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A brief procedure for big data analysis of gene expression
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Abstract

There are a lot of biological and experimental data from genomics, proteomics, drug

screening, medicinal chemistry, etc. A large amount of data must be analyzed by

special methods of statistics, bioinformatics, and computer science. Big data analysis

is an effective way to build scientific hypothesis and explore internal mechanism.

Here, gene expression is taken as an example to illustrate the basic procedure of

the big data analysis.
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1 | INTRODUCTION

Gene expression data can be originated from different techniques

such as quantitative real‐time PCR (qRT‐PCR), microarray, ChIP

assay, ChIP‐on‐chip, high‐throughput ChIP‐sequencing, etc. Levels of

the gene expression are calculated based on relative quantity of

house‐keeping genes (ie, GAPDH, β‐actin, cyclophilin A1) or absolute

magnitude subsequent to a standard curve. The gene expression of

special proteins may be typical marker under physiological and

pathological conditions. In the field of clinical medicine, biomarkers

such as calcitonin for medullary thyroid carcinoma, alpha fetoprotein

for hepatocellular carcinoma, glial fibrillary acidic protein for glioma,

carcinoma antigen 15‐3 for breast cancer, and so on, are often uti-

lized for diagnosis and prognostic evaluation of relevant tumors.1-4

In addition, F13A1 gene is for screening abnormal bleeding risk.5

Parkinson's disease may have a high level of tissue transglutami-

nase.6 Gene T235 is a marker for the persistent microalbuminuria in

children and adolescents with type 1 diabetes mellitus. So far,

enough evidence has demonstrated differential levels of gene

expression are closely associated with their functionality under

pathophysiological status. However, how to form a scientific hypoth-

esis based on existing data? How to choose suitable datasets and

further to set up a relationship among different variables? It needs

not only professional knowledge and judgment, but also mathemati-

cal theory and statistical methods. The present study introduces a

brief procedure to perform big data analysis of gene expression.

2 | DATA TYPES OF GENE EXPRESSION

The gene expression can be detected or measured via routine PCR

or qRT‐PCR. One or more genes are determined at one time, based

on designed primers. Relative quantification of the gene expression

is usually normalized to the level of housekeeping gene with the
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ΔΔCt method. Microarray utilizes single DNA chip to detect a lot of

gene expression simultaneously. The principle of DNA microarray is

to hybridize unknown DNA sequence with a set of probe

oligodeoxynucleotides. The probe nucleotides are immobilized on

hard surfaces such as glass in array way, and then were hybridized

with fluorescent target genes. The gene expression is determined via

fluorescence intensity/position of target nucleotides in the microar-

ray. ChIP‐sequencing or ChIP‐seq is a technique to analyze the bind-

ing sites of DNA‐associated nuclear proteins, to investigate

interactions between nuclear proteins and specific DNA sequence,

and to identify functional role of transcription factors. ChIP‐Seq data

are derived from the DNA sequencing through a series of operation.

Now, the ChIP‐Seq has already replaced the previous ChIP‐on‐chip
method for the interactive study between nuclear proteins and

genomic DNA. Owing to differences in gene detection methods,

there are multiple data sources of gene expression, for example,

DNA microarray, Chip‐seq data (Figure 1). The first step for gene

expression analysis is to cluster gene data with similar characteristics

into different groups for further investigation.7 There are a few

terms that explain data types of gene expression in Geo database as

follows:

1. GSM (GEO sample) stands for the experimental data of a single

sample.

2. GDS (GEO dataset) is a collection of GSM that is arranged manu-

ally on a topic. Thus, GSM and GDS share the same platform.

3. GSE (GEO series) includes a multiple experiment in a research

project. It may use different platforms.

4. GPL (GEO platform) is a chip platform, such as Affymetrix, Sen-

trix, Illumina, Aglent, etc.

3 | DATA PREPROCESSING

Levels of gene expression are much varied due to their diversity in nat-

ure/function. Raw data from different databases have to be reorga-

nized by gene ID and symbol after having matched microarray

annotation table (Table 1). If the raw data are used for direct

comparison, it can overemphasize the role of the high abundance

genes during the comprehensive analysis, and/or may weaken the

function of the low gene‐expression levels. Therefore, in order to

ensure the reliability of the result, the original data need to be normal-

ized.8,9 There are many kinds of data normalization methods, including

min‐max normalization, log function conversion, arc tangent function

conversion, z‐score normalization, and fuzzy quantization. They may

be linear type (ie, M ± SD) and curve type (ie, seminormal distribution).

Different normalization methods have diverse effects on the evalua-

tion of resultant data.10-12 Unfortunately, there is no general rule to

follow in the selection of data normalization methods. The min‐max

normalization, also called standardization of deviations, is the linear

transformation of the original data, and the result falls to the [0, 1]

interval. The log function conversion can be completed via x* = log 10

(x). A problem is that the result does not necessarily fall on the [0, 1]

interval (Table 2). It should be divided by log10 (max). The atan func-

tion transformation uses an inverse tangent function to achieve the

normalization of data. The data less than 0 will be mapped to the [−1,

0] interval. The most common method is the z‐score normalization (or

zero‐mean normalization) (Table 3), which is used as standard method

in SPSS package (The IBM SPSS® Software, Armonk, NY, USA). The pro-

cessed data conforms to the normal distribution, that is, the mean is 0

and the SD is 1. Its conversion function contains μ for the mean value

and σ for the SD of all sample data.

4 | MULTIVARIATE DATA ANALYSIS

There are different statistical methods for big data analysis. Several

techniques that are generally applied for microarray gene expression

are summarized as follows.

4.1 | Correlation analysis

It describes the correlation between two or more than two random

variables, for example, the relationship between body height and

weight, and relative humidity between the air and rainfall. When

abovementioned variables are plotted in the Cartesian coordinate

F IGURE 1 Data sources of gene expression derived from different detection methods
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system, there is a set of points called “scatter plot.” The correlation

between the two variables is expressed by correlation coefficient r.

The correlation coefficient r is any value between −1 and 1.13,14 The

correlation between one variable x0 and a set of variables (x1, x2, …
xn) is measured by multicorrelation coefficient. The range of the mul-

ticorrelation coefficient is [0, 1]. In the case of multivariable, the net

correlation between two variables is reflected by partial correlation

coefficient when the effect of other variables is controlled or consid-

ered as a constant.15,16 For instance, there are three variables X1, X2,

and X3. The partial correlation coefficient r13.2 represents the linear

correlation between variable X1 and X3 after the influence of variable

X2 is thought of as a constant. The partial correlation coefficient can

reflect the relationship between the two variables more accurately

than the simple linear correlation coefficient.

4.2 | Cluster analysis

The goal of cluster analysis is to collect data on similar basis

for classification (Figure 2).17,18 In different applications, many

clustering techniques have been developed, which are used to

describe data, to measure the similarity between different data

sources, and to classify data sources into different clusters. The

statistical methods for the cluster analysis include system clus-

tering, decomposition, addition, dynamic clustering, ordered sam-

ple clustering, overlapping clustering, and fuzzy clustering.

Traditional clustering algorithms can be classified into five cate-

gories: partitioning, hierarchical, density‐based, grid based, and

model‐based. Clustering analysis tools, such as k‐mean and k‐
center algorithm, have been added to many famous packages

such as SPSS (The IBM SPSS® Software) and SAS (Cary, NC, USA).

4.3 | Principal components analysis

In many cases, there is a certain correlation between the two vari-

ables. It can be explained that the two variables share common

data information or have a overlap of datasets. The principal com-

ponents analysis (PCA) is a technology for analyzing and simplifying

datasets (Figure 3).19,20 There is more information about PCA the-

ory and application in the platforms “Principal Component Analysis

(PCA) in R” and “Principal Component Analysis in Python” (website

https://datascienceplus.com/principal-component-analysis-pca-in-r/;

https://plot.ly/ipython‐notebooks/principal‐component‐analysis/).19-21

The PCA method is usually used to reduce the dimension of data-

set, while maintaining the greatest contribution of the other side in

the dataset. This is achieved by preserving low‐order principal com-

ponents and ignoring higher order principal components. Such low‐
order components often retain the most important aspect of data.

The PCA technique can take out as many of the less comprehen-

sive variables as possible to reflect the information of the original

variables. However, this is not necessary and depends on the speci-

fic application. Moreover, since PCA relies on the given data, the

accuracy of the data has a great impact on the analysis results.

The most classical approach in PCA analysis is to express the vari-

ance of F1. The F1 selected in all linear combinations should be the

largest variance, so the F1 is the first principal component. If the

first principal component is not enough to represent the informa-

tion of the original variables, then consider selecting F2 for the sec-

ond linear combinations, expressed in the mathematical Cov (F1,

F2) = 0.

TABLE 2 Logarithmic transformed data (log e ratio, reference series: GSE9539)

Gene 4/100 Fold 8/100 Fold 12/100 Fold 24/100 Fold 4/200 Fold 8/200 Fold 12/200 Fold

BAD 0.9330 0.9560 0.9390 0.9930 0.9600 0.9770 0.9800

BAX 1.0710 0.9640 1.0070 0.9390 1.0970 0.9430 0.9870

BCL2 1.0730 0.9490 0.9060 1.0620 1.2360 0.7870 1.2920

BCL2A1 0.9320 1.3620 0.9410 0.9280 0.9090 0.9110 0.8130

BCL2L11 1.0740 0.9790 1.1810 0.9670 0.9880 1.0160 1.1500

BCL2L13 1.1290 0.9720 1.0990 1.0170 1.1080 0.9930 1.0610

BCL2L2 1.1300 1.0480 1.0410 1.0650 1.1120 1.0530 1.0290

BIK 1.0440 0.9560 0.9770 1.0120 0.9920 0.9560 1.0480

BOK 0.9000 0.9350 0.9300 0.9570 0.9620 0.9320 0.8810

TABLE 1 Different chip categories of GEO microarrays in NCBI
database

Datasets Years
Gene
number Names

1 2007 33297 Aflymetrix Human Gene 1.0 ST array

2 2003 54675 Aflymetrix Human Genome U133 Plus

2.0 Array

3 2002 22283 Aflymetrix Human Genome U133A Array

4 2002 8793 Affymetrix Human HG‐Focus Target

Array

5 2007 20228 Agilent‐012097 Human 1A Microarray

(V2) G4110B

6 2006 45220 Agilent‐014850 Whole Human Genome

Microarray 4×44K G4112F

7 2008 20589 Sentrix Human Ref‐8 v2 Expression

BeadChip

8 2008 24526 Illumina HumanRef‐8 v3.0 expression

beadchip
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4.4 | Regression model

Representative gene variables are chosen out of above‐mentioned

original data following a series of statistical procedure. They are

utilized to establish mathematical model and to characterize

essential features of gene expression (Figure 4). Mathematical

modeling is the process of describing actual phenomena in math-

ematical language.21,22 The actual phenomena here contain speci-

fic natural phenomenon such as free falling, and abstractive

phenomenon such as the value tendency of a customer to a cer-

tain commodity. The biological mathematical (BioMath) model is a

strict language to make the description of all kinds of phenomena

into a much scientific, logical, objective, and repeatable struc-

ture.23 The description here includes not only the external form

and internal mechanism, but also the prediction, experiment, and

explanation of the actual phenomena. Sometimes, we need to do

some experiments, but these experiments often use abstract

models as a substitute for the actual objects, and the experiment

itself is a theoretical substitute for the physical operation. There-

fore, the BioMath model is a simplification of real things. The

establishment of mathematical models is the process of simplify-

ing and abstracting complex and practical problems into a rational

mathematical structure. Mathematical modeling is the bridge link-

ing gene expression and biological/medical problems. Based on

the hypothesis, we should collect original data of the gene

expression, observe and investigate the inherent characteristics

and inherent laws, ascertain the quantitative relationship among

variables, to calculate and estimate all the parameters of the

model, and then to verify the accuracy, rationality, and applicabil-

ity of the model.

TABLE 3 Transformed data by zero‐mean normalization

Gere symbol 153‐T0‐1 153‐T0‐2 153‐T0‐3 153‐T0.5‐1 153‐T0.5‐2 153‐T0.5‐3 153‐T1.S‐1 153‐T1.S‐1

TNFS F10 −0.5237 −0.6558 −0.4203 −0.5577 −0.4949 −0.6140 2.5225 3.2670

TNF 0.2021 −0.3106 0.0823 −0.2435 0.2932 −0.4927 −0.5215 1.5486

TNFSF 12 0.3596 1.0538 0.1945 0.3850 −0.0340 1.8283 −0.9779 1.9087

FAS −1.0077 −0.0496 −0.5411 0.0521 −0.8960 −0.1018 −1.3602 −1.1021

TNFRSF 10B 1.8797 1.6844 0.9053 1.9502 1.0238 1.2344 0.0413 −0.6137

TNFRSF 10A −0.9825 0.0200 −0.6054 −0.5993 −1.0315 −0.6330 0.1672 −0.5839

FADD 0.1915 0.2694 0.8454 −0.5752 −0.4390 −0.5752 −0.8126 −0.9527

TNFRSF 1A 0.0443 0.7225 0.0773 0.0733 0.3874 −0.4379 −0.4959 0.0333

TNFRSF 10D 0.4991 0.6449 1.1089 0.3600 0.6891 0.5102 −0.2631 −0.2520

TNFRSF 10C −0.5613 −0.0915 1.8041 0.2629 −0.5284 −0.6603 0.6667 1.7877

TRAF2 −0.3673 −0.5960 −0.4435 0.6127 −0.3728 0.8686 −0.4163 −1.6087

TRADD −0.1146 −0.9489 −0.9365 −1.2715 −1.5972 −0.8590 0.2048 1.0081

TNFRS F11B −0.8241 −0.4364 −0.5804 −0.5804 −1.1564 −0.5804 0.1729 0.1729

TRAF1 0.0494 0.7638 −0.0038 −1.4858 −1.2730 −1.7290 0.0190 −0.6498

F IGURE 2 Cluster analysis of gene expression. Different colors
represent clusters of similar characteristics based on geometric
distance

F IGURE 3 PCA analysis of gene expression. The horizontal and
vertical coordinates represent two‐dimensional distribution of the
first two components. The number in the figure stands for different
samples
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In summary, big data accumulated through diverse methods can

show different data types. Representative variables are screened out

of multiple categories via professional knowledge and statistical

methods. The representative variables may be fitted into a suitable

mathematical model for the evaluation of pathophysiological process,

which can be utilized in clinical diagnosis and treatment.
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F IGURE 4 Sigmoid curve is a typical pattern of biological
response as reflected by possibility range [0, 1]. Logistic regression
or logit regression model is able to estimate the probability of a
binary response based on one or more independent variables.
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