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A B S T R A C T   

Whole grain is the primary food providing abundant dietary fibers (DFs) in the human diet. DFs from rice bran 
and wheat bran have been well documented in modulating gut microbiota. This review aims to summarize the 
physicochemical properties and digestive behaviors of DFs from rice bran and wheat bran and their effects on 
host gut microbiota. The physicochemical properties of DFs are closely related to their fermentability and 
digestive behaviors. DFs from rice bran and wheat bran modulate specific bacteria and promote SAFCs-producing 
bacteria to maintain host health. Moreover, their metabolites stimulate the production of mucus-associated 
bacteria to enhance the intestinal barrier and regulate the immune system. They also reduce the level of 
related inflammatory cytokines and regulate Tregs activation. Therefore, DFs from rice bran and wheat bran will 
serve as prebiotics, and diets rich in whole grain will be a biotherapeutic strategy for human health.   

1. Introduction 

Gut microbiota is a diverse and multiplex microbial community 
composed of trillions of microorganisms (Zheng, Chen, & Cheong, 
2020). It has been considered as a crucial factor in the maintenance of 
human health and disease, such as the improvement of intestinal barrier 
function and regulation of host metabolism, intestinal homeostasis, and 
immune system (Rooks & Garrett, 2016; Singh et al., 2019). Various 
chronic diseases are associated with intestinal flora dysbiosis (Hand, 
Vujkovic-Cvijin, Ridaura, & Belkaid, 2016), including metabolic syn-
drome (Kjolbaek et al., 2020), colorectal cancer (Coker et al., 2019), 
cardiovascular disease (Bartolomaeus et al., 2019), type 2 diabetes 
(Zhou et al., 2019), obesity (Canfora, Meex, Venema, & Blaak, 2019; 
Huang et al., 2019), and inflammatory bowel disease (Franzosa et al., 
2019; Han et al., 2020). In contrast, the composition of gut microbiota is 
changed by long-term diet adjustment or drug intervention (Fragiadakis, 
Wastyk, Robinson, Sonnenburg, Sonnenburg, & Gardner, 2020; Walsh, 
Griffin, Clarke, & Hyland, 2018). Gut health is maintained by probiotic 
substances and their metabolites. Short-chain fatty acids (SCFAs) have 
been considered essential metabolites, regulating gut microflora and 
defense diseases (Qiu et al., 2022; Xie & Cheong, 2021). Therefore, gut 
microbiota regulation has become a hot research topic in the treatment 

of various diseases. 
Whole grain is a whole, crushed or compressed caryopsis, including 

rice, wheat, corn, barley, oats, rye, black rice, and sorghum. Rice and 
wheat are principal food crops in Asia and Latin America, and Asia ac-
counts for approximately 90% of global rice production (Muthayya, 
Sugimoto, Montgomery, & Maberly, 2014). Whole grain can reduce the 
risk of cancer (Xie, Liu, Tsao, Wang, Sun, & Wang, 2019), obesity 
(Zhang, Han, Wang, Wang, Sun, & Zhai, 2019), cardiovascular disease 
(Sawicki, Livingston, & McKeown, 2019), and type 2 diabetes (Kyro, 
Tjonneland, Overvad, Olsen, & Landberg, 2018). The potential reason is 
that whole grain is abundant in bioactive compounds, such as dietary 
fibers (DFs), polyphenols, vitamins, and minerals (Ozkaya, Turksoy, 
Ozkaya, & Duman, 2017; Zheng, Zhong, Tang, & Chen, 2020). As readily 
available as processing by-products, rice bran and wheat bran contain 
high content of DFs. Wheat bran accounts for 36.5–52.4% of DFs 
(Apprich et al., 2014). Rice bran contains 50% of carbohydrates, majorly 
starch and DFs (Lavanya, Saikiran, & Venkatachalapathy, 2019). Wheat 
bran and rice bran are always utilized for animal feed and biogas pro-
duction. However, they are beneficial for human consumption with 
remarkable values after appropriate processing (Aktaş & Akın, 2020). 

DFs from rice bran and wheat bran are beneficial to human health by 
regulating host gut microbiota. DFs can induce the release of some 
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beneficial metabolites during fermentation, particularly SCFAs, which 
are closely associated with defending various diseases (Dalile, Van 
Oudenhove, Vervliet, & Verbeke, 2019). They have the potential to be 
applied to food supplement or therapeutic purposes in the future. In this 
review, the physicochemical properties, digestive behaviors, and im-
pacts on the gut microbiota of DFs (mainly from rice bran and wheat 
bran) are summarized. The review helps to further understand the 
interaction between DFs and gut microbiota and provides insight into a 
complete mechanism in the future. 

2. The physicochemical properties of DFs from rice bran and 
wheat bran on the digestive and fermentation behaviors 

The physicochemical properties of DFs from rice bran and wheat 
bran, including particle size, branch degree, monosaccharide and link-
age composition, molecular weight, solubility, viscosity, and hydration 
properties, are closely related to their behaviors in the digestive tract 
(Holscher, 2017; McRorie & McKeown, 2017). Fermentation of DFs 
could improve their digestibility and utilization (Gänzle, 2020). DFs can 
also be associated with side effects such as gastrointestinal symptoms, 
partly due to gas production or bloating caused by rapid fermentation 
(Rodriguez et al., 2020). The fermentability of DFs, which could be 
improved by decreasing the particle size of materials, was shown by the 
increasing amount of produced butyric acid in the colon (Iwai, Yoshi-
kawa, Nyosmi, Fukutome, Asada, & Ohashi, 2017; Tuncil, Thakkar, 
Marcia, Hamaker, & Lindemann, 2018). The hydration and antioxidant 
properties of DFs were enhanced by decreasing the particle size of rice 
bran (Zhao et al., 2018). The digestive behaviors of DFs were also related 
to branch degree. The fermentation rate of DFs was increased due to a 
relatively high degree of arabinose substitution on the xylan backbone 
(Chen, Long, Zhang, Liu, Zhao, & Hamaker, 2017). The digestibility of 
DFs could be improved by decreasing their molecular weight, such as 
hydrolyzing DFs with xylanases and arabinofuranosidases (Vangsoe, 
Bonnin, Joseph-Aime, Saulnier, Neugnot-Roux, & Knudsen, 2020). DFs 
could be classified as soluble DFs and insoluble DFs according to their 
solubility in water. Prebiotic soluble oligosaccharides, such as galactose- 
oligosaccharides, fructose-oligosaccharides, and xylo-oligosaccharides, 
are fermented rapidly. Soluble polysaccharides, such as inulin, β-glucan, 
type 2 and type 3 resistant starches, were partially fermented. Cellulose 
is the most abundant biomacromolecule in nature, and although rumi-
nants can degrade it, its fermentation by the human gut microbiota is 
minimal (Wang, Wichienchot, He, Fu, Huang, & Zhang, 2019). Classi-
fication of DFs as “soluble” or “insoluble” may not be sufficient to 
explain fermentation performance. For example, soluble sodium algi-
nate cannot be fermented by human gut microbiota (Rose, Kesha-
varzian, Patterson, Venkatachalam, Gillevet, & Hamaker, 2009). The 
viscosity of DFs was associated with its concentration, defined as the 
resistance to flow. Wheat bran DFs possessed Newtonian fluid property 
by detecting apparent viscosity (Li, Liu, Wu, & Zhang, 2017; Yan, Wu, 
Cai, Xiao, Duan, & Zhang, 2019). DFs with high viscosity had more 
hydrophilic groups, which increased intestinal mucosal water film 
thickness and thus increased the viscosity of supernatant intestinal 
contents (He et al., 2022). However, if the viscosity of DFs was too high, 
fermentation would be inhibited due to the limited oxygen supply (van 
Leeuwe et al., 2020). The hydration properties of DFs mainly depended 
on the porous matrix structure formed by glycosidic linkages, which 
could hold plenty of water through hydrogen bonds (-H), considered as 
thermodynamics and dynamics of water absorption or desorption 
(Capuano, 2017; Zhao et al., 2018). The hydration capacities of DFs 
were related to their fermentation in the digestive tract (Cui et al., 
2019). Low water-binding capacity would limit the fermentation rate, as 
the highly condensed fiber substrate provided an obstacle to efficient 
utilization of the carbohydrates within the granules (Gidley & Yakubov, 
2019). Besides, after absorbing water, DFs had a lubricating effect, 
promoting intestinal peristalsis and intestinal motility. The specific hy-
dration behavior is determined by the number of hydrophilic groups, 

side chain reactivity, and binding force (Föste, Verheyen, Jekle, & 
Becker, 2020). In a word, the digestive behaviors and fermentation 
characteristics of DFs from rice bran and wheat bran are related to their 
physicochemical properties. 

3. The digestive behaviors of DFs from rice bran and wheat bran 

The mammalian digestive system is complex and highly derived, 
consisting of the digestive tract and digestive glands (Hartenstein & 
Martinez, 2019). Digestive behavior is a principal physiological 
approach to absorbing nutrients from food. It happens in the digestive 
tract, which contains the oral cavity, esophagus, stomach, and large 
intestine. Oral processing is the first step of food digestion by grinding 
DFs into small particles. Then in the stomach, pepsin and gastric lipase 
help to further mechanically stir DFs. The intestine is the major location 
of absorbing nutrients from foods. DFs cannot be digested by the en-
zymes in the upper gastrointestinal tract, such as lingual lipase, gastric 
lipase, and pepsin, and almost safely reach the large intestine (Tuncil, 
Thakkar, Arioglu-Tuncil, Hamaker, & Lindemann, 2018). They can be 
hydrolyzed by some specific enzymes released by microbial metabolism 
in the large bowel, like a cross-feeding enzyme system in the prom-
inent gut symbiont Bacteroides ovatus, which can digest macromolecular 
substances (Rakoff-Nahoum, Foster, & Comstock, 2016). 

Due to mechanical processes, the size and shape of DFs from rice 
bran and wheat bran have changed in the oral, stomach, and small in-
testine. The general digestive behaviors of DFs in the human body are 
summarized in Fig. 1, according to Capuano’s report (2017). There is no 
significant change in the molecular weight of macromolecular sub-
stances (eg. polysaccharides and DFs) in the stomach (Chen et al., 2018; 
Han, Pang, Wen, You, Huang, & Kulikouskaya, 2020; Huang et al., 2019; 
Zhang et al., 2019). Molecular weight and monosaccharide composition 
have been changed in the large intestine due to the fermentation of gut 
microbiota (Huang et al., 2019). The fermentable DFs were degraded 
during the fermentation process. Then the remaining part (water-soluble 
not-fermentable DFs and other residues) were expelled out of the host 
in feces (Capuano, 2017). During in vitro fermentation, rice bran arabi-
noxylans are fermented by a debranching mechanism based on the 
change of monosaccharide composition by detecting carbohydrate loss 
and changes in arabinose/xylose ratio. In contrast, these unsubstituted 
xylose regions in wheat bran arabinoxylans are fermented preferen-
tially. Then the remaining (highly branched oligosaccharides) are fer-
mented (Rose, Patterson, & Hamaker, 2010). The physical and chemical 
properties of DFs from rice bran and wheat bran changed during their 
fermentation and digestive behaviors. 

4. Effect of DFs from rice bran and wheat bran on host gut 
microbiota 

Soluble DFs can be utilized by gut microbiota. DFs exerted beneficial 
effects on the host primarily by fermentation and production of me-
tabolites. Bacteroidetes, Firmicutes, and Actinobacteria are the three 
main phyla in the human large intestine, which can degrade complex 
substrates due to their degradative enzymes produced during the 
metabolic process (Scott, Gratz, Sheridan, Flint, & Duncan, 2013). The 
effect of DFs on gut microbiota is summarized in Fig. 2. 

4.1. Effect of DFs from rice bran and wheat bran on gut microbiota 
composition 

DFs can improve the composition and abundance of gut microbiota 
to maintain host health during fermentation. It is generally detected by 
16S rRNA gene sequencing. The impact of DFs on gut microbiota is 
summarized in Table 1. DFs can maintain host health by promoting the 
growth of beneficial bacteria and preventing that of harmful bacteria. 
Traditionally, Bifidobacterium and Lactobacillus are considered as bene-
ficial bacteria, which can defend against diseases by utilizing complex 
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Fig. 1. The general digestive behaviors of DFs from rice bran and wheat bran in human body.  

Fig. 2. The effects of DFs from rice bran and wheat bran on gut microbiota.  
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Table 1 
The impacts of DFs from rice bran and wheat bran on gut microbiota.  

Fiber sources Physicochemical properties Research methods/objects Intervention intake/ 
time 

Changes of bacteria Other results Conclusions References 

Rice bran – In vivo/ male C57BL/KsJ db/db 
mice 

10% of AIN-93G 
standard diet/8 weeks 

↓Enterobacteriaceae, 
Streptococcaceae, 
Enterococcaceae (phylum 
Proteobacteria) 
↑Lachnospiraceae and 
Ruminococcaceae (phylum 
Firmicute) 

↓fasting blood glucose 
levels 
↓fasting serum insulin 
levels 
↑butyric acid, activating 
the insulin IRS1/AKT/ 
GLUT4 signaling pathway 

Bound phenolics ensured the 
anti-hyperglycemic effect of rice 
bran dietary fibers. 

(Zhang et al., 
2020) 

Wheat bran A gel-like network with 
cavities, fissures, and holes on 
the surface 

In vivo and in vitro/ 15 healthy 
subjects (male: 7, female: 8, at 
age 22–32 years old) with mean 
body mass index of 21.4 kg/m2 

50 g/3 days ↑fermentability ↓digestibility 
↑breath H2 

↓postprandial blood 
glucose 

Wheat bran with microstructure 
modification improved glycemic 
response and sustain colonic 
fermentation 

(Liu, Zhao, Wang, 
& Liu, 2020) 

Wheat bran High viscosity In vitro/human feces (20 to 41 
years old) 

5, 10 and 20 g diluted in 
300 mL of colonic 
contents (without rutin 
and with rutin)/0, 6, 
24 h 

– ↑3,4 diOHPAA (rutin 
metabolite) at 24 h with 
an 2.3-fold increase 

Eating fiber and polyphenols 
together was beneficial to 
human health with the phenolic 
acids and SCFAs production 

(Havlik et al., 
2020) 

Wheat bran Particle sizes: D50 = 53 μm 
(powdered) 
D50 = 350 μm (granulated) 

In vivo/eight-week-old male 
Balb/c mice 

4 weeks ↑α-diversity and β-diversity 
↑ Clostridiales 

↑acetic acid, propionic 
acid, and butyric acid 
↑IgA 

Wheat bran enhanced Tfh- 
mediated IgA production in the 
intestine by SCFA increment 
through the modulation of gut 
microbiota 

(Matsuzaki et al., 
2020) 

Rice bran (heat- 
stabilized) 

Glycan and arabinoxylan In vivo/29 colorectal cancer 
survivors, more than four 
months post cancer treatment 
(e.g. chemotherapy or 
radiation) 

0, 14, 28 days/30 g/day 
rice bran 

↑ Bacteroidetes (Bacteroides ovatus) 
↑Coprococcus, Lachnobacterium 
↓ Firmicutes, Ruminococcus, 
Ethanoligenens (after 14 days) 

↑acetic and propionic 
(after 14 days) 

Heat-stabilized rice bran 
modulated gut microbiota 

(Sheflin et al., 
2017) 

Wheat bran – In vivo/male C57BL/6J mice 
(obesity model) 

10% w:w/12 weeks ↑Microbial α-diversity ↑hepatic TGs and the 
higher hepatic 
↑butyrate 

Regulated hepatic lipid 
metabolism 

(Graf et al., 2019) 

Fermented rice 
bran 

– In vivo/ male ICR mice (IBD 
model) 

– ↑Bacteroides acidifaciens, and 
Enterobacteriacea (operational 
taxonomic units) 

– Ameliorated the symptoms of 
IBD 

(Shibayama 
et al., 2018) 

Whole-grain 
wheat 
products 

– In vivo/50 overweight 45 to 70 
years old men and 
postmenopausal women 

98 g⋅day− 1/ 12 weeks ↑gut microbiota diversity Prevented a substantial 
increase in intrahepatic 
TGs, ↓the lipid in the liver 

Maintained live health (Schutte et al., 
2018) 

Whole grain – In vivo/62 participants with 
increased waist circumference 

26 weeks ↑Prevotella ↓body fat (0.88–3.15 Kg) Subjects with high P/B ratio 
appeared more susceptible to 
lose body fat on diets high in 
fiber and whole grain than 
subjects with a low P/B ratio 

(Hjorth et al., 
2018) 

Whole grain β-Glucan, arabinoxlyan, and 
cellulose 
More soluble DFs 

In vivo/49 subjects with 
overweight or obesity and low 
intakes of whole grains, fruit, 
and vegetable 

6 weeks No significant changes ↓ TNF-α↓LBP (- 3.7 pg/ 
mL; p < 0.001 

Kept metabolic health in 
individuals affected by 
overweight or obesity with 
normally low intake of whole 
grains 

(Kopf et al., 
2018) 

Rice bran (with 
Lactobacillus 
paracasei) 

– In vitro / Salmonella 
Typhimurium culture medium 

16 h ↓Salmonella Typhimurium – The metabolism by Lactobacillus 
paracasei increases antimicrobial 
activity against Salmonella 
Typhimurium 

(Nealon et al., 
2017) 

Cereal products 
from wheat 
and rice 

– In vitro/infant feces 1% (w/v)/ 0, 24 and 48 
h 

↑Bacteroidaceae, Veillonellaceae, 
Bifidobacteriaceae, Lachnospiraceae 
and Lactobacillaceae 
↓Enterobacteriaceae 

↑butyrate Altered the infant gut microbiota 
and increased the production of 
SCFAs 

(Gamage, Tetu, 
Chong, Ashton, 
Packer, & 
Paulsen, 2017) 

(continued on next page) 
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Table 1 (continued ) 

Fiber sources Physicochemical properties Research methods/objects Intervention intake/ 
time 

Changes of bacteria Other results Conclusions References 

Whole grain Mostly insoluble In vivo/49 men and 32 
postmenopausal women [age 
range: 40–65 years old, body 
mass index (in kg/m2) ＜35] 

98 g⋅day− 1/ 6 weeks ↓Enterobacteriaceae 
↑Lachnospira 

↑stool weight and 
frequency 
↑acetate and total SCFAs 

Had a modest effect on gut 
microbiota and immune 

(Vanegas et al., 
2017) 

Wheat bran Soluble arabinoxylan 
A linear backbone of xylose 
with arabinose as an attached 
monosaccharide 

In vivo/ seven-week-old male 
Balb/c mice, in vitro/ 
splenocytes 

100 mg/kg, 500 mg/kg, 
and 2500 mg/kg/4 
weeks 

– ↓IL-4 
↑IgA 
↑splenic CD4 T cells 

Affected systemic and intestinal 
immunity 

(Choi et al., 
2017) 

Wheat bran Insoluble non-starch 
polysaccharides, including 
arabinoxylan, cellulose, and 
β-glucan 

In vivo/ C57BL/6J mice (IBD 
model) 

117 g⋅kg− 1 / 28 days ↓Mucispirillum schaedleri 
↑ Akkermansia muciniphila 
↑Dorea, Ruminococcus and 
Roseburia spp. 

↓food intake 
↓IL-1β, IFN-γ, TNF-α (Th1 
cytokines) 
↓IL-17A (Th17 
cytokines)↑butyrate↑total 
SCFAs 

Improved intestinal health (Jiminez et al., 
2016) 

Wheat bran Insoluble In vitro/fresh feces from four 
volunteers 

0, 2, 4, 8, 24, 48, 72 h ↑Eubacterium xylanophilum and 
Butyrivibrio spp., Roseburia spp. 

↑ferulic acid Breakdown of wheat bran 
involves specialist primary 
degraders 

(Duncan et al., 
2016) 

Wheat bran – In vivo/female ICR mice 
(cadmium toxicity model) 

100 g⋅kg− 1 /8 weeks ↑Bacteroidetes (55.7%-70.7%)↓ 
Firmicutes (33.2%–23.1%) 
↑Verrucomicrobia 

↓Cd 
↑propionate and butyrate 

More effective against chronic 
Cd toxicity than traditional 
treatments 

(Li et al., 2016) 

Wheat bran A mixture of arabinoxylan 
oligosaccharides (AXOSs), 
high-molecular-weight 
arabinoxylans, cellulose, and 
lignin 

In vivo/male C57BL/6J mice 
(obese model) 

20% w:w/10 weeks ↑Bacteroidetes↓Firmicutes ↓body weight and liver 
TGs 
↑liver ROS 
↓liver carbohydrate 
metabolites-glucose 
↓hepatic arachidonic acid 
↑liver and plasma 
β-hydroxybutyrate 

Regulated hepatic metabolism 
concurrently with specific gut 
bacteria 

(Kieffer et al., 
2016) 

“↑- increase; ↓ - decrease; IgA, immunoglobulin A; TNF-α, tumor necrosis factor-α; IL, inteleukin; IFN-γ, interferon-γ; Th, regulate T helper; TGs, triglycerides; IBD, inflammatory bowel disease; ROS, reactive oxygen 
species; LBP, lipopolysaccharide binding protein; Cd, cadmium; w, weight; v, volume; P/B, Prevotella/Bacteroides. 
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macromolecular substances via various pathways (Aizawa et al., 2016; 
Schroeder et al., 2018). Arabinoxylans from Argentinian soft and hard 
wheat enhanced the growth of Lactobacillus reuteri ATCC23272 and 
Bifidobacterium breve 286 in vitro and exceed inulin serving as prebiotics 
(Paesani, Salvucci, Moiraghi, Fernandez Canigia, & Perez, 2019). 
Staphylococcus aureus, Salmonella, and several Enterobacter are consid-
ered as harmful bacteria, which cause diseases by producing spoilage 
metabolites in the degradation of proteins (Lehman et al., 2019; 
Velazquez et al., 2019). However, there is no exact boundary between 
harmful bacteria and beneficial bacteria. For instance, a double effect is 
existed in some neutral bacteria that are beneficial to health under 
normal circumstances, like Escherichia coli (Al-Zyoud, Nasereddin, 
Aljarajrah, & Saket, 2019; Barroso-Batista et al., 2020). 

There is a higher content of Firmicutes and lower content of Bac-
teroidetes in obese individuals than those in normal individuals. In other 
words, the ratio of Bacteroidetes and Firmicutes is closely related to 
some diseases, especially obesity. DFs could modulate gut microbiota by 
increasing the proportion of Bacteroidetes and Firmicutes (Han et al., 
2018; Li, Liu, Shen, & Liu, 2016). DFs could increase the abundance of 
Bacteroides acidifaciens and Enterobacteriacea (operational taxonomic 
units) associated with inflammatory bowel disease (Shibayama et al., 
2018), inhibit the growth of Salmonella (Kumar et al., 2012), and stim-
ulate the growth of butyrogenic bacteria and Verrucomicrobia (Li et al., 
2016). Additionally, wheat bran diets can increase the abundance of 
Clostridiales in the mice, which contains the bacteria related to poly-
saccharide degradation and SCFAs production (Matsuzaki et al., 2020). 

Akkermansia muciniphila is a dominant bacterium belonging to Ver-
rucomicrobia, colonized on the outer layer of intestinal mucus (Ottman, 
Geerlings, Aalvink, de Vos, & Belzer, 2017). Recent studies have shown 
that Akkermansia muciniphila is a new important contributor involved in 
metabolic syndrome, immune function, and gut permeability (Cani & de 
Vos, 2017; Chelakkot et al., 2018; Depommier et al., 2019; Ottman et al., 
2017). The abundance of Akkermansia muciniphila was higher in the 
colonic digesta of rats with wheat diets than that with rice diets (Han 
et al., 2018). Prevotella is related to the improvement of glucose toler-
ance, whose abundance can be modulated with high fiber intake from 
DFs (Kovatcheva-Datchary et al., 2015). Interestingly, the ratio of Pre-
votella and Bacteroides may influence the fermentation of DFs. Diets rich 
in DFs lead to a high ratio of Prevotella and Bacteroides, which helps 
individuals to lose body fat (Hjorth et al., 2018). In summary, DFs-rich 
diet intervention mainly caused changes in Firmicutes, Verrucomicro-
bia, Enterobacteriacea, Prevotella, and Bacteroides. DFs possess prebiotic 
activity of selectively modulating the abundance of bacteria in the gut. 

4.2. Effect of metabolites on gut microbiota in host health 

The production of metabolites during DFs fermentation by microbes 
can maintain gut health and intestinal homeostasis. It can be detected 
and analyzed by gas chromatography and metabolomics. DFs can 
stimulate the growth of beneficial bacteria, and then the corresponding 
bacteria can produce beneficial metabolites, like SCFAs. As typical and 
critical metabolites, SCFAs mainly include acetate, propionate, and 
butyrate, which account for more than 95% of the total content (Cum-
mings, Pomare, Branch, Naylor, & Macfarlane, 1987; Koh, De Vadder, 
Kovatcheva-Datchary, & Backhed, 2016). SCFAs individually elicit 
positive effects on the gut. SCFAs are considered as an important energy 
source for intestinal epithelial cells to regulate gut barrier function (Liu 
et al., 2018; Makki, Deehan, Walter, & Backhed, 2018). Pyruvate is a 
source for acetate production through two pathways: acetyl-CoA by 
Enterobacteria and Wood-Ljungdahl by acetogens. Acetate plays a key 
role in regulating appetite, promoting fat oxidation, and improving 
immune function (Frost et al., 2014; van der Beek et al., 2016). Some 
acetate can be transformed into butyrate by lumenal bacteria. Propio-
nate can be synthesized through three pathways, including succinate, 
acrylate, and propanediol pathways. The succinate pathway is the most 
common path for propionate formation, involving the participation of 

Bacteroidetes and several harmful bacteria (Reichardt et al., 2014). 
Propionate improves pancreatic function and modulates hepatic lipid 
metabolism (Chambers et al., 2019; Pingitore et al., 2017). Butyrate is 
an important metabolite produced by Acetyl-CoA via Firmicutes (Louis, 
Hold, & Flint, 2014). Butyrate can ameliorate the gut mucosal barrier by 
enhancing tight junction protein expression and stimulating mucus 
secretion (Czajkowska & Szponar, 2018; Gaudier, Rival, Buisine, Rob-
ineau, & Hoebler, 2009; Ploeger et al., 2012; Wrzosek et al., 2013). It 
also could upregulate the expression of regulatory T-cells (Tregs) via 
inhibiting histone deacetylase enzyme (Furusawa et al., 2013). 

Besides, there are many other metabolites produced by microbes 
after DFs intervention, including amino acid, peptide, carbohydrate, 
lipid, nucleotide, cofactor, and vitamin, phytochemical, and several 
gases (Canfora et al., 2019; Folkerts et al., 2018; Nealon, Worcester, & 
Ryan, 2017). Some can act as substrates of synthetizing nutrient com-
ponents and supplying energy. The secreted proteins by probiotics have 
been found to protect the intestinal barrier by inhibiting the growth of 
pathogens (Liu et al., 2020). Some metabolites have been confirmed to 
benefit host metabolism. Other products of DFs fermentation like indole 
and enterolactone can also lower the risk of type 2 diabetes (Sun et al., 
2014; Tuomainen et al., 2018). Indole promotes intestinal epithelium 
function by attenuating tumor necrosis factor α-mediated Nuclear 
factor-kappa B activation and Interleukin-8 secretion (Bansal, Alaniz, 
Wood, & Jayaraman, 2010). Especially, symbiotic E. coli-secreted indole 
can attenuate the adherence of pathogenic E. coli by increasing the 
impression of adhesion junctions and tight junctions, which enhance the 
intestinal barrier function (Bansal et al., 2010). 

As shown in Table 1, DFs promote the concentration of butyrate. It is 
probably because DFs can promote the growth of butyrate-producing 
bacteria, including Firmicutes, Dorea, Ruminococcus, Roseburia spp., 
and Lachnospiraceae (Antharam et al., 2013; Vanegas et al., 2017). 
Roseburia spp. is the most abundant butyrate-producing bacteria ac-
counting for 0.9–5.0% of the total microbiota (Hiippala et al., 2018). 
Roseburia has a positive effect on colonic health maintenance and 
metabolic diseases, including obesity and type 2 diabetes (Tamanai- 
Shacoori et al., 2017). Furthermore, butyrate can stimulate the pro-
duction of mucus–associated bacteria to enhance the intestinal barrier 
function in the host. Mucispirillum shaedleri is a mucus-associated bac-
terium (Berry et al., 2012; Robertson et al., 2005). Besides, butyrate can 
improve inflammatory symptoms by lowering the concentration of 
related inflammatory cytokines and regulating Tregs activation (Jimi-
nez, Uwiera, Abbott, Uwiera, & Inglis, 2016). 

5. The possible mechanism of DFs from rice bran and wheat 
bran and their metabolites on maintaining host gut health 

DFs can maintain host gut health via modulating gut microbiota 
through multiply mechanisms, including the production of metabolites, 
regulation of the immune system, and enhancement of gut barrier 
function (Flint, Scott, Louis, & Duncan, 2012). The fermentation of DFs 
and metabolic product-SCFAs create a harmonious intestinal microbial 
environment. DFs can promote the abundance of particular bacteria, 
which attenuated inflammation and strengthened the epithelial barrier 
to maintain gut health. Then SCFAs can be further recognized and 
received by relevant cells to regulate the immune system by inhibiting 
the activity of neutrophils, macrophages, dendritic cells, and effector T 
cells and promoting the activity of Tregs, particularly butyrate (Gon-
calves, Araujo, & Di Santo, 2018). In addition, there are generally three 
ways of SCFAs entering cells-passive diffusion, mediating vector trans-
portation via SMCT1/Slc5a8, MCT1/Slc16a1 pathways, and activating 
G-protein-coupled receptors (GPCR) (Sun, Wu, Liu, & Cong, 2017). The 
G-protein-coupled receptors activating plays a critical role in regulating 
the immune system (Kim, Kang, Park, Yanagisawa, & Kim, 2013; Macia 
et al., 2015), decreasing some cytokines like Th1 (IL-1β, IFN-γ, TNF-α), 
Th17 (IL-17A) (Jiminez et al., 2016), and Th2 (IL-4) (Choi, Lee, Lee, Lee, 
Jeong, & Kang, 2017), and increasing an anti-inflammation cytokine (IL- 
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18), which is related to mucins production and gut microbiota compo-
sition regulation (Levy et al., 2015; Macia et al., 2015; Singh et al., 
2014). DFs intervention can also stimulate the secretion of IgA in the 
intestine (Choi et al., 2017; Matsuzaki et al., 2020), which is considered 
as a significant antibody to maintain a balance in gut microbiota 
(Kawamoto et al., 2014). IgA is secreted by producing IgM in the in-
testinal secondary lymphoid tissues such as Peyer’s patches through 
activating B cells (Gutzeit, Magri, & Cerutti, 2014), which may be 
stimulated by T follicular helper (Tfh) cells from Tregs (Foxp3 + ) dif-
ferentiation with SCFAs production (Chung et al., 2011; Matsuzaki et al., 
2020). 

DFs and their metabolites can also enhance the intestinal barrier 
function and improve gut permeability together by improving the 
abundance and growth of mucus–associated bacteria. These bacteria 
play a fundamental role in human health and disease by resisting the 
invasion of pathogenic substances (Desai et al., 2016; Vancamelbeke & 
Vermeire, 2017). The gut permeability can be adjusted by tight junctions 

(Chelakkot et al., 2018) and mucins (Bhatia et al., 2019), in which tight 
junctions are intercellular junctions that can connect the epithelial cells 
tightly together (Ulluwishewa, Anderson, McNabb, Moughan, Wells, & 
Roy, 2011), and mucins are the major components produced by goblet 
cells in mucus layer (Ma, Rubin, & Voynow, 2018). Tight junctions and 
mucins can be regulated by some bacteria like Akkermansia muciniphila 
colonized on the intestinal mucus (Chelakkot et al., 2018). Additionally, 
DFs and their metabolites can upregulate particular cytokines to pro-
mote mucins production, like IL-18 mentioned above. 

The possible mechanisms involved in DFs associated-beneficial ac-
tivities are summarized in Fig. 3, including inflammation improvement 
and intestinal barrier enhancement (Goncalves et al., 2018; Jiminez 
et al., 2016; Sun et al., 2017). In conclusion, DFs from rice bran and 
wheat bran and their metabolites appear to be mutual and simultaneous 
during the fermentation of DFs. 

Fig. 3. The possible mechanisms involved in DFs from rice bran and wheat bran and their metabolites associated beneficial activities including attenuating 
inflammation and strengthening the intestinal barrier. 
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6. Conclusions 

It has been demonstrated that whole grain consumption is an ideal 
diet with many gut health-promoting benefits. The physicochemical 
properties of DFs from rice bran and wheat bran, such as particle size, 
molecular weight, branch degree, monosaccharide and linkage compo-
sition, solubility, viscosity, and hydration properties, have a close rela-
tionship with their digestive behaviors. DFs from rice bran and wheat 
bran and their metabolites—SCFAs have beneficial effects on host gut 
health by selectively regulating gut microbiota, including improving 
some particular bacteria, like butyrate-producing and mucus-associated 
bacteria. DFs and their metabolites could enhance gut barrier function 
and immune function by regulating some bacteria associated with in-
flammatory and gut barriers. The mechanism of diverse biological ac-
tivities of DFs by regulating intestinal flora remains to be further 
studied. To sum up, DFs from rice bran and wheat bran are natural, 
prebiotic, and promising ingredients with various benefits to host gut 
health. Whole grain consumption will be a global and popular diet in the 
future. 
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