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a b s t r a c t 

Lithology classification is crucial for efficient and sustainable resource exploration in the oil and 

gas industry. Missing values in well-log data, such as Gamma Ray (GR), Neutron Porosity (NPHI), 

Bulk Density (RHOB), Deep Resistivity (RS), Delta Time Compressional (DTCO), Delta Time Shear 

(DTSM), and Resistivity Deep (RD), significantly affect machine learning classification accuracy. 

This study applied three algorithms, extreme gradient boosting (XGBoost), K-nearest neighbours 

(KNN), and the artificial neural network (ANN), to handle missing values in well-log datasets, 

particularly datasets with extreme missing data (30 %). Results indicated that XGBoost was the 

most efficient and accurate, especially for RHOB, NPHI, DTCO, and DTSM, with the lowest Mean 

Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) values. The ANN also 

performed effectively, particularly on the GR, RS, and RD features, after the use of preprocess- 

ing techniques such as isolation forest and bias correction. However, the ANN can suffer from 

overfitting and requires large datasets for optimal performance. In contrast, KNN struggled with 

missing-not-at-random (MNAR) data due to its reliance on the k parameter and distance metric, 

making it less effective in mapping missing data relationships. 

• Missing values in well-log data can hinder lithology classification accuracy for efficient re- 

source exploration in the oil and gas industry. 

• This research aims to address the problem of missing values in well-log datasets by apply- 

ing machine learning algorithms such as XGBoost, ANN, and KNN to enhance classification 

performance. 

• XGBoost demonstrated superior performance in handling extreme missing data (30 %) in 

well-log datasets. ANN was effective but prone to overfitting for small datasets, while KNN 

struggled with missing-not-at-random (MNAR) data due to limitations in its distance-based 

approach. 
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Background 

Lithology classification based on well-log data is crucial to the oil and gas industry. It aims to understand the composition of

underground rocks. This information is important for determining the location and potential of hydrocarbon reservoirs, allowing 

companies to plan more effective and efficient exploration and exploitation strategies. With accurate lithological analysis, companies 

can reduce operational risks, maximise resource recovery, and improve the sustainability of operations. Therefore, lithology clas- 

sification is important in determining drilling techniques, rock formation assessment, and strategic decision-making in the oil and 

gas industry [ 1 ]. Missing values are a frequent problem in well-log datasets. The reasons for missing data can be technical, such as

machine malfunctions or human error, and the probability of missing data increases with the volume of data logged [ 2–4 ]. Biased

estimates indicate the impact of missing data, which includes the loss of information, decreased statistical accuracy, and weakened

generalisability, affecting data quality [ 5–7 ]. Missing values in well-log data can reduce the accuracy of analysis and prediction,

such as in the results of a study that estimated permeability, porosity, density, and intrinsic attenuation using seismic attributes and

well-log data [ 8 , 9 ]. Research on seismic attenuation due to induced flow using sonic log data showed that missing values affected

the accuracy of interpretation [ 10 ]. This background underscores the critical role of accurate well-log data, including the impact of

missing values, in identifying reservoir characteristics [ 11 ]. Therefore, handling missing values is of great importance. Many studies

highlight that it is crucial to use an appropriate imputation method to handle missing values in well-log data based on the specific

characteristics of the well-log data. Imputation involves replacing missing values with feasible values that are as similar as possible

to the original missing values [ 12 , 13 ]. Missing values in the dataset should be accounted for using suitable methods to improve the

accuracy and performance of data exploration [ 14 ]. In addition, different ways of handling missing data can produce different results

in statistical models, thus emphasising the importance of using appropriate techniques to handle missing values in well-recorded 

data [ 15 , 16 ]. Different imputation approaches, such as average imputation or model-based imputation, can handle missing data. In

addition, advanced techniques such as machine learning have proven effective in forecasting missing values and improving model 

efficiency [ 17 ]. Machine learning-based methods provide a promising solution for accounting for missing values in datasets [ 18–21 ].

The study of prediction and classification models using machine learning to handle missing values is still open for further research,

especially in lithology classification, where incomplete data often lead to inaccurate predictions. This research comprehensively eval- 

uates various techniques to improve the accuracy of lithology classification, ultimately contributing to more efficient exploration and 

exploitation of oil and gas resources. 

Method details 

Many machine learning algorithms have been used to handle missing values in datasets. Handling missing values in well-log data

poses a challenge, where one machine learning algorithm might not perform well on all parts of the dataset. We summarise the

machine learning algorithms used for handling missing values in Table 1 . 

We use several machine learning algorithms to predict missing values based on patterns in existing data, i.e. extreme gradient

boosting (XGBoost), K-nearest neighbours (KNN), and the artificial neural network (ANN). The selection of XGBoost, KNN, and ANN

as algorithms in this research is based on their widespread use and proven effectiveness in addressing the challenges of Missing Not

At Random (MNAR) data. The primary focus of this study is to evaluate the performance of these models — XGBoost, KNN, and

ANN —which represent diverse algorithmic approaches: boosting, distance-based proximity, and deep learning. According to prior 

studies, XGBoost has demonstrated high effectiveness in handling MNAR missing values, achieving an accuracy improvement of up to

20% on datasets and maintaining stability even with a missing value rate of 40% [ 22 ]. This makes XGBoost an efficient solution for

both classification and MNAR imputation [ 23 ]. In addition, KNN’s flexibility in employing various distance functions and the number

of neighbors allows it to capture MNAR patterns within data. Several studies indicate that KNN performs well with MNAR cases,

particularly when supported by strong relationships between observed variables and missing data, especially in complex datasets 

that do not meet distributional assumptions [ 24–26 ]. ANN, on the other hand, is recommended due to its superior performance in

handling MNAR missing values at a data loss level of 30% compared to LightGBoost. ANN recorded a Mean Absolute Error (MAE)
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Table 1 

Summary of methods for handling missing values (strengths and weaknesses). 

Methods Strengths Weaknesses 

Machine learning-based methods Choosing the correct method can improve data 

quality and make analysis results more reliable 

Needs a large dataset for model training 

K-nearest neighbours (KNN) algorithm Easy to implement and understand, 

non-parametric (does not assume a particular data 

distribution), flexible for various data types and 

scales 

Takes a long time to process if the dataset is large, 

sensitive to unbalanced data, and performance 

degrades with high-dimensional data (curse of 

dimensionality) 

Extreme gradient boosting (XGBoost) algorithm High accuracy because it uses ensemble learning, 

handles overfitting well, and is efficient 

Needs sweeping parameters to achieve optimal 

performance and requires a lot of memory and a 

high computation time for very large datasets 

Artificial neural network (ANN) algorithm Capable of modelling complex non-linear 

relationships, highly flexible and adaptive, can be 

improved by adding more layers and neurons, 

continuously learning, and updating the model 

with new data 

Needs large datasets for practical training, 

requires significant resources, is challenging to 

interpret due to its ’black box’ nature, and is 

vulnerable to overfitting if not properly organised 

Fig. 1. Research workflow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of 0.070 and a Root Mean Squared Error (RMSE) of 0.088, which are 1.73 and 1.80 times better, respectively, than those achieved

by LightGBoost [ 27 ]. Furthermore, ANN has also shown effective performance in MNAR scenarios with up to 50% missing data,

achieving high accuracy ( > 85%) and low MAE (0.12). Its ability to model non-linear relationships between variables makes it a

preferred choice over traditional statistical methods. ANN’s performance remains stable even with missing data rates as high as 50%

[ 28 ]. Future research may explore additional models to further advance the understanding and handling of MNAR data. We aim

to find the best algorithm that can fill in missing values in well-log data accurately by evaluating the effectiveness of the machine

learning algorithms using the mean absolute percentage error (MAPE) and root mean square error (RMSE), which will be useful for

lithology classification in the oil and gas sector. The workflow of the proposed method is shown in Fig. 1 . 

Well-logging involves measuring physical parameters along the borehole, which vary with the depth of the well [ 21 ]. The results

of these measurements are referred to as log data. A log is typically a graph or curve that functions based on depth or time, with

each curve representing a parameter measured continuously within a well. In oil and gas fields, well-logging plays a crucial role in

exploring and producing hydrocarbon resources, particularly in the detailed analysis of hydrocarbon reservoir lithology. 

In the workflow in Fig. 1 , it can be seen that the research focuses on effectively imputing missing values in well-log data using

machine learning algorithm-based prediction results. The process starts with collecting and segmenting well-log data, followed by 

model development using the XGBoost, KNN, and ANN algorithms. The trained models are then used to predict the missing values

in the well-log data, and the prediction results are evaluated based on the performance of each model. The final step is to compare

the performances of the models to determine the most efficient algorithm for filling the missing values, resulting in a more complete

and reliable well-log dataset for further analysis methods, such as lithology classification. 

Well-log data 

We used five public well-log datasets owned by ConocoPhillips in the Browse Basin region, Australia ( https://www.occam. 

com.au/poseidondata ). The well-log parameters used include the gamma ray (GR), bulk density (RHOB), neutron porosity (NPHI), 
3
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Table 2 

Log parameters used in the research. 

No. Log Feature Nomenclature Units 

1 GR Gamma Ray gAPI 

2 RHOB Bulk Density g/cm3 

3 NPHI Neutron Porosity pu 

4 DTCO Differential Sonic Travel Time us/ft 

5 DTSM Differential Transit Time Shear us/ft 

6 RS Resistivity Ω m 

7 RD Resistivity-Density Ω m 

Fig. 2. Development flow of machine learning model for well-log data prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sonic (DTCO and DTSM), and resistivity (RS and RD) logs ( Table 2 ). The missing values are not random (missing not at random,

MNAR) and are set to 30 % of the total data for all log features. The number of missing values was chosen to determine the most

effective method and obtain realistic recommendations for datasets with extreme missing values. 

Development of machine learning model 

The development and testing flow of the machine learning model for predicting log features, which is then used to impute the

missing values of well-log data, can be seen in Fig. 2 . In the training phase, well-log data obtained from the drilling process are

processed through several stages. First, feature scaling is performed to normalise the data so that the machine learning model can

work more efficiently. Next, outliers are handled using the isolation forest algorithm. Then, the clean data are used to develop a log

feature prediction model with the XGBoost, KNN, and ANN machine learning methods. Several stages and several techniques are

used in the preprocessing stage to ensure the quality of the data used to train and test the prediction model in this research, including

feature scaling and forest isolation. 

Preprocessing 

1. Feature scaling 

Feature scaling is performed using the standard scaler method, where the scale between features in the dataset is equalised so

that no feature dominates the processing using machine learning algorithms. This step aims to optimise the classification method. 

The standard scaler applies the Z-score principle to each feature in the dataset to normalise the data. The principle is to transform

the data so that they have an average close to 0 and a standard deviation close to 1. Eq. (1) is used to calculate the Z-score: 

𝑍 = 𝑥 − 𝜇

𝜎
. (1) 

The Z-score is calculated by subtracting the average value (μ) from each individual data point ( x ) and then dividing the result by

the standard deviation ( 𝜎) of the dataset [ 22 ]. 

2. Isolation forest algorithm 

After feature scaling, outliers are handled using the isolation forest algorithm. The isolation forest algorithm is superior in anomaly

detection; it is especially recognised for its efficiency and ability to detect outliers in datasets. Isolation forest is particularly beneficial

because it requires low computational resources and can be easily applied to large datasets [ 23 ]. Unlike traditional methods that rely

on distance or density measures, isolation forest uses only the concept of isolation, so it can effectively detect anomalies without the

need for labelled training data. This algorithm creates a collection of isolation trees, where each tree is formed by randomly selecting

a feature and a splitting value between the maximum and minimum values of the feature. This process continues until every data
4
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point is isolated. The number of splits required to isolate a data point indicates an anomaly; the fewer the number of splits, the more

likely it is that the point is an anomaly [ 24 ]. 

Training process 

1. XGBoost 

After applying isolation forest to identify and remove anomalies from the well-log data, the next step is to use the XGBoost machine

learning algorithm in the model development stage. The XGBoost algorithm will be trained with clean data from the isolation forest

to predict log features accurately. In this process, XGBoost will utilise its ability to capture non-linear relationships in the data and

generate robust prediction models for the various log features available. Tree-based models such as XGBoost are known for capturing

complex and non-linear data relationships [ 25 ]. The models excel in handling complicated data structures and correlations, making

them well-suited for scenarios where the assumption of linearity may not hold. The iterative nature of the algorithm allows it to

continuously improve the accuracy as the number of iterations increases [ 26 , 27 ]. The boosting process in the XGBoost algorithm is

built gradually to minimise the loss function and improve the model’s prediction performance through a gradient descent optimisation

approach, as in Eq. (2) : 

𝐹𝑚 ( 𝑋) = 𝐹𝑚 −1 ( 𝑋) + 𝛼𝑚 ℎ𝑚 
(
𝑋, 𝑟𝑚 −1 

)
, (2) 

where 

𝐹𝑚 ( 𝑋) is the combination of all decision trees created in each iteration; 

𝐹𝑚 −1 ( 𝑋) is the model created up to iteration 𝑚 − 1 ; 
ℎ𝑚 (𝑋, 𝑟𝑚 −1 ) is the 𝑚 − 1 decision tree for predicting the 𝑟𝑚 −1 residuals; 

𝛼𝑚 is the optimised parameter to reduce the loss function. 

The loss function minimises the difference between the model prediction and the actual target value. In simple terms, the XGBoost

model works iteratively by building a series of decision trees, where each tree tries to correct the error of the previous tree [ 28 ]. The

model development process can be seen in the workflow in Fig. 1 ; it occurs after the well-log data (GR, RHOB, NPHI, RS, RD, DTCO,

and DTSM) go through a preprocessing stage, including data segmentation, and outlier value handling using isolation forest. The data

are then split into training and testing data with a ratio of 80:20. At the model development stage, feature scaling is performed to

ensure a more even data distribution. After data splitting, the XGBoost algorithm is applied to the training data. Next, the parameters

of XGBoost are optimised through a grid-search cross-validation technique, which aims to find the best combination of parameters 

that maximises the model’s performance. After the model is trained, the prediction results are evaluated using evaluation metrics to

calculate the accuracy and performance of the model. 

2. KNN 

Imputation techniques such as KNN imputation have been used to effectively manage missing values in datasets in predictive 

modelling tasks (Aljrees, 2024). The distance between data points in the KNN algorithm can be calculated using the Euclidean

( Eq. (3) ) and Manhattan formulas ( Eq. (4) ): 

𝐷𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 ( 𝑥, 𝑦 ) =

√ √ √ √ 

𝑛 ∑
𝑗=1 

|𝑥 − 𝑦 |2 , (3) 

𝐷𝑚𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 ( 𝑥, 𝑦 ) =
𝑛 ∑
𝑗=1 

|𝑥 − 𝑦 |, (4) 

where x is the sample data, and y is the new data to be predicted. D represents the distance between x and y, and n is the number

of features in the dataset [ 29 ]. Imputing using KNN has several advantages, such as maintaining the integrity of the dataset without

having to remove incomplete data and avoiding biases that may occur due to data deletion. In addition, imputing results have been

shown to improve the performance of prediction models by providing more representative and comprehensive data [ 30 ]. Another 

study also highlighted that models using KNN imputers performed better than models that only removed missing data, with a signifi-

cant increase in accuracy in water quality prediction [ 31 ]. KNN is one of the non-parametric algorithms used in machine learning and

data mining tasks. KNN is an instance-based learning method, which means it does not build an explicit model but instead directly

uses the training data to make predictions. KNN works by classifying unknown patterns or predicting class labels based on their

nearest neighbours in the training data [ 32 ]. 

3. ANN 

ANNs are powerful tools capable of modelling complex non-linear relationships due to their ability to learn and recognise complex

patterns through experience [ 33 , 34 ]. An ANN is highly versatile and adaptable, as it can be designed with various architectures. The

addition of layers and neurons increases this network’s scalability [ 35 ]. These networks show continuous learning capabilities to adapt

and improve performance without extensive experimentation [ 36 ]. ANNs in previous studies have been used to predict petrophysical

properties such as the porosity [ 37 ] and total organic carbon (TOC) in reservoirs [ 38 ], impute missing well-log data, and estimate

petrophysical parameters [ 39 , 40 ]. An ANN was used to predict missing well logs in the Mishrif reservoir at Well Ns-X, Nasiriya

Oilfield, Iraq. The predicted log data included sonic, neutron, density, and resistivity logs, with the GR log as the only original log.

The performance evaluation of the ANN model was conducted using the coefficient of determination (R2 ) for each predicted log
5
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type. The results showed the potential of ANNs in assisting reservoir development evaluation and planning [ 18 ]. In ANNs, the basic

equation used for predicting a value with one hidden layer is given as Eq. (5) : 

𝑛𝑒𝑡_ℎ𝑖𝑑 𝑑 𝑒𝑛 =
𝐽 ∑
𝑗=1 

𝐶𝑗,𝑘 𝑖𝑗 + 𝜃𝑘 , (5) 

where 𝐽 represents the number of input nodes, and 𝐶𝑗,𝑘 is the weight between input node 𝑗 and hidden node 𝑘 . The variable 𝑖𝑗 refers

to the input values (experimental parameters), while 𝜃𝑘 denotes the bias associated with hidden node 𝑘 . The equation is used to

calculate the net input to node 𝑘 within the hidden layer. Additionally, Eq. 6 illustrates the process of determining the net input for

unit 𝑧 in the output layer: 

𝑛𝑒𝑡_𝑜𝑢𝑡𝑝𝑢𝑡 =
𝐾 ∑
𝑘 =1 

𝐷𝑘,𝑧 ℎ𝑘 + ∅𝑧 , (6) 

where 𝐾 is the number of nodes in the hidden layer, and the weight connecting hidden node 𝑘 to output node 𝑧 is represented by

𝐷𝑘,𝑧 . The output from hidden node 𝑘 is denoted by ℎ𝑘 , while the bias applied to output node 𝑧 is ∅𝑧 . The final prediction is produced

by the output layer after all the processes are finished, including the application of the activation function to the computed net input

[ 39 ]. 

4. Hyperparameter search (grid-search cross-validation) 

Hyperparameters are parameters that manage the running of a machine learning model during the training process on a dataset.

By choosing the right hyperparameters for an algorithm, the performance of the algorithm can be significantly improved. This opti-

misation process has a major impact on the overall training process and processing time, as well as the model’s ability to generalise.

Due to the large number of variations in hyperparameters, specialised methods are required to find the optimal combination. In

some research, grid-search cross-validation is used to determine the hyperparameter settings for each algorithm. This process sys- 

tematically tries various hyperparameter combinations within a pre-determined range to find the most optimal value, with the aim

of obtaining the best performance. Grid-search cross-validation ensures that the model is trained with appropriate hyperparameters, 

which plays an important role in improving the generalisation ability of the algorithm, resulting in a better prediction or classification

accuracy [ 41 , 42 ]. In this research, hyperparameter tuning is used in two algorithms, XGBoost and KNN, for log feature prediction.

After performing hyperparameter optimisation through grid-search cross-validation, the next step is to effectively optimise the algo- 

rithm to improve the model performance. This optimisation process plays an important role in improving the accuracy and overall

performance of the model. 

Post-training (bias correction) 

Bias correction is a technique used in data processing and machine learning to address systematic errors in observation data or

model predictions, so that the predicted results are closer to the actual values. These biases can be caused by various factors, such as

tool calibration errors, model imperfections, or changes in external conditions that are not reflected well in the data. Mathematically,

bias can be represented as in Eq. (7) : 

𝐵𝑖𝑎𝑠 ( 𝑥) = 𝐸[ ̂𝑦 ( 𝑥) ] − 𝑦( 𝑥) , (7) 

where 𝐸[𝑦̂ ( 𝑥 ) ] is the predicted value of the model, and 𝑦 ( 𝑥 ) is the actual value of the observation. In the bias correction approach, the

bias is mathematically represented as a linear regression that depends on certain predictors, as represented by Eq. (8) : 

𝐻̃ ( 𝑥, 𝛽) = 𝐻( 𝑥) +
𝑁 ∑
𝑖 =0 
𝛽𝑖 𝑝𝑖 ( 𝑥) , (8) 

where H(x) is the model prediction without bias correction, H ̃(x, 𝛽) is the bias-corrected prediction, 𝛽_i is the bias coefficient that

needs to be adjusted based on the data, and p_i (x) is the predictor used to estimate the bias. These bias coefficients are updated by

minimising the difference between the prediction and the observed data [ 43 ]. 

Evaluation models 

In this research, the MAPE and RMSE metrics were used to assess the performance of the prediction model. The MAPE measures

the prediction error rate as a percentage of the actual value, thus providing an easier understanding of the magnitude of the error.

The RMSE calculates the root mean square of the difference between the predicted and observed values, which is used to measure

how far the model predictions deviate from the actual data. Eqs. (8) and (9) are the formulas used to calculate the MAPE and RMSE:

𝑅𝑀𝑆𝐸 =

√ √ √ √ 

𝑛 ∑
𝑖 =1 

(
𝑦̂𝑖 − 𝑦𝑖 

)2 
𝑛 

, (9) 

where 𝑛 is the number of data points, 𝑦̂𝑖 is the predicted data, and 𝑦𝑖 is the actual data: 

𝑀𝐴𝑃 𝐸 =
𝑛 ∑
𝑖 −1 

||||
𝑓𝑖 − 𝑎𝑖 
𝑎𝑖 

|||| × 100% , (10) 
6
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Fig. 3. Data distribution before feature scaling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where 𝑓𝑖 is the predicted data and 𝑎𝑖 is the actual data [ 44 ]. The results of this evaluation provide a detailed overview of the prediction

accuracy and the extent to which the model is able to handle the data well. Such metrics are an important guide in determining the

most effective and robust model for log feature prediction. 

Method validation 

This research highlights three main stages that need to be discussed before going into a more detailed discussion of the results and

analysis: the feature scaling process, the use of isolation forest in preprocessing, and the prediction evaluation of the XGBoost, KNN,

and ANN algorithms. Each stage plays an important role in determining the prediction accuracy of the analysed well-log dataset. 

The results of feature scaling (preprocessing step) 

The distribution of the dataset before and after applying the standard scaler technique can be seen in Fig. 3 and 4 . Each log feature

has a diverse range of values; some features, such as log RS and RD, have a wide range of values and are widely distributed along

the y-axis compared to other features ( Fig. 3 ). For example, log RS ranges from 0 − 2000 Ωm, and log RD ranges from 0 − 1500

Ωm, where the data distribution shows high variation, as seen from the large amount of data spread along the y-axis. The diverse

range of values is standardised using the standard scaler technique so that all log feature scales become uniform ( Fig. 4 ), where the

data distribution becomes more concentrated and uniform over a specific range for each log feature. This signature indicates that the

standard scaler technique reduced the mean to near 0, and the scale distribution was uniform between features. 

After the feature scaling process produces a more uniform data distribution, the next step is to handle outliers using the isolation

forest algorithm. This process aims to identify and remove data that are considered anomalous so that the quality of the data used in

the prediction model improves and can produce more accurate results. 

The result of applying the isolation forest algorithm 

In this research, several experimental scenarios were carried out related to the ’contamination’ parameter to optimise the per- 

formance of the isolation forest model. The contamination parameter describes the proportion of anomalies in the dataset. This

parameter helps the isolation forest algorithm determine the threshold for classifying points as anomalies [ 24 ]. Experiments were

conducted with different contamination levels: 0.1, 0.2, 0.3, 0.4, and 0.5. If the contamination parameter value is 0.1, this means that

10 % of the dataset is classified as outliers. Table 3 shows the performance comparison results of three machine learning algorithms,

i.e. XGBoost, KNN, and ANN, in predicting missing values in well-log data with different contamination levels, from 0.1 to 0.5. Each

algorithm is evaluated based on two main metrics, which are the MAPE and RMSE. 

The experimental results show that the best model performance, as indicated by the MAPE and RMSE evaluation values, is achieved

with the contaminant level set at 0.4. A contaminant level of 0.4 generally shows better performance across various features, with

lower MAPE and RMSE values compared to contaminant levels of 0.1 and 0.5. This shows that using 40 % of the data as the proportion
7
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Fig. 4. Data distribution after feature scaling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of anomalies results in the best log feature prediction performance for the dataset used in this research, as shown in Table 3 , making

the contaminant parameter value of 0.4 the most optimal choice for this dataset. 

After the outlier handling phase using the isolation forest method, the cleaned data are ready for the next phase: training with

machine learning and deep learning algorithms. This process will involve using the XGBoost, KNN, and ANN algorithms to build an

accurate prediction model based on the processed well-log data and evaluating each algorithm’s prediction performance. 

Hyperparameter tuning results using grid-search cross-validation 

Following the outlier removal process using the isolation forest technique, the refined dataset is prepared for the next phase:

training with machine learning and deep learning models. This stage will utilize the XGBoost, KNN, and ANN algorithms to develop a

reliable predictive model based on the processed well log data, with each model’s prediction accuracy thoroughly evaluated. For two

machine learning algorithms, XGBoost and KNN, hyperparameter optimisation is performed using the grid-search cross-validation 

technique to get the best parameters to improve the prediction accuracy ( Tables 4 and 5 ). 

After obtaining the best hyperparameters from the grid-search cross-validation results, the next step is to train the model using

the XGBoost and KNN machine learning algorithms. This training aims to build a more optimal prediction model by utilising the

adjusted hyperparameters, which is expected to improve the prediction accuracy on the processed well-log data. 

Missing value prediction results using XGBoost 

In this research, three main approaches were taken to use XGBoost to predict missing values in well-log features (GR, RHOB, NPHI,

RD, RS, DTCO, and DTSM). The first approach is to apply XGBoost directly after preprocessing with the isolation forest technique to

identify and handle outliers in the dataset. Furthermore, to improve the performance of the model, in addition to handling outliers

using isolation forest, the application of hyperparameter tuning techniques using grid-search cross-validation is also added; it aims to

find the optimal combination of parameters for the XGBoost prediction model (second approach). The last approach (third approach) is

the addition of bias correction techniques after applying isolation forest and grid-search cross-validation; it aims to reduce prediction

errors that may be caused by bias in the model. The results of these three approaches will be compared to see the effect of each

technique in improving the prediction accuracy, which is evaluated using the MAPE and RMSE metrics. Table 6 shows the results of

the XGBoost model’s missing value prediction evaluation on various log features (GR, RHOB, NPHI, RD, RS, DTCO, and DTSM) under

each approach. The curve visualisation of the experimental results can be seen in Fig. 5 . 

Based on the results presented in Table 6 and Fig. 5 , there is a significant improvement in most of the features, especially the GR,

DTCO, and DTSM features, which get the most significant error reduction in the third approach (the approach that involves applying

isolation forest, grid search, and bias correction). For the GR feature, there was a decrease in the MAPE from 24.19 % to 12.67 %,

which is a decrease of 47.6 %. The RMSE also dropped from 45.44 to 17.17, or about 62.2 %. As for the DTCO feature, the MAPE

dropped from 5.95 % to 2.61 %, a decrease of 56.1 %, while the RMSE dropped from 6.58 to 3.32, or about 49.5 %. The DTSM feature
8
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Table 3 

Performance comparison of machine learning algorithms for log feature prediction with varying contamination 

levels. 

Log Feature Contamination XGBoost KNN ANN 

MAPE RMSE MAPE RMSE MAPE RMSE 

GR 0.1 16.1 22.9 16.2 24.7 15.4 24.5 

0.2 16.1 21.2 15.3 22.5 19.4 25.3 

0.3 13.2 18.2 15.2 22.0 16.3 21.9 

0.4 12.7 17.2 14.4 21.2 10.6 16.9 

0.5 14.6 20.3 13.9 18.3 12.8 17.4 

RHOB 0.1 1.5 0.1 1.8 0.1 1.7 0.1 

0.2 1.6 0.1 1.8 0.1 1.8 0.1 

0.3 1.4 0.1 1.6 0.1 1.7 0.1 

0.4 1.4 0.1 1.6 0.1 1.5 0.1 

0.5 1.5 0.1 1.5 0.1 2.0 0.1 

NPHI 0.1 18.6 6.0 21.6 6.9 14.3 4.8 

0.2 13.2 4.4 10.9 4.0 10.5 3.5 

0.3 10.1 3.6 8.6 3.1 10.4 3.5 

0.4 9.4 3.3 9.9 3.4 10.3 3.5 

0.5 9.8 3.5 9.5 3.3 8.9 3.1 

DTSM 0.1 5.1 12.2 5.6 13.0 5.0 11.9 

0.2 5.2 12.4 5.8 13.3 4.6 10.9 

0.3 5.0 11.5 4.8 11.5 4.5 10.4 

0.4 4.3 9.9 5.3 12.0 4.7 10.9 

0.5 4.3 10.4 5.4 12.1 4.9 11.5 

DTCO 0.1 3.3 4.4 3.1 3.7 3.0 3.9 

0.2 3.2 4.2 3.0 3.6 2.5 3.1 

0.3 3.0 3.7 2.9 3.5 2.8 3.4 

0.4 2.6 3.3 2.9 3.4 2.8 3.4 

0.5 3.0 3.8 2.8 3.4 2.8 3.5 

RS 0.1 52.0 1.4 16.2 0.5 22.0 0.8 

0.2 43.1 1.4 18.7 0.7 10.9 0.7 

0.3 56.8 1.9 14.6 0.7 8.0 0.7 

0.4 19.5 1.0 18.2 0.7 11.5 0.7 

0.5 44.1 1.3 14.2 0.7 13.2 0.7 

RD 0.1 83.9 2.9 15.9 0.7 14.3 0.6 

0.2 14.7 0.5 15.8 0.7 7.9 0.5 

0.3 19.0 0.8 13.8 0.6 7.5 0.6 

0.4 27.2 1.1 14.1 0.6 8.0 0.7 

0.5 29.3 0.8 16.0 0.6 11.0 0.6 

Table 4 

Hyperparameter optimisation results of XGBoost algorithm with grid-search cross-validation. 

Parameter Hyperparameters 

GR RHOB NPHI RD RS DTCO DTSM 

n_estimator 300 100 100 100 100 100 100 

max_depth 6 6 2 2 2 6 6 

eta 0.01 0.1 0.1 0.1 0.1 0.1 0.1 

Table 5 

Hyperparameter optimisation results of KNN algorithm with grid-search 

cross-validation. 

Log Feature Hyperparameters 

Metric n_neighbours Weights 

GR Manhattan 7 distance 

RHOB Manhattan 11 distance 

NPHI Manhattan 11 distance 

RD Manhattan 9 distance 

RS Manhattan 7 distance 

DTCO Manhattan 7 distance 

DTSM Manhattan 9 distance 

9
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Table 6 

Comparative evaluation of XGBoost prediction result metrics. 

Feature Log 

Prediction 

1st Approach 2nd Approach 3rd Approach 

MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE 

GR 24.19 45.44 24.04 41.39 12.67 17.17 

RHOB 1.90 0.60 1.59 0.05 1.44 0.05 

NPHI 17.08 5.70 22.88 7.10 9.35 3.31 

RD 18.19 0.93 20.96 1.11 27.2 1.05 

RS 31.98 1.59 24.98 1.03 19.49 1.00 

DTCO 5.95 6.58 5.82 6.38 2.61 3.32 

DTSM 9.79 19.2 9.03 17.87 4.29 9.91 

Fig. 5. Comparison of predicted and actual results of log features using XGBoost algorithm. The blue line represents the actual value, while the 

prediction result using the first approach is in red, the second approach is in orange, and the third approach is in green. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

also shows a significant reduction, with the MAPE dropping from 9.79 % to 4.29 %, i.e. a decrease of 56.2 %, and the RMSE dropping

from 19.20 to 9.91, or about 48.4 %. This significant reduction in error shows that the methodology in the third approach is able to

effectively improve the prediction performance on these features very well. The increase in error on the RD features indicates that the

model may be overfitting or that the data have unique properties that need to be further addressed in developing a more optimised

model. The RD features had an increased error of 49.5 % in terms of the MAPE and 12.9 % in terms of the RMSE, indicating that this

approach is unable to handle the prediction of RD features. 

Missing value prediction results using KNN algorithm 

The approach to predicting missing values in well-log features with KNN follows the same steps as the previous approach with

the XGBoost algorithm. The first approach involves applying KNN after preprocessing with isolation forest to handle outliers. The

second approach, after applying isolation forest, proceeds by adding hyperparameter tuning using grid-search cross-validation to 

find the optimal combination of parameters, while the third approach, after applying isolation forest and grid search, proceeds by

incorporating bias correction techniques to reduce the prediction error. The results of these three approaches were evaluated using

the MAPE and RMSE metrics, as shown in Table 7 . 

Based on the experimental results in Table 7 and Fig. 6 , applying KNN for missing value prediction with the three approaches

improves the log features. In general, using the KNN algorithm in the third approach successfully reduced the prediction error in

terms of the MAPE and RMSE for most of the log features, although some features, such as the RHOB and RD features, showed a

slight increase in the RMSE. Features such as the GR, NPHI, and DTCO features significantly improved after applying the isolation

forest technique, hyperparameter tuning, and bias correction (third approach). The GR feature decreased the MAPE by 42.80 % and

the RMSE by 53.89 %. For the NPHI feature, a decrease in the MAPE of 38.90 % and a decrease in the RMSE of 36.79 % were

achieved. For the log DTCO feature, there was a significant decrease in the MAPE of 47.17 % and a decrease in the RMSE of 43.67 %.
10
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Table 7 

Comparative evaluation of KNN prediction result metrics. 

Feature Log 

Prediction 

1st Approach 2nd Approach 3rd Approach 

MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE 

GR 25.21 45.91 24.92 44.91 14.42 21.17 

RHOB 2.36 0.05 1.86 0.06 1.64 0.06 

NPHI 16.12 5.3 15.98 5.27 9.85 3.35 

RD 17.19 0.58 18.05 0.63 14.10 0.59 

RS 25.82 0.79 27.69 0.81 18.17 0.72 

DTCO 5.47 6.00 4.90 5.51 2.89 3.38 

DTSM 7.56 16.22 6.75 15.17 5.32 11.95 

Fig. 6. Comparison of predicted and actual results of log features using KNN algorithm. The blue line represents the actual value, while the prediction 

result using the first approach is in red, the second approach is in orange, and the third approach is in green. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Meanwhile, features such as the RHOB feature were good enough from the beginning. However, improvements were insignificant 

for features such as the RS and RD features. The RS feature showed a decrease in the MAPE of 29.63 % and a slight decrease in the

RMSE of 8.86 %. The MAPE value decreased by 17.98 % for the RD feature, but the RMSE value increased slightly by 1.72 %. This

may be due to the complexity of the feature characteristics. Although the RS and RD features have similar data trends, the significant

difference in the prediction error between the two features could be caused by several factors, one of which is the difference between

the outlier distributions. Suppose that the RD data contain more outliers that the isolation forest technique does not detect well. In

this case, it would be more difficult for the algorithm to predict the missing values correctly, resulting in a more significant error. In

addition, there is an overfitting factor in the training data. 

Missing value prediction results using ANN algorithm 

In this experiment, missing values were predicted by applying the ANN prediction algorithm to two approaches. The first approach

adds the isolation forest technique, and the second approach adds the isolation forest technique and bias correction at the end of

the prediction process. The ANN model was designed with multiple fully connected layers and one flattened layer, using the ReLU

activation function in each dense layer except the output layer. The parameters used in each layer in this research can be seen in

Table 8 , which includes the weight and bias parameters used in the training process to build the log feature missing value prediction

model. The table shows the order of the layers in the ANN model, the type of layer, the number of neurons, the activation function,

the input shape, the output shape, and the weight and bias parameters for each layer. The total number of parameters in the model

is 132,481, which indicates the complexity and capacity of the model to capture patterns/trends in the data. 

In general, after applying isolation forest and bias correction, the accuracy of the prediction model increased significantly (ap-

proach 2) compared to approach 1. This is indicated by errors on various logs showing a significant decrease, especially for the
11



S.A. Garini, A.M. Shiddiqi, W. Utama et al. MethodsX 14 (2025) 103127

Table 8 

Architectural summary of ANN model layers and parameters. 

Layer Type of layer Number of 

Neurons 

Activation 

Function 

Input Shape Output Shape Number of 

Parameters 

1 Dense 128 ReLU (6,1) (128,) 896 

2 Dense 128 ReLU (128,) (128,) 16,512 

3 Flatten – – (128,) (128,) 0 

4 Dense 128 ReLU (128,) (128,) 98,432 

5 Dense 128 ReLU (128,) (128,) 16,512 

6 Dense 1 – (128,) (1,) 129 

Total Number of Parameters 132,481 

Table 9 

Comparative evaluation of ANN prediction result metrics. 

Feature Log 

Prediction 

1st Approach 2nd Approach 

MAPE (%) RMSE MAPE (%) RMSE 

GR 22.2 44.81 10.63 16.9 

RHOB 2.11 0.07 1.47 0.05 

NPHI 26.46 7.91 10.33 3.46 

RD 7.91 0.68 7.96 0.67 

RS 12.46 0.69 11.46 0.66 

DTCO 7.43 8.08 2.77 3.4 

DTSM 10.32 19.46 4.74 10.94 

Table 10 

Comparative evaluation of the prediction result metrics of each machine learning model. 

Feature Log 

Prediction 

XGBoost KNN ANN 

MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE 

GR 12.67 17.17 14.42 21.17 10.63 16.19 

RHOB 1.44 0.05 1.64 0.06 1.47 0.05 

NPHI 9.35 3.31 9.85 3.35 10.33 3.46 

RD 27.20 1.05 14.10 0.59 7.96 0.67 

RS 19.49 1.00 18.17 0.72 11.46 0.66 

DTCO 2.61 3.32 2.89 3.38 2.77 3.40 

DTSM 4.29 9.91 5.32 11.95 4.74 10.94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DTCO and NPHI features, which showed the largest error reduction. The DTCO feature is the log feature with the most significant

increase in accuracy, as shown by a decrease in the MAPE of 62.72 % and a decrease in the RMSE of 57.92 %. The NPHI feature also

experienced a significant decrease, with the MAPE dropping by 60.96 % and the RMSE dropping by 56.26 %. The curve visualisation

of the experimental results can be seen in Table 9 and Fig. 7 . 

In this research, the prediction of missing values in log features is carried out in conditions where the missing values are set as

MNAR, with a percentage of 30 % of the total data (extreme case). In general, the addition of isolation forest, grid-search cross-

validation, and bias correction techniques significantly improved the accuracy of the log feature prediction model in the XGBoost

and KNN machine learning algorithms. Good results were also obtained for the ANN algorithm, which applied the isolation forest

technique and bias correction. Table 10 compares the results of log feature prediction using three algorithms: XGBoost, KNN, and the

ANN (all prediction results using bias correction). The three algorithms have different concepts: XGBoost is tree-based learning [ 25 ],

KNN is example-based learning [ 32 ], and the ANN is connectionist learning or network-based learning [ 16 ]. The evaluation is based

on two metrics: the MAPE and RMSE. 

Based on the evaluation metric values (MAPE and RMSE) in Table 10 and Fig. 8 , the methodology applied to the XGBoost algorithm

overall works best for the case of log feature prediction compared to other algorithms. This is indicated by the fact that the lowest

MAPE and RMSE values were achieved by XGBoost, which means that the log feature prediction results are more accurate on four

features, namely the RHOB, NPHI, DTCO, and DTSM features, out of a total of seven features. On the RHOB log feature, XGBoost

successfully achieved a MAPE value of 1.44 % and an RMSE of 0.05, much lower than KNN and the ANN. On the NPHI log feature,

XGBoost also excels, with a MAPE value of 9.35 % and an RMSE of 3.31. XGBoost also gave the best results on the log DTCO and

DTSM features. The DTCO feature has a MAPE value of 2.61 % and an RMSE of 3.32, while the log DTSM feature achieves a MAPE

of 4.29 % and an RMSE of 9.91 %. XGBoost is a tree-based algorithm that utilises an ensemble learning approach to improve the

prediction accuracy, where each model in the ensemble learns from the previous model’s error by combining many weak decision

tree models into a strong model through a boosting approach. Because it works iteratively and is able to optimise the loss function
12
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Fig. 7. Comparison of predicted and actual results of log features using ANN algorithm. The blue line represents the actual value, while the prediction 

result using the first approach is in red, and the second approach is in green. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

effectively, XGBoost is very good at handling complex data that have non-linear patterns [ 45–47 ]. This makes XGBoost’s prediction

results superior to those of single models such as KNN or the ANN. 

The RHOB feature is the most stable, with relatively strong predictive performance across all three algorithms, achieving a MAPE

value below 2% and an RMSE close to zero. The RHOB log feature represents the density of rocks and fluids within pore spaces,

where the physical parameters tend to remain stable with smaller fluctuations compared to other log features [ 48 ]. Density data is

less affected by extreme environmental changes compared to resistivity, making it easier for machine learning algorithms to predict 

[ 49 ]. In contrast, features like RD, which exhibit higher variability and are more influenced by fluid conditions and rock heterogeneity,

have proven to be more challenging for the three algorithms to predict [ 50,51 ]. This underscores the robustness of RHOB as a reliable

feature for predictive modeling in machine learning applications. 

The RHOB feature is the most stable, with relatively strong predictive performance across all three algorithms, achieving a MAPE

value below 2% and an RMSE close to zero. The RHOB log feature represents the density of rocks and fluids within pore spaces,

where the physical parameters tend to remain stable with smaller fluctuations compared to other log features . Density data is less

affected by extreme environmental changes compared to resistivity, making it easier for machine learning algorithms to predict [ 49 ].

In contrast, features like RD, which exhibit higher variability and are more influenced by fluid conditions and rock heterogeneity,

have proven to be more challenging for the three algorithms to predict [ 50,51 ]. This underscores the robustness of RHOB as a reliable

feature for predictive modeling in machine learning applications. 

Limitations 

While the ANN algorithm is quite robust in handling non-linear patterns and complex data, it is highly dependent on the amount of

data available to achieve an optimal performance. It is more prone to overfitting than XGBoost. Overall, the ANN performs relatively

well on features that have more regular and easy-to-learn patterns, as well as features that have non-linear complexity, provided that

the processed data have undergone a good preprocessing stage, such as forest isolation and bias correction, which is demonstrated

by the GR, RS, and RD features. For the log GR feature, the ANN produces a MAPE of 10.63 % and an RMSE of 16.19. On the RS

feature, the ANN produced a MAPE of 11.46 % and an RMSE of 0.66. Although XGBoost is superior in terms of the MAPE, the ANN

provides a lower RMSE value than the other two algorithms, indicating that the ANN is more effective in minimising the prediction

error for RS features. Therefore, the ANN performs relatively well in predicting log features with high heterogeneity, such as the GR,

RS, and RD features. 

Meanwhile, KNN did not show any significant advantage over the other two algorithms, making it less efficient and more sus-

ceptible to missing data in the case of MNAR. KNN is considered one of the simplest non-parametric classification algorithms; it

becomes less effective on this dataset with an extreme number of missing values (30 %). In addition, the performance of KNN is

highly dependent on the selection of the k value (number of ’neighbours’) and the distance metric used to measure the similarity
13
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Fig. 9. Comparing the prediction performances of several machine learning models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

between data. Thus, when data are missing non-randomly, the relationship between data points becomes more difficult to map. This

causes the performance of KNN to degrade drastically, especially on well-log features that have high fluctuations, such as the GR or

RD features. 

From the log feature prediction results shown in Table 10 , Fig. 8 , and 9 , the RHOB log features show relatively good, consistent

prediction results with very low error rates (MAPE below 2 % and RMSE close to zero) for all three algorithms (XGBoost, KNN, and

ANN). This indicates that the RHOB data have a simpler pattern or are more easily recognised by the three models. The RHOB log

feature describes the density of the rock. Geophysically, the RHOB feature is a relatively stable physical parameter and has lower

fluctuations compared to other features. Density data are not affected by extreme environmental variations as much as resistivity,

which makes the prediction of density data easier for all algorithms. Besides the RHOB feature, other log features that are more stable

and easier to predict for all three algorithms are the DTCO and DTSM features, as their physical characteristics tend to be consistent

and less affected by changing environmental conditions. 

The prediction results for the RD (deep resistivity) feature are relatively consistent across the three algorithms; these predictions 

could be more optimal. The RD feature describes deeper formation resistivity, which is influenced by the fluid type and formation

composition at greater depths. Deep resistivity has greater variation than shallow resistivity (RS). It is more difficult to predict due to

more complex changes in fluid conditions in the subsurface formation and rock heterogeneity, as well as MNAR data conditions that

further deteriorate the accuracy of the prediction model. Algorithms such as XGBoost, KNN, and ANNs need help to capture these

highly non-linear and inconsistent patterns, especially in situations where significant amounts of data are missing. 

Overall, MNAR data have a major impact on the model prediction results because the missing values depend on the variable

itself or other variables, thus creating a more complicated pattern of missing data. As a result, estimating missing values becomes

more difficult compared to the missing completely at random (MCAR) or missing at random (MAR) cases. For example, in resistivity

log features such as the RS or RD features, missing data related to specific geological formation characteristics require the model to

understand the context for accurate predictions. With preprocessing techniques such as isolation forest, grid-search cross-validation, 

and bias correction, models such as KNN or the ANN tend to perform better, especially when faced with extreme conditions such as

30 % missing data, as was the case in this study. While techniques such as isolation forest can help deal with outliers, the MNAR case

still requires additional steps, such as hyperparameter tuning and bias correction, to improve the prediction accuracy. More stable

features, such as the RHOB feature, show better prediction results when proper preprocessing is used. Overall, the application of

preprocessing and bias correction techniques is crucial to overcome the impact of MNAR data, especially in more complex models

such as the ANN and XGBoost, which show better performance when these measures are applied. 

Conclusion 

Overall, the RHOB feature is the most stable feature, with a relatively good prediction performance by all three algorithms, which

achieved MAPE values below 2 % and an RMSE close to zero. The RHOB log feature describes the rock density, which is a physical

parameter that tends to be stable, with less fluctuation than other features. Density data are less affected by extreme environmental

changes compared to resistivity, making these data easier for machine learning algorithms to predict. In contrast, features such as the

RD feature that have higher variations, which are more influenced by fluid conditions and rock heterogeneity, proved more difficult
15
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to predict for the three algorithms. This is shown by the higher MAPE and RMSE values, even after the application of preprocessing

and bias correction techniques, in MNAR conditions with 30 % missing data (extreme). 

Based on the experimental results, several practical benefits are evident, particularly for the oil and gas exploration industry. Com-

panies can prioritize more reliable well-log parameters, such as the RHOB feature, to simplify the analysis process. The RHOB feature

demonstrates high stability, with a MAPE below 2% and an RMSE close to zero, making it an ideal choice for field measurements. Its

resistance to extreme conditions and ease of prediction compared to other features, such as RD, enhance its reliability. Additionally,

preprocessing techniques such as isolation forest, grid-search cross-validation, and post-training methods like bias correction enable 

the model to handle up to 30% missing data without requiring additional field measurements. These steps improve efficiency and

are expected to significantly reduce operational costs. 

The ANN and XGBoost algorithms, as more complex models, showed significant performance improvement after these measures 

were applied. XGBoost, in particular, was able to deliver accurate predictions even under imperfect data conditions. By implementing

these methods, the oil and gas exploration industry can make more efficient and cost-effective decisions, increasing confidence in

data analysis results and operational workflows. 
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