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The ongoing coronavirus disease 2019 (COVID-19) crisis caused by severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a

large-scale pandemic that is afflicting millions of individuals in over 200

countries. The clinical spectrum caused by SARS-CoV-2 infections can

range from asymptomatic infection to mild undifferentiated febrile illness

to severe respiratory disease with multiple complications. Elderly patients

(aged 60 and above) with comorbidities such as cardiovascular diseases

and diabetes mellitus appear to be at highest risk of a severe disease out-

come. To protect against pulmonary immunopathology caused by SARS-

CoV-2 infection, the host primarily depends on two distinct defense strate-

gies: resistance and disease tolerance. Resistance is the ability of the host

to suppress and eliminate incoming viruses. By contrast, disease tolerance

refers to host responses that promote host health regardless of their impact

on viral replication. Disruption of either resistance or disease tolerance

mechanisms or both could underpin predisposition to elevated risk of sev-

ere disease during viral infection. Aging can disrupt host resistance and dis-

ease tolerance by compromising immune functions, weakening of the

unfolded protein response, progressive mitochondrial dysfunction, and

altering metabolic processes. A comprehensive understanding of the molec-

ular mechanisms underlying declining host defense in elderly individuals

could thus pave the way to provide new opportunities and approaches for

the treatment of severe COVID-19.
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Introduction

The first half of 2020 has seen the world plunged into

a crisis by the pandemic spread of a novel coron-

avirus–severe acute respiratory syndrome coronavirus-

2 (SARS-CoV-2). Within a span of 6 months, coun-

tries and territories across the globe have reported mil-

lions of cases of coronavirus disease-19 (COVID-19).

Without a preventative vaccine, the prevention of

COVID-19 has relied on physical distancing in order

to reduce the risk of SARS-CoV-2 transmission. Such

measures have disrupted the world economy, with glo-

bal trade and gross domestic product (GDP) of

affected countries expected to fall by up to 30% and

10%, respectively [1]. These global effects have led the

World Health Organization to declare COVID-19 as a

public health emergency of international concern on

January 30, 2020 [2].

SARS-CoV-2 infection results in a spectrum of clini-

cal outcomes. Most infected individuals are either

asymptomatic (estimated to range from 17.9 to 78%)

or present with mild disease. However, approximately

15% of infected individuals develop severe disease and

about 5% eventually develop life-threatening pneumo-

nia and acute respiratory distress syndrome (ARDS)

[3,4]. Some COVID-19 patients also develop systemic

manifestations such as secondary sepsis, cardiovascular

and cardiac complications, thromboembolism, coagu-

lopathy, and multi-organ failure [4,5]. A major risk

factor for severe COVID-19 is age. The elderly are

also more likely to have underlying comorbidities such

as hypertension, cancer, obesity, cardiovascular dis-

eases, and diabetes mellitus, all of which are associated

with increased risk of severe COVID-19 [4,6–9]. How-

ever, these comorbidities alone are insufficient to

account for why age is an independent risk factor.

Indeed, multiple reports have highlighted the disparity

in clinical outcomes between younger and elderly

patients with SARS-CoV-2 infection [5,8,10–12]. A

cross-sectional study of residents and staff of nursing

homes and assisted living facilities in Massachusetts

demonstrated that younger individuals infected with

SARS-CoV-2 were more likely to be asymptomatic

compared with older patients despite similar viral

loads between both groups of patients [10]. These pat-

terns of symptomaticity are akin to that of cohort

studies conducted in South Korea and Wuhan, China

[11,12]. Interestingly, a systematic characterization of

the clinical, molecular, and immunological data from

326 confirmed cases of COVID-19 in Shanghai showed

that age, among other factors, was significantly corre-

lated with poor clinical outcomes [8]. Similar trends

have also been reported from infection with the related

betacoronaviruses, SARS-CoV, and Middle East respi-

ratory syndrome CoV (MERS-CoV). During the 2003

SARS epidemic, mortality was over 50% in those

above 65 years of age, while no SARS patients under

24 years of age died [13]. Likewise, the mortality from

MERS is about 1.7 times higher in elderly patients

above 60 years of age compared with younger patients

[14]. Notably, the other respiratory infections including

seasonal influenza, tuberculosis, and pneumococcal

disease also report that age is a major risk factor for

severe disease outcomes [15]. Collectively, these obser-

vations provide preliminary evidence to support that

the aging phenotype predisposes infected individuals to

a more severe disease outcome.

Fundamentally, two major defense strategies—resis-

tance and disease tolerance—are employed by the host

to cope with viral infections. Resistance serves to

reduce the viral burden so as to limit the host cell

damage caused by the pathogen [16]. Disease toler-

ance, on the other hand, promotes host health by pre-

venting or resolving immunopathology in host tissues

[17,18]. This should not be confused with immune tol-

erance, which is defined as a state of nonresponsive-

ness to self or foreign tissue antigens [19]. In this

article, the use of the word ‘tolerance’ refers to ‘disease

tolerance’. Both resistance and disease tolerance work

in tandem to define the host’s defensive capacity and
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Fig 1. Effects of host tolerance on host health. When the host

fitness is plotted against the viral burden, the slope of the line will

indicate the host tolerance to the viral infection. In elderly subjects,

the reduced resistance (purple arrow) and reduced tolerance

(brown arrow) lead to compromised host health upon viral

infection. Reduced resistance results in increased susceptibility to

viral infections, resulting in increased virus burden that reduces

host health. In contrast, reduced tolerance results in a steeper

slope (red line), where per unit increase in viral burden will have a

greater impact on host fitness in elderly subjects. Interventions

that promote host resistance and tolerance can reduce viral burden

and the slope of the line respectively, promoting host health.
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ability to survive an infection. The contribution of

host resistance and disease tolerance to overall health

can be generally represented by plotting the health sta-

tus against the pathogen burden (Fig. 1). However,

during aging, the host tolerance can be compromised

by several factors, including reduced immune func-

tions, weakening of the unfolded protein response,

physiological changes, increased mitochondrial dys-

function, and altered metabolic processes. The reduced

host tolerance in elderly individuals thus results in a

steeper slope where the host health would have a more

dramatic effect per unit increase in viral burden

(Fig. 1). Herein, we examine the current literature to

glean how the molecular and cellular changes that

occur during aging can disrupt resistance and disease

tolerance mechanisms. We explore how disruption of

such resistance and disease tolerance mechanisms

underpin the association between age and severe

COVID-19. Finally, we also suggest potential thera-

peutic avenues to reduce the risk of severe COVID-19

in the elderly.

Aging and the immune system

Aging is known to affect the immune system at multi-

ple levels with dysfunction across both innate immu-

nity and adaptive immunity, which contributes to

reduced resistance to infection, a phenomenon known

as ‘immunosenescence’. On the other hand, aging is

associated with a state of chronic subclinical inflamma-

tion, sometimes referred to as ‘inflammaging’, which

can compromise disease tolerance during infections

[20–22]. These are likely to be accountable for the

increased morbidity and mortality of older individuals

due to infections, including that caused by SARS-

CoV-2 [20,21,23,24]. Furthermore, immunosenescence

raises concerns about the feasibility of generating a

potent vaccine to induce efficient cellular and humoral

immunity in the aged population. Gaining knowledge

of these mechanisms and interactions will be critical

for the discovery of novel therapeutic interventions,

especially for older individuals. Herein, we provide a

brief summary of the concepts of immunosenescence

and inflammaging, which have been extensively

reviewed elsewhere [21,25–31], and discuss how these

processes impact SARS-CoV-2 infection and COVID-

19 severity.

The immune system has evolved to respond to infec-

tion and protect the host against pathogens. The

innate arm of this immune system detects components

of pathogens, such as lipopolysaccharide and double-

stranded RNA to mount an early response before the

adaptive arm of the immune system develops

pathogen-specific responses and long-term memory.

Studies have found that the innate immune response is

compromised in older people. For instance, neu-

trophils exhibit impaired cytokine signaling, produc-

tion of peroxide and nitric oxide, pattern recognition

receptor signaling, and phagocytic function [31,32].

Similarly, macrophages have reduced cytokine produc-

tion, chemotaxis, and phagocytic functions. On the

other hand, natural killer (NK) cells exhibit age-re-

lated population shifts from a less mature, cytokine-

producing subset to a mature subset with reduced

migration, cytokine secretion, and cytotoxicity [33].

The sensing of pathogen-associated molecular patterns

(PAMPs) by pattern recognition receptors (PRRs) in

antigen-presenting cells is also blunted in the elderly,

compromising immune responses to viral infections

[25].

Adaptive immune response is also substantially

affected by immunosenescence [34]. Aging is associated

with reduced T- and B-cell responses against novel

antigens from pathogens and vaccines. In brief, thymic

involution and ‘exhaustion’ of na€ıve T cells by expo-

sure to foreign antigens throughout life lead to a poor

response to newly encountered antigens, as well as a

shift toward an inflammatory, autoimmune T-cell pro-

file [31]. B-cell numbers and receptor repertoire diver-

sity are also reduced, leading to a decline in specific

humoral responses against new extracellular pathogens

[25,31,35,36]. Besides immune cells, aging is also asso-

ciated with a progressive decline in the immunological

and mucociliary functions of the airway epithelium in

the lungs, which may also jeopardize successful clear-

ance of SARS-CoV-2 particles in older individuals

[37]. Thus, immunosenescence leads to compromised

innate and adaptive immune functions in older individ-

uals, thereby increasing host susceptibility to viral

infections, including that caused by SARS-CoV-2

[38–41].
Following infection, the activated immune system

must regulate the development of resistance with the

promotion of host tolerance to restore health and

avoid complications from excessive end-organ damage.

Imbalanced resistance and host tolerance could lead to

exuberant systemic inflammation, especially the later

stages of infection that exacerbates hypoxemia and

organ dysfunction. Excessive inflammation in severe

COVID-19 is characterized by elevated levels of serum

pro-inflammatory cytokines including IL-6, IL-1b, IL-
2, IL-8, IL-17, GM-CSF, G-CSF, IP10, MCP1, CCL3,

and TNF [3,4,42]. Postmortem studies of patients who

succumbed to COVID-19 have found excessive infiltra-

tion of inflammatory cells with evidence of endothelial

and inflammatory cell death in multiple organs,
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including the lungs, heart, kidney, and intestines.

These pathological findings have appeared to be par-

ticularly common in older COVID-19 patients [43].

While the triggers and pathogenesis of excessive

inflammation in COVID-19 remain to be fully eluci-

dated, the higher baseline levels of inflammation in

older individuals may lower the tipping point for

excessive inflammation following SARS-CoV-2 infec-

tion. This chronic low-grade inflammation that is seen

in elderly individuals is characterized by higher base-

line serum concentrations of C-reactive protein (CRP)

and cytokines including IL-6 and IL-8. Such low-grade

inflammation may be induced by multiple factors,

including impaired clearance of nondividing senescent

and dead cells, chronic infections (particularly cytome-

galovirus), compromised gut-barrier functions, and

obesity [23,44,45]. Furthermore, it has also become

increasingly evident that the immune function is deeply

intertwined with cellular processes governing stress

response and metabolism. These interactions, an over-

view of which is shown in Fig. 2, are as follows:

Inflammaging, the unfolded protein
response, and oxidative stress

During viral infection, alteration of the intracellular

environment provokes cellular stress responses. In par-

ticular, the endoplasmic reticulum (ER) is comman-

deered for synthesis of viral proteins that could

overwhelm its folding capacity. Previous studies have

demonstrated that CoV infection induces ER stress

and upregulates expression of ER stress-related genes

including BiP, Herpud1, and GRP94 [46,47]. In partic-

ular, the Spike (S) protein, orf3a, and orf8b of SARS-

CoV-1 are known inducers of ER stress in vitro

[46,48,49]. A recent protein interaction map also

revealed that orf8 of SARS-CoV-2 could interact with

host proteins involved in ER quality control [50], sug-

gesting that SARS-CoV-2 may also manipulate the

host ER machinery to facilitate viral replication in tar-

get cells. The hijacking of the host ER for viral repli-

cation and the resultant accumulation of nascent and

unfolded proteins induce ER stress. Therefore, to

maintain homeostasis, the unfolded protein response

(UPR) is activated. Activation of the UPR by the

three sensors PERK, IRE1, and ATF6 induces a

downstream signaling cascade that results in produc-

tion of ER chaperones, attenuation of mRNA transla-

tion, induction of ER-associated protein degradation

(ERAD), and autophagy in order to maintain folding

capacity [51]. If proteostasis is not restored, prolonged

ER stress eventually induces apoptosis [52]. Further-

more, inflammatory cytokines may also trigger positive

feedback loops that induce ER stress in other cells to

exacerbate the inflammatory response [53,54]. As such,

the activation of UPR serves to preserve tissue func-

tion and could promote disease tolerance during infec-

tion [55,56].

SARS-CoV-2

ATF6

PERK

IRE1 TCA cycle

Mitochondrial dysfunctionElevated ER stress
UPR

Baseline

Severe COVID-19

XBP1

Infection
Mitochondrial dysfunction

Maladaptive UPR

TCA 
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ATF6

PERK

IRE1

ROS 
production

Fig 2. Molecular pathways underlying host

tolerance to SARS-CoV-2. Aging results in

elevated ER stress, decreased UPR

capacity, mitochondrial dysfunction, and

decreased TCA cycle activity that can

reduce host tolerance to SARS-CoV-2

infection. In the context of this altered

immunometabolic profile, infection with

SARS-CoV-2 triggers a maladaptive

response characterized by further

mitochondrial dysfunction, maladaptive

UPR, and TCA cycle dysregulation. This

induces ROS production and downstream

pro-inflammatory responses that ultimately

increase the risk of symptomatic outcome

and severity of COVID-19.
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The efficiency of UPR declines with age. Studies

from aged mice have shown that the decline in protein

folding can be attributed to increased oxidation of the

molecular chaperones or reduced expression levels of

UPR regulators such as GRP78 and PERK [57–60].
With reduced UPR capacity in elderly individuals, ER

stress triggered by viral replication would, instead of

adaptive UPR, induce maladaptive UPR that is char-

acterized by increased apoptosis and pro-inflammatory

responses. Such maladaptive UPR could thus also con-

tribute to the immunopathogenesis of COVID-19 [51].

Reduced UPR capacity is further compounded by

aging-associated progressive mitochondrial dysfunction

[61–63]. Acting in concert with the accumulation of

misfolded proteins in aged cells, mitochondrial dys-

function promotes reactive oxygen species (ROS) pro-

duction and oxidative damage [64,65]. Indeed, an

integrative analysis of bulk and single-cell transcrip-

tomics revealed that genes associated with the mito-

chondrion were most negatively correlated with age

[66]. Notably, some of the mitochondria-associated

genes such as NDUFB9 and NDUFAF1 were also

found to interact with Orf9c of SARS-CoV-2 [50], sug-

gesting that the differential expression of these mito-

chondria-associated genes, along with oxidative stress

in the elderly population, could potentially reduce dis-

ease tolerance and exacerbate COVID-19 in older pop-

ulations.

Although there are currently no clinical data to

show that oxidative stress markers are directly corre-

lated with COVID-19 severity, this possibility is sug-

gested by observations in SARS patients [67].

Expression of mitochondrial genes, stress response

protein DNAJB1, and the cytokine IL-1b were all

found to be upregulated in PBMCs of SARS patients

[67,68]. In addition, in vitro studies suggest that ROS

overproduction contributes to the pathogenesis of

SARS. Specifically, SARS-CoV 3C-like protease has

been shown to increase ROS production and apoptosis

in HL-CZ cells [69]. Moreover, the SARS-CoV 3a pro-

tein can increase p38 MAP kinase activity and Bax

oligomerization that leads to activation of the mito-

chondrial death pathway and apoptosis in Huh-7 cells

[70]. Collectively, these observations support that

oxidative stress induced by SARS-CoV infection con-

tributes to disease pathogenesis. Aging-related oxida-

tive stress responses could thus aggravate disease

severity.

The increased maladaptive UPR and oxidative stress

in infected elderly patients can promote apoptosis,

which can serve as a resistance mechanism to eliminate

virus-infected cells to control the spread of viruses

[71]. However, apoptosis may be a double-edged

sword, as the release of damage-associated molecular

patterns (DAMPs) can further exacerbate inflamma-

tion. To limit and counteract the extent of the inflam-

matory response induced by cell death mechanisms,

antigen-presenting cells such as macrophages and den-

dritic cells are activated, which then primes the CD4+
T helper and CD8+ cytotoxic T lymphocytes to clear

damaged and dying cells. In addition, macrophages

can be polarized to produce anti-inflammatory cytoki-

nes, lipid mediators, and growth factors such as inter-

leukin-10 (IL-10), 15-deoxy-prostaglandin J2 (15d-

PGJ2), platelet-derived growth factor (PDGF), and

transforming growth factor-b1 (TGFb1) to promote

tissue damage control and tissue regeneration [72–74].
The presence of tissue-resident macrophages, innate

lymphoid cells, and regulatory T cells can also pro-

mote tissue damage control to establish disease toler-

ance during infection [56]. However, both the numbers

and function of the immune cells are reduced with age,

resulting in an overall decline in tissue maintenance

and repair capabilities that compromise disease toler-

ance.

Besides the increased oxidative stress levels and

damage due to more ROS production, there is also

diminished antioxidant capacity with age. The expres-

sion levels of antioxidant enzymes are controlled by

the master transcription factor erythroid 2-related fac-

tor 2 (NRF2) binding to the EpRE motif [75,76]. The

decline in NRF2/EpRE activity and signaling with

aging can thus result in increased susceptibility to

oxidative stress and damage induced by viruses includ-

ing SARS-CoV-2 [77]. Moreover, as NRF2 is also

involved in polarization of macrophage responses

toward tissue damage control and mitochondrial bio-

genesis, the decline in NRF2 activity during aging can

also compromise tissue damage control mechanisms

and disease tolerance during infections [78–80]. Given

the potential role of NRF2 in modulating host toler-

ance, NRF2 activators such as PB125� have been

explored as potential therapeutics against COVID-19

[81].

Inflammaging and metabolic decline

Metabolism is now well established as an important

regulator of susceptibility and host tolerance to viral

infections. Upon SARS-CoV-2 infection, metabolic

changes can be seen at the cellular level, where infected

African Green monkey kidney cells (VeroFM) were

found to have decreased tricarboxylic acid (TCA)

intermediates and fructose-6-phosphate, with a con-

comitant increase in lactate production [82]. Similarly,

plasma levels of malic acid and lipids such as
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diglycerols, free fatty acids, and triglycerols were sig-

nificantly less abundant in COVID-19 patients [83,84].

Lactate dehydrogenase (LDH), which catalyzes the

conversion of pyruvate to lactate, was also identified

to be most significantly correlated with disease severity

[85]. Taken together, these findings suggest that

SARS-CoV-2 infection increases glycolytic flux and

utilization of alternative sources such as free fatty

acids to promote ATP production.

In response to infection, host cells are known to

alter metabolic processes to protect against the dam-

age, suggesting a plausible role for metabolism to

enable disease tolerance [86]. Indeed, individuals with

compromised metabolic health, including those with

type 2 diabetes and other metabolic conditions, have

been shown to be at greater risk of developing more

severe infectious diseases [4,6,87,88]; the presence of

uncontrolled hyperglycemia (with or without a diagno-

sis of type 2 diabetes) has been found to be associated

with increased mortality in COVID-19 patients [89,90].

In elderly individuals, metabolic processes slow down

due to reduced mitochondrial performance [63]. More-

over, the loss of mitochondrial activity decreases the

maximal and reserve respiratory capacity of host cells

and tissues, reducing their ability to adapt to the

heightened energy demand required for virus infec-

tion. Therefore, the decline in metabolic processes

during aging may be maladaptive in the context of

COVID-19.

Another intriguing metabolic response to infection is

that of the tryptophan–kynurenine pathway due to its

immunomodulatory properties. Tryptophan is the least

abundant of the essential amino acids, and its level is

tightly regulated in the body. The majority of dietary

tryptophan is metabolized via the kynurenine pathway,

which is governed by three rate-limiting enzymes: tryp-

tophan 2,3-dioxygenase (TDO), and indoleamine 2,3-

dioxygenase (IDO) 1 and IDO2 [91,92]. TDO is consti-

tutively expressed in the liver. In contrast, IDO1 and

IDO2 are inducible enzymes expressed in nonhepatic

cells such as immune cells and are upregulated by

pro-inflammatory cytokines including IFN-c [93,94].

Tryptophan catabolism via the kynurenine pathway

produces several metabolites that possess immunomod-

ulatory effects. For instance, kynurenine inhibits

T-effector cell function and stimulates the production

of regulatory T cells [95–97]. Moreover, other kynure-

nine pathway metabolites can selectively drive Th1

cells into apoptosis [98]. Indeed, these altered immune

responses have been shown in mouse models of

autoimmune diseases, whereby IDO deficiency or inhi-

bition by 1-methyl-D-tryptophan resulted in increased

disease severity [99,100].

Aging has been shown to be associated with

increased degradation of tryptophan via the kynure-

nine pathway [101,102]. Elevated levels of kynurenine

have been observed in the early stages of HIV-1 infec-

tion, which are correlated with decreased IL-2 signal-

ing and increased sensitivity to Fas-mediated apoptosis

in memory CD4 T cells [103]. In macaques infected

with hepatitis C virus (HCV), lower levels of IDO were

observed in animals that cleared the infection, whereas

macaques that progressed to chronic disease showed

elevated IDO levels. IDO levels in both HCV-infected

humans and macaques were positively correlated with

CTLA-4, a known inhibitory molecule of T-cell func-

tion [104]. Likewise, serum metabolomics in a cohort

of dengue-infected patients showed that patients who

progressed to severe dengue fever had increased serum

kynurenine compared with individuals with mild dis-

ease or healthy controls [105]. Interestingly, a recent

study on COVID-19 demonstrated increased kynure-

nine levels in infected patients that were also correlated

with plasma levels of the pro-inflammatory cytokine,

IL-6 [84]. Moreover, increased kynurenine levels have

been shown to elicit pain hypersensitivity and hence

reduce disease tolerance in a mouse model of influenza

A infection [106]. Taken collectively, these results indi-

cate that an elevated kynurenine response during viral

infection is associated with poorer clinical outcomes.

As dysregulated kynurenine metabolism is observed

even in healthy elderly individuals [107], this altered

baseline kynurenine metabolism could predispose

elderly individuals to severe disease during infection.

Aging and physiologic changes

Fever is one of the most common symptoms of SARS-

CoV-2 infection, and a cardinal response to many

other infectious diseases [108–110]. In essence, initia-

tion of fever occurs via activation of PRRs on innate

immune cells including macrophages and dendritic

cells, thereby inducing the production of host-derived

pyrogens including IL-1b, TNF-a, and IL-6. These

cytokines travel systemically to signal the brain’s

hypothalamus to induce cyclooxygenase 2 (COX2),

which in turn catalyzes the conversion of arachidonic

acid into prostaglandin E2 (PGE2) that raises the ther-

moregulatory set point to cause fever. Previous studies

in both animal models and humans have demonstrated

the beneficial effects of thermoregulation for host

defense against infectious diseases. Some pathogens

may have reduced ability to replicate at higher body

temperatures [111]. Fever leads to the sequestration of

iron in host tissues, which is used by many microbes

for replication [112]. Fever also helps to shape the
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immune response by inducing the remobilization of

energy stores required to fuel microbial killing; human

studies have demonstrated that metabolism is

increased by ~ 13% for every 1 °C rise in temperature

[113–115]. The consequence of fever is proteolysis and

negative nitrogen balance in the host that results in

the wasting of body tissues, to serve as a source of

amino acids that are mobilized for anabolic require-

ments of host defense responses [110]. Also, fever

induces ‘sickness behaviors’ characterized by sleepi-

ness, fatigue, and anorexia as a means to conserve

energy for the host defense responses [116]. Hence,

besides reducing pathogen burden, thermoregulation

also plays a critical role as a disease tolerance defense

strategy.

Defects in thermoregulation or other physiologic

mechanisms may thus underpin the well-known

blunted fever response in elderly patients [117,118].

The absence of fever in acute response to viral infec-

tion could thus compromise host tolerance and hence

increase the risk of severe disease outcomes [119].

Given the protective role of thermoregulatory mecha-

nisms on infectious diseases, questions have been

raised regarding the safety and risk of using antipyret-

ics (such as nonsteroidal anti-inflammatory drugs and

paracetamol) for the management of fever symptoms

in elderly COVID-19 patients [120]. Indeed, a retro-

spective analysis in South Korea suggested that

NSAID use is associated with increased risk of a pri-

mary composite outcome consisting of in-hospital

death, intensive care unit admission, ventilator use,

and sepsis in adults hospitalized with COVID-19 [121].

However, the roles of thermoregulation on the patho-

genesis of COVID-19 remain to be established. Clini-

cal studies to date have not yielded sufficient evidence

to determine whether the use of antipyretics for the

short-term management of fever in patients with sus-

pected or confirmed COVID-19 could pose additional

harm [122,123].

Another potentially important aspect of physiologi-

cal changes in aging is in the renin–angiotensin path-

way; this pathway contributes to essential

hypertension, the prevalence of which increases with

age. A key component in the regulation of this path-

way is the SARS-CoV-2 receptor, angiotensin-convert-

ing enzyme 2 (ACE-2). Studies in mice found that

ACE-2 was downregulated in the lungs of mice after

SARS-CoV-2 induced lung injury [124–127], mediated

at least in part through the activity of IL-4 and IFN-c
[128–130]. Interestingly, ACE-2 expression has also

been found in rats to be reduced with increasing age

[131]. While ACE-2 downregulation may promote host

resistance to SARS-CoV-2 infection, there is a

potential trade-off that compromises disease tolerance.

ACE-2 is a carboxypeptidase that cleaves angiotensin I

(Ang I) into Ang1-9 and angiotensin II (Ang II) into

Ang1-7 [132,133]. Downregulation of ACE-2 would

therefore result in increased Ang II levels in the lungs

that would promote vascular permeability and severe

acute lung injury due to Ang II type 1a receptor acti-

vation [124]. Indeed, this may explain why severe

COVID-19 patients seem to become negative for

SARS-CoV-2 by RT–PCR more quickly than mild

cases of COVID-19. These observations also hint at

the possibility that intervention strategies that augment

ACE2 physiological functions, or the supplementation

of soluble recombinant ACE2 proteins to infection

sites may potentially aid in neutralizing SARS-CoV-2

infection and promote host tolerance to the disease

[124,134].

Environmental factors

The availability of nutrients, including glucose, amino

acids, and fatty acids, is essential for generating energy

and macromolecules required for the induction of

innate and adaptive immunity, as well as for cell pro-

liferation needed for tissue repair. In addition,

micronutrients (e.g., iron, zinc, and magnesium) are

required for nucleic acid synthesis and antioxidant

defenses (e.g., vitamin C and E) [135–137], suggesting
that the levels of micronutrients may also influence

host tolerance and disease outcome of viral infections.

Some micronutrients such as vitamin D have been

demonstrated to directly impact immune cell functions

and the induction of an antiviral state [138,139]. Nutri-

tion can also impact the gut microbiota, which can

potentially impact host resistance and tolerance to

viral infections [140]. Given the role of nutrition in

immune function, it is tempting to speculate that nutri-

tion will affect host resistance and disease tolerance

during SARS-CoV-2 infection. This consideration will

be relevant particularly in aged individuals where the

mobilization of body nutrient stores is less effective,

and the metabolic processes are slower.

As approximately 15% of the COVID-19 patients

can die from secondary bacterial infections and the

elderly are at increased risk [9], antibiotics are often

prescribed for patients with severe disease manifesta-

tions. Thus, besides increasing the risk of antibiotic

resistance development, antibiotics may indirectly

reduce host tolerance to SARS-CoV-2. This is because

antibiotics can induce mitochondrial damage, or inhi-

bit mitochondrial activity and biogenesis [141,142] that

can compromise cell bioenergetics and ATP produc-

tion, consequently priming infected cells to be more
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susceptible to cell death [143]. It is thus thought that

the reduction in the use of antibiotics could be benefi-

cial in COVID-19 patients. In addition, therapies that

promote mitochondrial activity could be a possible

treatment for elderly COVID-19 patients.

Potential therapeutic approaches that
promote host tolerance

Thus far, we have discussed that aging can lead to

reduced immune functions, decreased UPR capacity,

increased susceptibility to oxidative stress, and meta-

bolic decline that can potentially compromise host tol-

erance to COVID-19 (Fig. 2). These pathways are

highly interconnected, and viral infections could result

in further disruption of ER stress and host cell meta-

bolism that induces pro-inflammatory and oxidative

stress responses involved in viral pathogenesis (Fig. 2).

Indeed, previous studies from our laboratory support

this notion. We found that individuals with lower

expression levels of genes in the adaptive ER stress

pathway, at baseline, were more likely to tolerate

infection with a live attenuated yellow fever virus

(YF17D) and thus remain asymptomatic. By contrast,

those with elevated expression of genes in the ER

stress pathway at baseline were more susceptible to

symptomatic YF17D infection [144]. Such individuals

responded to YF17D infection by inducing maladap-

tive UPR; the pro-inflammatory responses were statis-

tically correlated with symptomatic outcome. Reduced

capacity to maintain proteostasis could thus also be an

underpinning of COVID-19 in the elderly.

As the decline in resistance and disease tolerance

mechanisms can predispose older adults to increased

risk of severe disease, the application of therapeutics

that restore such homeostatic mechanisms could be use-

ful as an adjunctive treatment for such COVID-19

patients. In particular, drugs that either lower ER stress,

improve UPR capacity, inhibit ROS and downstream

oxidative stress responses, or reduce glycolytic flux

could all serve to reduce the pro-inflammatory response

that underpins COVID-19 pathogenesis. Indeed, inter-

actome studies of SARS-CoV-2 have identified several

drugs that can potentially target these processes, such as

rapamycin, metformin, and haloperidol [50,145]. Tar-

geting these pathways could thus augment the anti-in-

flammatory approaches that are currently explored or

used, such as dexamethasone [146], to treat COVID-19

patients and prevent the inflammation-driven ARDS

and systemic complications.

As metabolic pathways can influence symptomatic

outcome of viral infections and a key energy sensor is

the enzyme 50 AMP-activated protein kinase (AMPK)

[147,148], the activation of AMPK at baseline may

thus promote disease tolerance. Under low energy

states as manifested by increased AMP/ATP and

ADP/ATP ratios, AMPK is activated by upstream

kinases, leading to the upregulation of catabolic path-

ways and downregulation of anabolic pathways in

order to maintain energy homeostasis [147,149,150]. In

addition, AMPK has been shown to promote autop-

hagy and regulate mitochondrial health [151,152]. Acti-

vation of AMPK has also been shown to improve

outcomes in several models of disease including hyper-

glycemia in type 2 diabetes, nonalcoholic fatty liver

disease (NAFLD), diabetic nephropathy, and

atherosclerosis [153–156].
To capitalize on the potential of AMPK as a thera-

peutic target, an understanding of how AMPK func-

tion changes during aging is required. Using Fisher

344 rats, Reznick et al. elegantly demonstrated that

upon 50-aminoimidazole-4-carboxamide-1-b-D-ribofu-

ranoside (AICAR) stimulation, AMPK activity in

older animals is reduced compared with younger ani-

mals [157]. This reduction in activity is not due to

decreased expression of AMPK or activity and levels

of the upstream activator liver kinase B1 (LKB1). In

addition, reduced mitochondrial biogenesis and phos-

phorylation of the AMPK substrate acetyl-CoA car-

boxylase (ACC) were noted in older rats. Likewise,

using biopsies of the vastus lateralis muscle from

younger (aged 19–41) and older (aged 64–86) human

males, AMPK activity and phosphorylation were

observed to be lower in older adults and are associated

with decreased phosphorylation of ACC [158]. Inter-

estingly, senescent primary human CD8 T cells demon-

strate reduced autophagy that fails to increase upon

nutrient starvation [159]. This failure in autophagy is

correlated with increased apoptosis and DNA damage,

supporting previous works that showed the essential

role of autophagy in promoting T-cell survival through

clearance of damaged mitochondria and homeostasis

of na€ıve T-cells [160]. Collectively, these studies sug-

gest that aging-related decline in AMPK activity con-

tributes to mitochondrial dysfunction, altered lipid

metabolism, and dysfunctional autophagy and that

therapeutics that promote AMPK activity at baseline

could improve host tolerance to viral infections.

Another appealing metabolic target is the kynure-

nine pathway, which can improve host tolerance given

its immunomodulatory effects. Cancer biologists have

explored compounds that target the kynurenine path-

way as potential immunometabolic adjuvants that act

in concert with other therapeutics such as immune

checkpoint inhibitors and cancer vaccines to boost

antineoplastic responses. Several of these drugs have
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been tested in phase I and phase II clinical trials, some

of which demonstrate significant therapeutic activity

[161,162]. With regard to infection, the plausibility of

targeting the kynurenine pathway to modulate host

responses has been illustrated in several in vitro and

animal models. For example, primary nasal epithelial

cells treated with the IDO-1 inhibitor 1-D-methyl tryp-

tophan (1-MT) showed reduced production of pro-in-

flammatory cytokines including IL-7 and G-CSF upon

infection with the PR8 strain of influenza A virus

[163]. Likewise, C57BL/6 mice treated with 1-MT

demonstrated increased influenza-specific CD4, CD8,

and effector memory T-cell numbers in the lung par-

enchyma after infection with the A/HKx/31 influenza

A strain [164]. Similarly, in a mouse model of HIV-1

encephalitis, 1-MT treatment resulted in increased

levels of CD8 T cells in both peripheral blood and

areas of the brain containing HIV-1-infected mono-

cyte-derived macrophages (MDMs) compared with

untreated controls [165]. Furthermore, treated mice

showed greater clearance of infected MDMs 3 weeks

postinfection compared with untreated mice. Collec-

tively, these studies highlight the potential of modulat-

ing the kynurenine pathway as a means to improve

host tolerance. However, it should be noted that the

drug used in these studies (1-MT, i.e., indoximod) has

poor bioavailability in humans [166]. Moreover, fur-

ther studies have indicated that indoximod may have

other mechanisms of action that contribute to its

immunomodulatory effects [167]. More studies are

required with specific IDO-1 inhibitors such as epaca-

dostat to determine whether IDO-1 inhibition would

be a suitable method for improving host tolerance.

In the elderly, the decline in Nrf2 activity can make

them more susceptible to oxidative stress responses trig-

gered by viral infections or chronic diseases [168,169].

Therefore, Nrf2 activators could potentially enhance

host tolerance to SARS-CoV-2 in elderly patients, as this

would induce antioxidant enzymes and suppress inflam-

mation and oxidative stress responses involved in disease

pathogenesis. Indeed, exposure of human cells to the

Nrf2 activator PB125� in vitro has been shown to reduce

endotoxin-induced cytokine storm [81]. Interestingly,

PB125� also downregulates the ACE2 and TMPRSS2

mRNA expression, which are both involved in mediating

SARS-CoV-2 entry in host cells. However, clinical trials

will be needed to evaluate the effectiveness of Nrf2 acti-

vators to reduce the risk of severe COVID-19.

Conclusions and perspectives

When the next pandemic occurs, it will be unlikely

that an effective vaccine or antiviral drug will be

immediately available to protect us from getting

infected, as the pathogen involved will be unknown.

Therefore, supportive care to promote disease toler-

ance, especially in elderly patients who are more sus-

ceptible to infections, will remain to be an important

first line of defense to improve patient health. The

COVID-19 pandemic has reinforced the notion that

elderly individuals are at the highest risk of severe dis-

ease due to compromised resistance and disease

tolerance arising from reduced immune functions,

weakened UPR, decline in mitochondrial functions,

physiological alterations, slower metabolism, and envi-

ronmental perturbations. It is thus time for us to begin

to understand the underlying molecular mechanisms

underlying host tolerance to viral infections, to enable

the development of therapies to treat infected elderly

patients, which will better prepare us for the next pan-

demic. Some of these approaches to enhance host

defense could involve boosting host immunity, UPR,

mitochondrial functions, homeostatic regulation, and

host metabolism. Future studies will provide insights

into the molecular pathways that would be most effec-

tive in promoting host tolerance to viral infections.
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