oscillation of PER2::
LUC activity in the CP (upper) and the SCN (lower). b Single-cell level oscillations of Bmal1-ELuc. In the SCN, each time series tracks changes of
bioluminescence in a square region-of-interest (ROI) of single-cell size. ROIs of the same dimension are used on distinct regions in the CP as single cells
were visually indistinct. c Immunohistochemistry against the gap junction subunit Cx43 shows its expression between cells of the CP. Scale bar indicates
50 μm. d For self-sustained oscillators exhibiting negative twist, an increasing (instantaneous) amplitude transiently leads to a decreasing (instantaneous)
period as the oscillator returns to its steady-state oscillation. Isochrons represent lines in the phase space with identical oscillator phases as time t goes to
infinity65 (see Methods). In systems without twist, isochrons form straight radial lines (thick black lines). In oscillators with negative twist, isochrons
become bent or “twisted” (thick red line). In networks of interacting oscillators, coupling can expand the amplitude of single-cell oscillators and speed up
the oscillation under negative twist (inset). See Supplementary Fig. 3 for detailed illustrations. e Cellular circadian oscillations in the entire 4V CP can be
observed in vivo (upper left). In culture, Bmal1-ELuc oscillation shows spatial patterning of the peak phase of its circadian oscillation, which is statistically
significant for the first 3–4 days (see Supplementary Fig. 4). The central region of the 4V CP phase leads (upper), which can be explained by the boundary
value condition in the nearest neighbor coupling of gap junctions (lower)
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makes an integral component of the brain’s circadian system that
provides feedback to the SCN master clock.

Results
Robust oscillation of the CP circadian clock. We screened
Bmal1-ELuc expression in brain loci by imaging enhanced bio-
luminescence from the Emerald Luciferase16 in acute cultures of
sagittal sections. The circadian clock molecule, BMAL1, is a
positive regulator of the core-clock elements, PER and CRY,
which form a transcriptional feedback loop at the circadian
timescale. Therefore, BMAL1 can be considered the substrate for
the molecular circadian clock and its expression indicates the
presence of a clock. Bioluminescence reporter-based circadian
clock screening has been performed previously17,18, and the clock
locations found in these studies agree with findings from sys-
tematic quantification of RNA expression19. Several loci were
identified for putative clock hosts, including the mediobasal
hypothalamus20, areas surrounding the 3V and the brain stem21

(Fig. 1a; see Supplementary Fig. 1 for full scans). Putative clock
loci were then dissected and cultured as isolated explants from
animals expressing PER2::LUC, a bioluminescence reporter based
on a fusion protein of PER2 and firefly luciferase18. A strong
bioluminescence signal was detected in the cerebellum22, but
continued circadian rhythmicity of clock gene expression could
not be confirmed in this study due to the difficulty of maintaining
cerebellar tissue in culture. Weak circadian clock activities were
observed in subsets of cells in the hippocampus and the cortex,
but found insufficient for consistent characterization. Strong,
persistent circadian expression of PER2::LUC was found mostly
in the CVOs, including the CP, the pituitary gland, the median
eminence (ME), the pineal gland, and the area postrema (AP), all
of which are in direct contact with the CSF (Fig. 1b, c). We
ranked the strength of the circadian clock by resolving the cir-
cadian oscillatory component and comparing it with the noise
component in the time series (see Methods and Supplementary
Fig. 2). This indicates that the strongest oscillation occurs in the
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Fig. 3 Gap junctions mediate the inverse relationship between the period and the amplitude, as the twist coupling model demonstrates. a–f The left and
right pair of the 4V CP can be used as a control and a test pair to directly compare the effects of pharmacological block of gap junctions or of physical
chopping along the length of the CP. a (From top to bottom) Shown are ensemble averages of all PER2::LUC oscillations in kcpm for the control (dashed)
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periods of the MEA-treated CP and its paired control, and indicates a data from one animal. c The RMS amplitude ratio of the MFA-treated CP to its paired
control decreases with increasing concentration of MFA. d Together, an inverse relation between the period and the amplitude can be found, with the high
MFA concentration group in the long-period and low-amplitude quadrant. e, f A similar trend can be found in the physically cut samples. Upper panels
show the cases when the test pair of the CP is cut into 6 and 24 pieces, and when the test pair was enzyme dissociated with trypsin. g–i The twist coupling
model recaptures the acceleration of the circadian oscillation and increase in amplitude by coupling. In the simulation, results from five sets of periods and
initial phases randomly generated from a normal distribution (1 h standard deviation) are overlaid

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03507-2

4 NATURE COMMUNICATIONS |          (2018) 9:1062 | DOI: 10.1038/s41467-018-03507-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


CP, followed by the pituitary gland and the SCN (Fig. 1d). The
robust circadian rhythmicity of the CP stands out among all
explants sampled and in all CP structures sampled from the third
ventricle (3V), the lateral ventricle (LV), and the fourth ventricle
(4V), despite their heterogeneous molecular identities23. Notably,
the robustness of the CP oscillation exceeds that of the master
circadian clock in the SCN.

Tissue-wide patterning of circadian phases in the CP. The 4V
CP is particularly valuable as a model system because despite its
large size, it is possible to culture and observe the whole structure.
The CP can be dissected in its intact form and monitored through
a cooled-CCD camera. By tracking circadian expression of PER2::
LUC and Bmal1-ELuc at the single-cell level, we found that cel-
lular circadian clocks in the CP maintain much better phase
synchrony than in the SCN (Fig. 2a, b). Phases within the SCN
have been shown to encode daylength and other second-order
characteristics of day–night cycles24. Therefore, strong complete
synchronization is not necessary in the neuronal network of the
SCN. However, in the non-neuronal tissue network of the CP,
component cellular clocks are highly synchronized. In the net-
works of astrocytes, endothelial cells, or endocrine cells, gap
junctions mediate local coupling and create population-level
dynamics, such as calcium waves25. Expression of gap junctions
has been shown by high-throughput analysis in the CP of the
mouse26 and the rat27. Hence, a likely mediator of this syn-
chronization is gap junction coupling, and we find strong
expression of connexin 43 (Cx43) in the CP. Gap junctions
connect neighboring cells, indicated by the hexagonal expression
around cells (Fig. 2c). The CP epithelial cells, driven devel-
opmentally by FOXJ1 transcription factor, are known to express
Cx4328.

Mathematically, gap junction connections can be described by
nearest neighbor coupling between single-cell circadian oscilla-
tors. Cells on the boundary end-up getting less coupling input,
while cells in the central area of the tissue receive concentrated
coupling input. Coupling can simultaneously affect the period
and the amplitude of circadian oscillation29 due to nonlinear
interaction of transcriptional circuits30. A straightforward way to
model the interdependence between the frequency (inverse of
period) of oscillation and its amplitude is by generic oscillator
models31–33. One of the simplest conceptual models for circadian
oscillators is the modified Poincaré oscillator34,35. In the simplest
case, the interdependence between the oscillation frequency and
amplitude is assumed to be linear (see Methods). A radially
outward deviation of the oscillator from its steady-state orbit
causes a proportional change in period (or increase in angular
velocity). This dependence relation has been referred to as “twist”
or “shear” in the literature, and by convention, a negative twist
parameter (ε) can describe an oscillator in which an amplitude
increase is accompanied by a decreasing period36 (Fig. 2d).

At the whole-tissue level, we observed spatial patterning of
phases, with the leading phase appearing in the central area of the
tissue (Fig. 2e, upper; Moran’s I ~ 0.5 for initial 3–4 days, p < 0.05,
Supplementary Fig. 4; see also Supplementary Figs. 6–8 F and G)
37. We can explain the phase advance of the central area of the CP
by the accumulation of coupling effects from the boundary
(Fig. 2e, lower left). Due to resonance effects, amplitudes expand
more in the central part of the chain. In a system where each
oscillator has a negative twist amplitude–period relationship, the
central part exhibits the shortest period. It has been previously
demonstrated that short periods lead to early phases, while long
periods lead to late phases upon synchronization to a mean field
or an external signal33,38. Thus, in the fully synchronized state,
the short-period central part phase advances in comparison to

lateral parts of the 4V CP. A chain of nearest neighbor-coupled
Poincaré oscillators with negative twist (ε < 0) recaptured the
observed phase relations (Fig. 2e, lower right; Supplementary
Fig. 5) (see Methods for simulation details).

The effect of twist at the population level. The negative twist
represents an inverse relationship between the period and the
amplitude of an oscillator. When extended to a system of oscil-
lators, the inverse relation strengthens as a result of an amplitude
expansion as the accumulated strength of coupling grows. In the
cultured 4V CP, we weakened the coupling strength by increasing
concentrations of the gap junction blocker, meclofenamic acid
(MFA). MFA is a water-soluble drug that potently and reversibly
blocks gap junctions39. We took advantage of the bilaterally
symmetric anatomy of 4V CP to overcome tissue-to-tissue
variability. When separated into left and right sides in two
dishes, both sides independently maintained perfectly identical
circadian rhythms (Fig. 3a, 0 µM; n= 9 pairs; p= 0.55 for peri-
ods, paired t-test). We, therefore, compared PER2::LUC oscilla-
tions between the pairs. As a control, one side of the CP was
cultured in a control medium, and the other side of the CP in a
MFA-containing medium (Fig. 3a, top inset). This pairwise
comparison was the experimental paradigm that we applied
throughout (see Methods). As predicted by the twist model
(Fig. 2d, e lower, and Supplementary Fig. 5), MFA dose depen-
dently increased the period and decreased the amplitude (50–300
µM; n= 4–13 pairs; all data points except for outliers are indi-
cated in Fig. 3b–d). A grid-based analysis of two-dimensional
(2D) time-lapse recordings of PER2::LUC oscillations before
application of MFA, during application of MFA, and after
washing MFA from the medium, reveals that application of the
gap junction blocker reversibly decreased global phase coherence
and increased the standard deviation of the single-cell period
distribution, indicating a reversible effect of the gap junction
blocker (Supplementary Fig. 9). If removal of local coupling by
gap junction inhibition shifts the amplitude and period along an
inverse relationship, physical dissociation of the tissue is expected
to cause a similar shift, albeit to a lesser degree. We cut the test
side of the CP in 6–30 equal pieces, with an increment of 6. The
amplitude decreased and period increased with the number of
pieces, but the trend saturated after 18 pieces. The period con-
tinued to increase after enzyme dissociation, although the
amplitude decrease could not be compared due to the cell loss
during the dissociation process (for all physical and enzyme
dissociation, n= 5–9 pairs; Fig. 3e, f). An analogous increase of
the ensemble period can be observed in a grid-based single-cell
analysis, comparing a surgically dissected 4V CP with a control
(Supplementary Fig. 10). These characteristics are recaptured by
the one-dimensional (1D) chain of coupled oscillators with
negative twist (simulations with Gaussian random samples of
periods and initial phases, n= 4; Fig. 3g–i). A 2D model of
nearest neighbor coupled Poincaré oscillators, using a realistic
geometry (see Methods for simulation details), mimics the
experimentally observed phase patterns, as well as the relation-
ship between the coupling strength, the ensemble amplitude, and
the ensemble period as indicated by the above described results
(Supplementary Fig. 11). It should be noted that spatial gradients
of single-cell oscillator properties or coupling strength can lead
also to the experimentally observed spatial patterns as discussed
in the previous paragraph (Supplementary Fig. 12). Importantly,
we were able to reproduce the experimentally observed depen-
dency between coupling, amplitude, period, and phase, solely
under the assumption of a negative oscillator twist (compare
Fig. 3d, f with Fig. 3g–i, Supplementary Figs. 11 and 12).
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Developmental change of CP period. The inverse relationship
between period and amplitude sets an operating limit for the CP
circadian clock. In other words, we can predict that changing the
coupling strength will alter the period of circadian gene expres-
sion oscillation in the whole tissue by simultaneously altering the
amplitude. If this is true, the developmental distribution of period
and amplitude in the ensemble of control samples would fall onto
the inverse relationship in the same operational range (period of
23–26 h and amplitude of 20–150 kcpm or thousand photon
counts per minute, Fig. 3d, f). The 4V CP is especially suitable for
this kind of experiment since the entire tissue can be extracted in
intact form and its size does not vary greatly compared to the
changes in brain size throughout development (i.e., the CP is a
relatively large structure in embryonic and neonatal brains). We

pooled data from 4V CP and SCN explants from mice at various
developmental stages (postnatal days P1–P500). When we
superpose PER2::LUC oscillations from ensembles of CP tissues
from the same zeitgeber time, we discover that in P0, the oscil-
lations damp quickly and the period is long, often longer than 24
h. Oscillations are not synchronized to the external light–dark
cycles, as is evident in the dispersed peaks in the time series
(Fig. 4a, top). The damping becomes less severe and the peaks
become more coherent at P7 and the trend continues progres-
sively as the age of the animal increases (Fig. 4a). Improvements
in robustness (inverse of damping) and coherence, which often
indicate stronger coupling, are associated with an ontogenetic
decrease of period (Fig. 4b). The critical transition of the circa-
dian period seems to occur at around P10 (characteristic time of
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−0.28 ± 0.14, p= 0.023). Amplitudes are rescaled by half when both left and right sides were cultured together
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9.47 days as found by exponential fit). However, no such tran-
sition could be found in the SCN samples (Fig. 4c). This supports
the idea that coupling in the CP strengthens with age and because
of the twist in each of the component oscillators, the period-
amplitude pair shifts from the lower right to upper left as an
animal ages. The period-amplitude scatterplot of all control data
is consistent with this hypothesis (R=−0.43 ± 0.06, Pearson’s
correlation coefficient, p= 1.65 × 10–11, bootstrap z-test; Fig. 4d,
left). The inverse relationship is not as steep in SCN samples
(R=−0.28 ± 0.14, p= 0.023, bootstrap z-test; Fig. 4d, right) or
as significant as the CP when the sample size is controlled (CP:
R=−0.43 ± 0.13, p= 5.89 × 10–4, after size-controlled resam-
pling). The intact SCN is anatomically less distinct and more
difficult to sample than the CP and the amplitude comparison
between the SCN samples may be less reliable than in the CP
samples. Nonetheless, the clear twist-mediated developmental
decrease of period and increase of robustness in the CP circadian
clock cannot be found in the SCN, which attains robust PER2::
LUC oscillation at P740. This suggests potential differences in the
coupling mechanism between the two systems.

Brain-wide coupling between the SCN and the CP. The possi-
bility that the CP circadian clock is flexible within an operational
range leads us to speculate on its functional impact on whole-
brain circadian rhythms. The SCN was long thought to be the
major generator of behavioral and physiological changes in cir-
cadian rhythms of the body, until it was found that autonomous
circadian clocks exist in multiple tissues17 and cell types,
including fibroblasts41. Although it is now thought that the SCN
is a master coordinator of these clocks, we know that most of the
neural connectomes contain feedback connections. We have
therefore evaluated a possible interaction between the CP and the
SCN in vitro. Tissue-to-tissue interaction in the culture system
has been demonstrated to be feasible by placing one tissue directly
above the other42. We once again used one lateral side of the 4V

CP and the SCN as the control, and the other side as the test
group. The effect of circadian clock activity in one tissue on the
other tissue can be evaluated in a pairwise manner by coculturing
non-bioluminescent (LUC (−)) tissue on the bioluminescent
(LUC (+)) effector tissue and comparing the bioluminescence
oscillation with the contralateral partner without coculture
(Fig. 5a, upper inset). The SCN under coculture with LUC (−) CP
showed accelerated PER2::LUC oscillation (two representative
pairs are shown in Fig. 5a, lower; complete statistics in Fig. 5b,
left, ***p < 0.001, paired t-test, n= 4 pairs). On the other hand, no
change in oscillation period was observed in the LUC (+) CP
cocultured with LUC (−) SCN (Fig. 5b, right, n= 4 pairs). This
suggests that there is an internal entrainment stream from the CP
to the SCN. Interestingly, the average period of PER2::LUC
oscillation in the SCN, normally longer than 24 h, became
“normalized” to the behavioral circadian period of 23.7 ± 0.1 h43

when cocultured with the CP (Fig. 6c). The behavioral period
under constant darkness is a consistent phenotype in the C57BL/
6J background strain (23.83 ± 0.04 h in ref. 44; PER2::LUC/
+23.61 ± 0.09 h in ref. 18).

CP-specific silencing of the circadian clock alters behavior. The
observation that the period of PER2::LUC oscillation in cultured
SCN is longer than the behavioral freerun period of locomotor
activities under constant darkness43 remains unexplained. In
freely moving mice, the PER2::LUC oscillation period in the
in vivo SCN matches that of the behavioral period of the ani-
mal45. It is therefore conceivable that the coculture condition in
Fig. 5 minimally represents the normal brain environment and
that the SCN circadian clock is feedback entrained through the
CSF by as-yet-unidentified signaling molecules from the CP. We
can experimentally test this hypothesis in vivo by selectively
silencing the circadian clock in the CP. FOXJ1 is a transcription
factor that induces differentiation of motile ciliated cells. In the
brain, its expression is limited to the CP and ependymal cells46.

S
C

N
 (

+
)

S
C

N
 (

+
)

+
C

P
 (

–)

22

23

24

25

P
E

R
2:

:L
U

C
 p

er
io

d
(h

)

***

P
E

R
2:

:L
U

C
 p

er
io

d
(h

)

22

23

24

25

NS

Co-culture with CP Paired control

LUC (+)
left SCN

LUC (–)
4V CP

LUC (+)
right SCN

Days in culture Days in culture

Animal #2

Animal #1

1 2 3 4 5 1 2 3 4 5

1 2 3 4 51 2 3 4 5

S
C

N
P

E
R

2:
:L

U
C

Animal #11

0

–1

C
P

P
E

R
2:

:L
U

C

1

0

–1

Animal #2

C
P

 (
+

)

C
P

 (
+

)
+

S
C

N
 (

–)

a b

Fig. 5 Diffusive signaling from the CP to the SCN circadian clock restores the PER2::LUC rhythm in cultured SCN close to the behavioral period. aWhen the
non-bioluminescent CP is cultured directly over the SCN, the PER2::LUC oscillation in the SCN accelerates (upper), whereas the CP does not reciprocate
this acceleration (lower). Two representative examples for each group are shown. The bioluminescent left and right sides of the SCN are separated to make
the test (with CP) and the control (without CP) groups. b The coculture with the CP normalizes the PER2::LUC oscillation in the SCN, normally longer than
24.0 h in culture, to the level comparable with the behavioral period of circadian locomotor activities (23.7 h) (upper). ***p < 0.001, paired t-test. However,
the CP does not accelerate its PER2:LUC oscillation when the non-bioluminescent SCN is cocultured (lower)

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03507-2 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:1062 | DOI: 10.1038/s41467-018-03507-2 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


By crossing FOXJ1-Cre transgenic mice (CreFoxJ1) and floxed
Bmal1 mice (Bmal1flx/flx), we generated mice with targeted
knockdown of Bmal1 in the CP (CreFoxJ1;Bmal1flx/flx, Fig. 6a).
The mean period of circadian locomotor activities under constant
darkness in control Bmal1flx/flx littermates was identical to that of
the wild type (WT: 23.70 ± 0.04 h, mean ± SEM; n= 4, Fig. 6b).
As predicted, the period increased progressively with the degree
of CP-specific Bmal1 knockdown in heterozygous mice (Het.:
23.81 ± 0.05 h, n= 5) and increased significantly in the homo-
zygous knockdown (Homo.: 23.92 ± 0.04 h, n= 4, p < 0.01,
Fig. 6c). This increase is consistent with the coculture results of
Fig. 5.

In the brain environment, it is plausible that the CP diffuses its
clock signal to the SCN through ventricular circulation of the
CSF. The SCN-to-CP signaling pathway is not known, but an
array of indirect pathways is feasible, such as the indirect
neuronal innervation or blood-borne signaling through the
neuroendocrine system (Fig. 6d). To make sure that Bmal1
knockdown was specific to the CP, we measured Bmal1
transcripts at the time of light-off in the same animals tested
for their circadian locomotor activities. We found that the Bmal1
transcripts were expressed similarly in the SCN across genotypes
(Homo. vs WT: p= 0.07). However, in both the 4V CP and the

LV CP, Bmal1 expression was close to the detection limit in
CreFoxJ1; Bmal1flx/flx (Homo. vs WT: p < 0.01). We note that when
samples from the heterozygous knockdown animals (CreFoxJ1;
Bmal1flx/+) were considered together, the locomotor period was
highly correlated with the Bmal1 expression level in the CP
(Pearson’s correlation coefficient, R=−0.75 (4V CP), R=−0.74
(LV CP), p < 0.005, Fig. 6e).

Discussion
The entire brain is immersed in CSF and a large portion of the
CSF is produced by the CP. Given this role, we can imagine that
the CP is an important mediator of brain homeostasis. Many
homeostatic processes of our bodies have a circadian timescale,
which is a direct consequence of living on a planet that has a 24-h
day and night cycle. The strong circadian clock in the CP can be
related to the circadian homeostasis of the brain. In kidneys, the
circadian clock controls circadian water homeostasis47. The
strong CP circadian clock also contributes to the brain’s circadian
clock itself. Information about the day–night cycle arrives
through the eyes and directly entrains circadian clock neurons in
the SCN. For that reason, circadian time has been generally
thought to be hierarchically organized by the SCN. However, we
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discovered that the CP also influences the SCN, most likely
through diffusible factors in the CSF. The CP-SCN coculture only
affects the period of PER2::LUC oscillation in the SCN and not in
the CP. This indicates the SCN-to-CP signaling is not mediated
by the CSF, and possibly through sympathetic and para-
sympathetic innervation48. There are multiple autonomous cir-
cadian clocks in the brain, which are usually found in neuronal
cells, and it is therefore surprising that the CP is composed of
non-neuronal cells. There have been indications that the SCN
behaves differently when isolated in vitro, potentially disputing
the exclusive role of the SCN circadian clock49,50. The interaction
between neuronal and non-neuronal circadian clock cells has
recently been highlighted in the SCN, focusing on the astrocyte
population51–53. In these reports, circadian period lengthening
has been noted at both cellular and behavioral levels when the
glial population loses circadian clock activities. Feedback inter-
action from what has been thought to be a passive receiver of
circadian information may not be unusual in light of the general
principle of neural organization, which heavily relies upon feed-
back networks. We conclude that the behavioral circadian rhythm
is an integrated output of multiple clocks throughout the brain,
and that the CP is an important component.

We discovered robust circadian gene expression rhythms in the
CP using two independent reporters, PER2::LUC and
Bmal1-ELuc. We found that circadian oscillations are spatially
ordered and formulated a hypothesis of local coupling through
connections by gap junctions. Modulating the degree and
strength of coupling by physical cut or pharmacological gap
junction inhibition weakened the amplitude of PER2::LUC
oscillation, while at the same time lengthening the oscillation
period. This inverse relationship between amplitude and period
can be most succinctly described by a conceptual model of
negative “twist“ in the phase space of a circadian oscillator, in
which a perturbation from the steady-state amplitude of the
system accelerates the oscillation during the course of relaxation.
The molecular circadian clock is a complex nonlinear system and
the amplitude is an integral component intertwined with the
phase. In the phase space of the PER2::LUC circadian oscillation,
its orthogonal components are Per2 mRNA and PER2 protein. In
our previous model, intercellular coupling drives Per2 tran-
scription under saturable kinetics and this produces positive
twist54. Instead, when each oscillator is driven by sequestration-
based kinetics, the twist disappears30. Our observation of negative
twist suggests that there still exists room for modeling the fun-
damental kinetics that drives the molecular circadian clock in
mammals. In a network context, negative twist relates frequency
and coupling of individual oscillators (Supplementary Figs. 12
and 13). Recent studies showed that a network of such oscillators
behaves in a fundamentally different way than plain coupled
oscillators55,56. This implies that twist is critical in how syn-
chronization and spatial patterning arise in the CP network (see
also Supplementary Discussion and Supplementary Fig. 13).

It has been noted that single-cell dispersion of the SCN widens
the period distribution of PER2::LUC oscillations while also
increasing the mean period57. Pharmacological blockade of the
ubiquitous neurotransmitter in the SCN, GABA, lengthens the
period of Bmal1 oscillation in equinox-entrained SCN explants43

and in long day-entrained SCN explants2. Similarly, we found
that inhibiting the gap junction in the CP lengthens its circadian
period.

This finding raises the possibility that the circadian clock of the
CP is physiologically modulated by gap junctions. Expression of
the gap junction subunit Cx43 in the CP is plastic and undergoes
upregulation in response to inflammation58. We find that pro-
longed treatment of gap junction blockers induces homeostatic

expression of Cx43 transcript in the CP (Supplementary Fig. 14).
Cx43 expression in the bladder is controlled by the circadian
clock genes and coordinates urination rhythm59. Changes of
circadian rhythms through gap junction reorganization or plas-
ticity60 under either physiological or pathological conditions are
an important topic of future study. In our study, we demonstrated
a developmental change in the CP circadian period, but its rela-
tion to gap junction expression remains unclear. Anatomical
organization of the CP changes during development, but gap
junction connections have not been characterized in a develop-
mental context. CP epithelium expresses at least seven connexin
subunits, including Cx43, and this complexity needs to be taken
into account in future studies61.

The nontrivial influence of the CP circadian clock on the
overall behavioral rhythm offers an alternative strategy to
manipulate the circadian clock using a non-SCN target. One
possible avenue is pharmacological manipulation of gap junctions
in the CP. It is also likely that there are other similarly important
circadian clock organs in the brain and identifying them and
discovering pathways that modulate their circadian oscillations
could alter our view of the circadian clock as an organization of
clocks.

Methods
Animals. Mice under C57BL/6J background, of both sexes and ages ranging from
postnatal day 0 to 600, were maintained under equinox (12 h light, 12 h dark)
conditions and at constant ambient temperature. Heterozygous bioluminescence
reporter-expressing strains PER2::LUC (MGI ID: 3040876)18 and Bmal1-ELuc16

were used for explant culture experiments. For CP-specific Bmal1 deletion,
homozygous Bmal1flx/flx and heterozygous Bmal1flx/+; FOXJ1-Cre (MGI ID:
3797103)46 were crossed to produce Bmal1flx/flx littermates with the Cre (test
group) or without Cre recombinase (control group). All animal protocols were
reviewed and approved by the RIKEN Brain Science Institute.

Locomotor activities. Adult mice of different genotypes, including control litter-
mates, were individually housed in a light–dark controlled chamber with a venti-
lating fan that provided constant environmental noise. Locomotor activities were
monitored with a passive infrared sensor and logged on the computer as described
previously2. Circadian periods were estimated from the chi-squared periodogram
with a custom code written in Mathematica62.

Tissue dissection and explant culture. Tissue culture and bioluminescence
measurement protocols were identical to those used previously except for the
addition of CP sampling43. PER2::LUC and Bmal1-ELuc mice were anesthetized
and killed about 0–2 h before lights off and under dim light, brains were isolated to
ice-cold HBSS within 15 s after decapitation. The brain was rinsed in fresh ice-cold
HBSS and coronally cut into two close to the lambda point. For imaging-based
scanning of Bmal1-ELuc expression, sagittal sections were made at 150 µm thick-
ness on a Microslicer (DSK). For time-lapse imaging of the SCN, the anterior
portion was coronally sliced at 250 µm thickness and trimmed to sample the mid-
posterior section of the SCN. The posterior portion was transferred to a new dish
containing ice-cold HBSS for sampling the 4V CP.

For imaging of the CP and tissue explant luminometry, select brain loci were
dissected and isolated in ice-cold HBSS with forceps and a scalpel blade under the
stereomicroscope. For collecting the 4V CP, the 4V was accessed by lifting the gap
between the cerebellum and the brain stem, and the whole CP attached on the side
of the cerebellum was gently taken out with forceps. The AP was sampled from the
nearby area on the brain stem with a scalpel blade. The pineal gland was isolated
from the inner side of the skull after removing surrounding dura mater and blood
vessel. The whole pituitary gland was taken from the base of the skull with forceps.
The whole SCN was dissected from the ventral side of the brain with a scalpel blade
directly under and slightly posterior to optic chiasm. The ME and VLPO were
collected along the base of 3V. Consistency of PER2::LUC activities was confirmed
by comparing against tissue explants isolated from imaged slices. The anatomical
location of the SCN was independently confirmed with GAD67 expression and
precision of isolation was further assessed by Avp and Vip transcript expression
patterns in dorsoventral subdivisions. Culture of each explant was maintained at
37 °C on the culture membrane (Millicell-CM; Millipore) in a vacuum-sealed 35-
mm dish containing 1 mL of DMEM (Sigma) with NeuroBrew-21 supplement
(Miltenyi Biotec), penicillin-streptomycin (25 U/mL–25 µg/mL; Nacalai Tesque),
and 100 µM beetle luciferin (Promega).
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Time-lapse bioluminescence imaging and luminometry. Single-cell resolution
imaging was performed on a LV200 (Olympus) with the Orca C4742-80-12AG
cooled-CCD camera (Hamamatsu) and a custom-built incubator-microscope sys-
tem with the Orca R2 cooled-CCD camera (Hamamatsu). Binning was set to 4 × 4
and exposure time was 15 min. For whole-tissue monitoring of bioluminescence,
we used a 24 dish, double photomultiplier tube (PMT) system (LM-2400; Hama-
matsu) with a sampling interval of 15 min. SCN explants for whole-tissue biolu-
minescence were attempted in the whole SCN dissected out of the ventral side of
the brain.

For gap junction inhibition, a stock solution of MFA sodium salt (Sigma-
Aldrich) was prepared at ×1000 concentration in DDW and refrigerated before
experiments. MFA was chosen over carbenoxolone (CBX, 400 µM) and mefloquine
(MEQ, 100 µM) due to toxicity under our experimental system. The drug effect was
pairwise compared in each bilateral side of the tissue (SCN and 4V CP), by
culturing one side in the control medium (control) and the other side under
manipulation or the drug-containing medium (test). Micro-dissection of the CP
was performed on the CP mounted on the culture membrane. Enzyme dissociation
of the CP was performed using TrypLE Select ×1 solution (no phenol red, Thermo
Fisher Scientific) according to the manufacturer’s protocol. The trypsin
replacement dissociation enzyme has been conveniently called “trypsin” or “Tryp.”
in the main text and figures.

Real-time quantitative PCR. Animals from the locomotor activity monitoring
chamber were anesthetized and decapitated under darkness between 1 h before and
after the lights off time. The brain was isolated and immersed in ice-cold HBSS
within 15 s after decapitation under dim light. Basic RNA sampling and
RT-qPCR methods follow our previous protocol2. Whole bilateral pairs of SCN, 4V
CP, and LV CP were dissected out in HBSS and each sample was transferred to 50
µl TRK lysis buffer (Omega Bio-Tek) and stored immediately at −80 °C. Total
RNA was microcolumn-purified using the ENZA total RNA kit (Omega Bio-Tek)
with the final elution volume of 20 µl in DEPC water. cDNA was synthesized from
total RNA of 113.4 ± 18.4 ng (SCN), 318.2 ± 3.1 ng (4V CP), and
308.5 ± 5.2 ng (LV CP) (mean ± SEM) using SuperScript II RT (Thermo Fisher
Scientific) with random primers. GAPDH was chosen as the internal control for
each sample. RT-qPCR was performed in triplicate with SYBR Green DNA binding
dye on StepOnePlus (Applied Biosystems). The following primer sequences were
used (5′–3′): GAPDH forward ACGGGAAGCTCACTGGCATGG CCTT,
GAPDH reverse CATGAGGTCCACCACCCTGTTGCTG; mBmal1 forward
GCAGTGCCACTGACTACCAAGA, mBmal1 reverse TCCTGGA-
CATTGCATTGCAT. Additional methods used for Supplementary Fig. 14 are
described in Supplementary Methods.

Immunohistochemistry. The 4V CP sample was fixed in 4% PFA, permeabilized
in 0.2% Triton X-100, blocked in 5% normal goat serum and stained slowly at low
temperature (4 °C) as described in our previous work43. As a primary antibody,
anti-connexin-43 (Cx43) rabbit polyclonal antibody (Sigma C6219, Lot. 113M4756;
RRID: AB 476857) was used at dilution of 1:500–1:1000. The second antibody was
anti-rabbit antibody conjugated with Alexa 488 at dilution of 1:500. The stained
sample was mounted in VECTASHIELD mounting medium with DAPI (Vector
Labs) before examination on an FV1000 confocal microscope (Olympus).

Rhythmicity score. Time series from the PMT (Fig. 1c) were analyzed by means of
the multiresolution analysis (MRA) as described previously63, using the PyWave-
lets software (http://pywavelets.readthedocs.io) for the Python Programming lan-
guage. The MRA uses the discrete wavelet transform to decompose a given time
series s(t) into components (also called details) at different disjoint frequency
bands64. In order to reduce edge effects, the first and last days of data were
truncated after application of the MRA for subsequent analysis. The method has
been verified on our own dataset from the SCN (Supplementary Fig. 2). Rhyth-
micity can be quantified by the ratio of the variance explained by the circadian
component (Dcircadian or D6 normalized over other components, covering from 16 h
to just before 32 h) and the variance explained by the noise component (Dnoise or
D1 normalized over other components, covering from 0.5 h to just before 1 h).
Strong circadian rhythms are associated with a large corresponding ratio. For the
rhythmicity score, the components were normalized across all tissues,
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where i= 1, 2, 3, …, 7 indexes each of spectral component and all tissues indicate
the 12 tissues as in Fig. 1d.

Spatial autocorrelation. Statistical significance was tested for spatial patterns in
the 1D chain of Bmal1-ELuc oscillation phases, as well as for a simulated 2D grid of
nearest neighbor coupled Poincaré oscillators (see Fig. 2e and Supplementary
Figs. 11–13, respectively). To this end, the spatial autocorrelation index Moran’s I
(MI) under the assumption of a nearest neighbor interaction was applied. We
recently demonstrated that MI reliably detects dynamic signatures of spatial order
in 2D arrays of circadian gene expression data37. Briefly, the MI takes into account

the cyclic nature of phase variables by

I :¼ 1P
ij wij

P
ij wijdθðXi;XÞdθðXj;XÞ
N�1

P
i dθðXi;XÞ2

; ð2Þ

where N denotes the number of observables Xi, and wij the spatial weights, and

dθðX1;X2Þ :¼ tan�1 sin X1�X2ð Þ
cos X1�X2ð Þ

� �
assigns a distance between two cyclic variables

X1 and X2. The mean value X of a set of cyclic variables fXigNi¼1 defined by
X :¼ tan�1ðS=CÞ with C :¼ ð1=NÞ PN

i¼1 cosðXiÞ and S :¼ ð1=NÞPN
i¼1 sinðXiÞ.

We also used a similar quantity that we called circular MI, Icirc, which is essentially
Eq. 2 with Xi= exp(iθi) and d(x, y)= x− y. Then,

Icirc ¼ 1P
ij wij

P
ij wijðe�iθi � X

�Þ eiθj � X
� �
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where X ¼ 1
N

P
j e

iθj .
Supplementary Fig. 4A shows MI values as calculated using Eq. 2 for the phase

patterns in Fig. 2e (upper). Statistical significance of observed MI values was
assessed by a comparison with a sampling distribution under the null hypothesis of
no spatial autocorrelation, computationally determined by means of a Monte Carlo
approach (see Supplementary Fig. 4B). Following a brief transitory period after
transferring the tissue to the culture medium, the phase organization adopts a
spatial pattern that is statistically significant for a duration of roughly 3.5 days.

Single-cell twist model. A modified Poincaré oscillator,

dri
dt

¼ λiri Ai � rið Þ ð3aÞ

dφi

dt
¼ ωi þ εiðAi � riÞ; ð3bÞ

conveniently describes conceptually important oscillator properties, such as the
radial relaxation rate λi, amplitude Ai, twist εi, and angular velocity ωi= 2π/τi,
where τi is the internal free-running period of an oscillator i. Eq. 3a, b describe the
dynamical evolution of the radial component ri(t) and phase component φi(t).

Isochrons of the modified Poincaré model. Isochrons are a set of initial condi-
tions in the basin of attraction of an attracting limit cycle that have the same
asymptotic phase as t →∞65. Importantly, isochrons provide information about the
resetting and entrainment behavior of an oscillating system, such as the circadian
clock. Isochrons of the oscillating system given by Eq. 3a, b can be obtained
analytically.

For a given set of initial conditions r0 and φ0 at time t0= 0, the solutions of
Eq. 3a, b at time t can be read as

r tð Þ ¼ A

e�λAt A
r0
� 1

� �
þ 1

ð4Þ

and

φðtÞ ¼ φ0 þ ωt þ εAt þ ε

λ
ln

A=r0
A=r0 � 1þ eλAt

� �
; ð5Þ

respectively. From this it follows that any dynamics starting on the limit cycle, i.e.,
r0= A, are given by

φLC tð Þ ¼ φ0;LC þ ωt; ð6Þ

and hence

φ tð Þ � φLC tð Þ ¼ φ0 � φ0;LC þ ε

λ
ln

A
r0

� �
� ε

λ
ln

A
r0
� 1

� �
e�λAt þ 1

	 

: ð7Þ

By definition, isochrons at a certain phase φ0,LC are given by all combinations of
(r0, φ0) that fulfill the constraint

lim
t!1 φ tð Þ � φLC tð Þ� � ¼ φ0 � φ0;LC þ ε

λ
ln

A
r0

� �
¼! 0; ð8Þ

i.e., φ(t), as well as φLC(t) approach the same phase after the decay of transient
dynamics as t →∞. Supplementary Fig. 3A–C depict examples of the vector-field,
isochrons, and dependency of the oscillator period on the amplitude for different
values of twist ε∈ {−0.01, 0, 0.01} h−1 and fixed values of A= 1, λ= 0.02 h−1, and
τ= 24 h, respectively.
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Coupled oscillator model and parameter constraints. When the cells are cou-
pled to others, coupling was introduced as an additive term on both coordinates in
the Cartesian form of Eq. 3a, b as described in our previous work35,66, using the
definitions xi= ri cos(φi) and yi= risin(φi). Then, Eq. 3a, b become

dri
dt

¼ λri A� rið Þ þ
X

j≠i

Kijrjcos φj � φi

� �
; ð9aÞ

dφi

dt
¼ ε A� rið Þ þ ωi þ

X

j≠i

Kij
rj
ri

� �
sin φj � φi

� �
: ð9bÞ

If the system is sufficiently close to synchrony φi � φj for all (i,j), cosðφj �
φiÞ � 1� 0ððφj � φiÞ2Þ in Eq. 9a, and we can use mean field approximation, where
ri approximately equals a neighborhood average, i.e., rj

� �
j2Ni

� ri . Then, Eq. 9a
becomes

dri
dt

� λri A� rið Þ þ Kiri; ð10Þ

where Ki ¼
P

j≠i Kij . Then, at a stationary state (dri/dt= 0), ri � Ki=λþ A and the
phase evolution is approximately

dφ
dt

� ω′
i þ

X

j≠i

Kijsinðφj � φiÞ ð11Þ

where ωi′ ¼ ωi � εKi=λ. Experimental data for amplitudes can constrain the ratio,
Ki/λ, from the amplitude increase compared with the case in which gap junctions
are blocked, and also ε from the frequency change due to nonzero Kij. However, λ
and Kij cannot be easily determined, and we chose suitable values that can replicate
synchrony and MI (see above and ref. 37) in the data (see also Supplementary
Fig. 13 for how synchronization of the system and circular MI evolved when λ and
Kij slowly increased while Ki/λ was held fixed in a simulation).

1D chain model. A 1D chain of N Poincaré oscillators was constructed, each
receiving coupling inputs from immediate neighbors only. Coupling was intro-
duced as an additive term on both coordinates in the Cartesian form of Eq. 3a, b as
described in our previous work35,66, using xi= ri cos φi, yi= ri sin φi, and
ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ y2i

p
.

dxi
dt

¼ Ai � rið Þ λixi � εiyið Þ � ωiyi þ qKi�1xi�1 þ qKiþ1xiþ1 ð12aÞ

dyi
dt

¼ Ai � rið Þ λiyi þ εixið Þ þ ωixi þ qKi�1yi�1 þ qKiþ1yiþ1 ð12bÞ

The coupling constant Kij is nonzero, Kij= Kj, only if j= i ± 1 for i= 1, 2, 3,…
N, while K0= 0 and KN+1= 0. Single-cell oscillatory parameters used for the
simulations in Figs. 2e and 3g–i and Supplementary Fig. 5 were Ai= 1,
λi= 0.02 h−1, and εi=−0.01 h−1. Dose dependency of coupling inhibition was
evaluated by multiples of Ki with q= 0, 1, 2,…10. In Fig. 3g–i, identical simulations
were run for four random sets of Gaussian period (µ= 25.5 h, σ= 1 h) and initial
phase distributions (σ= 1 h).

2D model. In Supplementary Figs. 11, 12 and 13, the effect of twist in spatially
extended systems of coupled Poincaré oscillators was analyzed for different geo-
metries, coupling topologies and oscillator properties. In Supplementary Figs. 11
and 12, it was assumed that oscillators couple solely through a 2D nearest neighbor
interaction given by a von Neumann neighborhood, i.e., the four most adjacent
cells. The coupling terms for dxi/dt and dyi/dt in Eq. 12a, b were replaced with
0:5

PN
j¼1 Kijxj and 0:5

PN
j¼1 Kijyj , respectively, where Kij= K whenever oscillators i

is influenced by oscillator j through nearest neighbor interaction. In Supplementary
Fig. 13, each cell coupled to neighbors within a certain distance with the same
equation.

Parameter estimation. In the case of N oscillators, we have 2N degrees of freedom
in choosing initial conditions x0 and y0 and 4N degrees of freedom in choosing
single-cell oscillator properties. In order to find a set of parameter values that
qualitatively reproduced dynamical characteristics from the experimental analysis,
we fixed the single-cell amplitude to A0= 1 throughout all simulations. We
restricted ourselves to a nearest neighbor coupling topology as suggested by
putative gap-junctional coupling and sampled the period from a normal dis-
tribution with mean 25.5 h and a standard deviation of 1 h. A mean value of 25.5 h
has been chosen since period values saturate as they approach this value (Fig. 3d, f),
i.e., after application of a gap junction blocker or surgical cuts. Subsequently, we
determined an appropriate set of initial conditions and manually chose values for ε,

λ, and K such that the model qualitatively reproduced the data best, i.e., the
experimentally observed phase pattern is well represented and the period in case of
highest coupling strength K is close to the experimentally observed value of 23.5 h
as indicated by Fig. 3d, f.

Computer simulation and data analysis. Twist chain oscillator simulations were
performed on Mathematica (Wolfram Research, IL), the Python programming
language using scipy.integrate.odeint function in SCIentific PYthon (https://scipy.
org/scipylib/), and MATLAB 2016b (Mathwork, VA). Visualization and other data
analyses, including periodogram and fast Fourier transform (FFT)-based period
analysis, were performed on Mathematica using the custom-made
PMTAnalysis package (http://sourceforge.net/projects/imaginganalysis)43. All cir-
cadian periods of the bioluminescence oscillations were estimated with FFT and all
amplitudes were quantified by root mean squares of raw oscillations for equal
duration of 10 recording days. Detailed methods for 2D grid-based data analysis
are described in the Supplementary Methods. All statistical analyses were done on
Mathematica and MATLAB 2016b by using built-in analysis functions, except for
the correlation coefficients (Fig. 4d) where we computed the mean and S.E.M. by
10,000 random resampling and performed the z-test. In a size-controlled procedure
for the CP data, we drew the same number of samples as the SCN data (n= 58).

Data availability. The simulation codes of illustrative examples in this study are
available at modelDB (https://senselab.med.yale.edu/modeldb/) by an accession
number 238338. Data analysis codes are available at https://github.com/
JihwanMyung/ImagingAnalysis (ImagingAnalysis.m and PMTAnalysis.m) as
Mathematica packages. Further codes and data are available on request from the
corresponding authors.
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