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Abstract: Acute myeloid leukaemia (AML) is a rare but severe form of human cancer that results
from a limited number of functionally cooperating genetic abnormalities leading to uncontrolled
proliferation and impaired differentiation of hematopoietic stem and progenitor cells. Before the
identification of genetic driver lesions, chemically, irradiation or viral infection-induced mouse
leukaemia models provided platforms to test novel chemotherapeutics. Later, transgenic mouse
models were established to test the in vivo transforming potential of newly cloned fusion genes and
genetic aberrations detected in patients’ genomes. Hereby researchers constitutively or conditionally
expressed the respective gene in the germline of the mouse or reconstituted the hematopoietic
system of lethally irradiated mice with bone marrow virally expressing the mutation of interest.
More recently, immune deficient mice have been explored to study patient-derived human AML
cells in vivo. Unfortunately, although complementary to each other, none of the currently available
strategies faithfully model the initiation and progression of the human disease. Nevertheless, fast
advances in the fields of next generation sequencing, molecular technology and bioengineering
are continuously contributing to the generation of better mouse models. Here we review the most
important AML mouse models of each category, briefly describe their advantages and limitations
and show how they have contributed to our understanding of the biology and to the development of
novel therapies.

Keywords: acute myeloid leukaemia; AML; mouse models; transgenic mice; bone marrow
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1. Introduction

Acute myeloid leukaemia (AML) is a disease of an uncontrolled clonal proliferation of abnormal
myeloid stem and progenitor cells in the hematopoietic tissue. The transformed myeloid cells
or ‘leukemic blasts’ exhibit aberrant differentiation and accumulate in the bone marrow (BM).
This process diminishes normal haematopoiesis, often leading to thrombocytopenia and anaemia,
hematopoietic failure and mortality [1]. The genomic landscape of AML has been extensively studied
since the 1970s, starting by the examination of chromosomal karyotypes of patients’ leukemic
cells [1,2]. Several prevalent balanced chromosomal rearrangements, including t(8;21)(q21;q22),
inv(16)(p13q22) and t(15;17)(q22;q12) were identified in tumour cells from AML patients and
molecularly characterized [3,4]. All three of these rearrangements share the remarkable feature
of generating chimeric fusion proteins, in which at least one of the fusion partners is a gene encoding
for a transcriptional regulator that is required for normal haematopoiesis. The advent of higher
resolution next generation sequencing (NGS) has led to the identification of additional recurring and
singleton alterations including cytogenetically-silent translocations, point mutations in metabolic
regulators and small copy number changes [5]. NGS studies also revealed that despite the detection of
recurrent genomic aberration, the majority of the genomes of de novo diagnosed AML contain fewer
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number of mutations compared to most solid tumours [6]. A comprehensive NGS landmark study
by Papaemmanuil and colleagues has identified 5234 driver mutations in 76 genes from a cohort of
1540 AML patients [1]. Recurrent AML-associated mutations can be grouped into different categories
according to their functional consequences: those which are involved in epigenetic regulation such as
DNA methylation (e.g., DNMT3A, TET1, TET2, IDH1, IDH2) and chromatin modification (e.g., EZH2,
ASXL1, KMT2A/MLL), cellular signalling pathways of proliferation and survival (e.g., FLT3, N-RAS,
K-RAS), key transcriptional regulators of haematopoiesis (e.g., CEBPA, RUNX1, GATA2), tumour
suppressor genes (e.g., TP53, WT1, PHF6), RNA splicing (e.g., SRSF2, U2AF1, SF3B1) and formation
of cohesions complex and chromatin architecture (e.g., SMC1A, SMC3, STAG2) [1,7]. In fact, recent
functional studies revealed that in significant number of patients without a detectable cytogenetic
aberration, AML emerges from functional cooperation of multiple alterations (e.g., DNMT3A, TET2,
IDH, spliceosome mutations) that are often identified as molecular markers of potential pre-leukemic
states such as clonal haematopoiesis of indeterminate potential (CHIP) and myelodysplastic syndromes
(MDS) [7].

Although improved modern technologies have simplified the detection of genetic alterations
in AML cells, the challenge remain in validating their function during initiation and development
of the disease. These alterations are categorized as either potential driver mutations necessary for
disease induction and/or maintenance or neutral passenger mutations that may not be part of disease
aetiology. Despite improvement in ex vivo cell culture systems, significantly expanding primary
AML blasts while preserving their naïve characters over a long period remains a challenging task [8].
In addition, significant patient-to-patient cell heterogeneity complicates studying common mechanisms
that control AML biology. Thus, comprehensive functional characterization of many pathogenic
phenomena could only be addressed using in vivo animal models, in particular, in genetically modified
mouse strains. Unfortunately, despite collective efforts from many laboratories around the world,
none of the existing models ideally recapitulate all aspects of the human disease. Nevertheless, the
fast development of molecular and genetic engineering approaches has led to considerable progress.
Faithfully modelling the complex heterogeneity of human AML in vivo will ultimately result in a better
understanding of the molecular pathogenesis of the disease, identify genetic markers with predictive
and prognostic value and develop novel personalized and efficient treatments strategies. Currently,
mouse leukaemia models range from carcinogen-induced tumours, to transgenic animals expressing
AML-associated proto-oncogenes and xenograft models based on transplantation of primary patient
cells into immune-compromised mice (Figure 1).
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Figure 1. Schematics of different strategies for remodelling AML in mice. (A) Spontaneous
AML development upon exposure to carcinogens like chemicals (e.g., 3-methylcholantrene; 3M-C),
biologicals (e.g., murine leukaemia virus, MuLV) or radiation (X-rays). (B) Conventional transgenic
approach: Transgenic (Tg) mouse lines are generated by DNA insertion into the genome, either
randomly by pronuclear microinjections (MI) into fertilized Oocytes, or targeted by electroporation
(EP) and homologous recombination in embryonic stem cells (ESC). (C) Adaptive transfer method
of in vitro modified murine HSPC cells using either retroviral transduction (RV) or genome editing
(GE) techniques followed by tail intravenous (IV) transplantation in irradiated (IR) recipients. (D)
Xenotransplantation of either leukemic blasts or in vitro modified HSPC into immuno-compromised
mice intravenously (IV) injected into irradiated (IR) recipients.
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2. AML Mouse Models Induced by Chemicals, Viral Infection or Irradiation

A large number of studies that date from the last century have shown that AML can be
spontaneously triggered in mice by chemical compounds, irradiation or particular viral infections
(Figure 1A). Notably, modelling chemically and irradiation-induced AML also accounts for the effects
of the environment, which is mostly disregarded in genetically engineered transgenic or xenograft
leukaemia models.

2.1. Chemically Induced Leukaemia Models

One of the first reported and widely used leukaemia model is the L1210 cell line (L stands for
Lloyd Law) isolated from DBA/2 mice exposed to the carcinogen 3-methylcholantrene [9,10]. The cells
can be propagated in vitro and give rise to secondary leukaemia when transplanted. This model
permitted the study of disease initiation, kinetics and effectiveness of newly developed leukaemia
therapies [11]. The majority of chemotherapeutic agents, such as the widely used cytarabine, were
selected for AML therapy during the late 1960s based on the in vivo efficacy against leukemic L1210
and other similar leukaemia models (P388, P1534 and L5178Y) [12]. However, the use of such cell
line-based models had significantly diminished in the last decades due to several limitations. First, the
pathology of the leukaemia induced by these cells does not fully phenocopy human AML, as mice often
develop a lymphoid disease. Secondly, only a small number of animals develop the disease after a
long latency on exposure to the inducing carcinogen [13]. Therefore, the study of AML development in
individuals as a consequence of chemical exposure (e.g., benzene) [14–16] or as results of chemotherapy
(e.g., alkylating agents and topoisomerase II inhibitors) [17,18] have relied mainly on epidemiological
and direct analysis of primary patient-derived material, rather than on the use of mouse models [19].

2.2. Radiation-Induced Leukaemia Models

Leukaemia was one of the first malignancies reported as a radiation-induced cancer. Leukaemia
incidents were significantly higher among X-ray workers and scientists working in close proximity to
particle accelerators, especially before the introduction of safety measures [20]. Survivors of the atomic
bomb explosion in Hiroshima and Nagasaki were exposed to high doses of irradiation of high energy
radiation which resulted in rather rapid increased risk for developing haematological malignancies
in particular chronic myeloid leukemia (CML), acute lymphoblastic leukemia (ALL) and AML [21].
The Chernobyl accident on the other hand, resulted in exposure to isotopes of lower energy which
significantly increased the risk to develop thyroid cancers but was associated with a much lower risk
of developing hematologic malignancies [22]. Multiple murine strains develop leukaemia on exposure
to high and low-grade radiation, including the RFM, CBA, C3H and SJL/J [23]. Single high dose or
prolonged low-grade full body irradiation such as gamma radiation, X-rays and neutrons has reported
to induce leukaemia or mixed leukaemia/lymphoma development in mice.

Radiation-induced AML (RI-AML) in the RFM mouse line correlates with human data with
comparable time of exposure to leukaemia development latency [24,25]. The clinical presentation of
RI-leukaemia in the SJL/J mouse closely resembles that of secondary human AML, occurring after
radiation therapy of patients with Hodgkin’s disease [26]. One of the most interesting findings was
that the incidence of RI-AML in SJL/J mice increased upon co-administration of corticosteroids and
colony-stimulating factor-1 (CSF-1). This correlated with human findings where higher expression of
CSF-1 could be associated with poor outcome in AML [27,28]. Strikingly, the most common cytogenetic
feature detected in RI-AML models was recurrent deletions of chromosome 2. The identification
that the minimal deleted region contained the Sfpi1 gene encoding for the PU.1 transcriptional
master regulator of myeloid differentiation shed some light on the underlying mechanism of disease
initiation [25]. Later studies have shown that loss of one Sfpi1 (PU.1) allele is not sufficient to
induce a myeloid malignancy, despite the cells having a growth advantage [29]. A “second-hit”
in these cells, in the form of a point mutation in the second Sfpi1 (PU.1) allele in its DNA binding
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domain (R235), is believed to transform these cells leading to clonal expansion and cancer [30,31].
Sequencing of AML samples from survivors of the Chernobyl accident showed similar mutational
pattern with large chromosomal deletions and loss-of-heterozygosity (LOH) in multiple locations
in the genome [32]. Experimental irradiation was also shown to accelerate the development of
leukaemia in engineered mouse models, for example, such as the acute lymphoblastic leukaemia
(ALL) associated with t(12;21)(p13;q22) leading to a TEL-AML1 (aka ETV6-RUNX1) fusion, coupled
with a loss of the CDKN2A cell cycle regulator gene [33]. This finding supported a model in which
environmental low-grade radiation exposure may induce cooperating mutations to existing initiation
lesions resulting in the expansion of pre-leukemic clones. Understanding the underlying molecular
pathogenic mechanisms leading to RI-AML would help for radiation mitigation and to develop better
radio-protective agents to reduce the incidence of secondary malignancies.

2.3. Virally Induced Leukaemia Models

Murine leukaemia viruses (MuLV) have been widely used to model the disease in susceptible
mouse strains [34]. Pioneering work in the 1950s demonstrated that leukaemia could be induced
and serially transmitted by injecting cell-free filterable MuLV supernatants into new-born mice [35].
Historically, murine leukaemia viruses were named after the scientist who originally characterized
them, such as Gross-MuLV, Friend-MuLV, Moloney-MuLV, Graffi-MuLV and Rauscher-MuLV. Each of
these virus strains results in recognizable and predictable patterns of disease in particularly susceptible
mice strains, such as NIH/Swiss, DBA/2, AKXD, BXH-2 and C57BL-6 [36]. The original Friend
virus preparation contains two retroviruses, a defective spleen focus forming virus (SFFV) and a
replication competent murine leukaemia virus (F-MuLV) [37,38]. Two different SFFV strains have been
identified: (SFFVP) which reproducibly lead to polycythaemia and (SFFVA) which results in anaemia.
The target cell in which both SFFV express their pathogenic effect is an erythropoietin (EPO)-responsive
progenitor cell identified as a late erythroid burst forming unit (BFU-E) or colony-forming unit (CFU-E).
The envelope protein encoded by SFFV interacts with and activates the EPO receptor and sf-Stk
(a truncated form of the Stk/RON receptor tyrosine kinase) causing EPO-independent proliferation,
differentiation and survival. In the second stage, F-MuLV integration into the Sfpi1 locus activates the
myeloid transcription factor PU.1, blocking erythroid cell differentiation. Cells from diseased mice
can be serially transplanted in vivo and propagated as permanent cell lines in vitro known as murine
erythroleukemia (MEL) cells [39]. Subsequent studies suggested that aberrant PU.1 expression leading
to functional inhibition of the GATA1 major erythroid transcriptional regulator is the causal event for
blocked terminal differentiation [40,41].

Virally induced AML was also studied in the AKXD (recombinant inbred strain derived
from AKR/J expressing two endogenous MuLV, Akv-1 and Akv-2, and DBA/2J.) inbred mouse
strain to identify putative leukaemia-inducing oncogenes through insertional mutagenesis [42].
Notably, the ecotropic virus integration site-1 (EVI1) gene on 3q26 in the human genome, today a
well characterized molecular marker in aggressive AML, was identified by analysis of retroviral
integration site in MuLV-infected diseased AKXD mice [42]. Although a conclusive link between
viral infection and AML induction in humans was never established, the use of these models has
been instrumental for the identification and function of many AML-associated proto-oncogenes and
the development of anti-leukemic therapeutic strategies. Improved molecular tools such as NGS for
genome-wide viral integration site definition and the subsequent development of more sophisticated
viral strains [43] resulted in several high-throughput insertional mutagenesis screens using both virus-
or transposon-based (e.g., Sleeping Beauty) systems [44–46]. This approach of forward genetics was
critical in identifying many cooperating proto-oncogenes that accelerate leukaemia development and
eventually confer drug resistance [47].
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3. Genetically Engineered Mouse Models

The molecular revolution in biological methods in the 70–80s of the last century allowed
researchers to transfer foreign genetic elements into the germline of mice to create homogenous
transgenic lines. To study the activity of putative proto-oncogenes, researchers integrated expression
cassettes and mini-genes with promoter/enhancer elements, open reading frames (ORF) and transcript
stabilization elements. A linearized copy of the engineered DNA is introduced by either direct injection
into mouse oocytes or by electroporation into mouse embryonic stem (ES) cells (Figure 1B). Driven by
the success of modelling B-cell leukaemia/lymphoma in transgenic mice expressing the c-myc oncogene
under the control of immunoglobulin heavy chain (IgH) gene promoter [48,49], several conventional
transgenic AML mouse lines were generated (Table 1). Further refinement of the technology rapidly
increased the number of AML models driven by proto-oncogenes controlled either by their endogenous
promoter or by inducible expression from a heterologous promoter.

3.1. Conventional Transgenic AML Models

The “classical” approach to establish a transgenic AML mouse model is based on direct injection
of DNA fragments containing an ORF of the desired genetic and regulatory sequences into the
pro-nucleus of fertilized oocytes. The zygotes are then transplanted into pseudo-pregnant foster
mother mice. This results in a random integration of the transgene and founder animals are typically
identified by either restriction enzyme digests and Southern blotting or genomic PCR assays [50].
Several groups explored this strategy to establish transgenic models for the PML-RARA fusion gene
resulting from the t(15;17)(q24;q21) chromosomal translocation present in the vast majority of patients
with acute promyelocytic leukaemia (APL). Hereby different regulatory elements directing transgene
expression towards the myeloid lineage derived from human/mouse cathepsin G (CG) [51], CD11b [52]
or MRP8 [53] (S100A9) genes were used. The rather wide spectrum of the resulting phenotypes
illustrates the complexity and limitations of this classical transgenic approach. Whereas expression of
hCG or MRP8 controlled PML-RARA expression was able to induce AML or APL-like phenotypes with
incomplete penetrance after long latency [51,53], CD11b/PML-RARA transgenic mice did not develop
any leukaemia [52]. Nevertheless, classical transgenic mice were instrumental to show that PML-RARA
indeed is the genetic driver of APL and to study the underlying molecular mechanisms leading to
the first (and so far only) really efficient targeted AML therapy based PML-RARA degradation by
all-trans-retinoic acid (ATRA) and/or arsenic trioxide [54]. Notably, another classical transgenic model
for APL associated with a PLZF-RARA fusion gene derived from t(11;17)(q23;q21) revealed that ATRA
was unable to induce remission in mice, faithfully recapitulating the clinical response in the respective
patients [55]. We list some of the most important classical transgenic AML models in Table 1 and
refer to respective review articles [56–58]. Unfortunately, the classical transgenic mouse approach is
inefficient, technically challenging, time- and cost-consuming and as illustrated by the APL mouse
model and others, unable to recapitulate the desired phenotypes [59]. Therefore, it is most likely that a
large number of classical transgenic mouse lines expressing leukaemia-associated proto-oncogenes
that were not able to phenocopy human disease remained unpublished.
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Table 1. Transgenic mouse lines modelling AML.

Year Transgene Strategy Promoter Inducer Cellular Target Phenotype Ref.

1996 PML-RARA Conventional CD11b Myeloid lineage (BM,
periphery) Abnormal myelopoiesis. No APL [52]

1997 PML-RARA Conventional hCG Myeloid lineage (BM,
periphery)

Myeloid cells expansion in BM and spleen. AML-like
with 30% penetrance after long (> 100 days) latency [51]

1997 PML-RARA Conventional hMRP8 Myeloid lineage (BM,
periphery) APL-like disease (median 174 days) [53]

2000 RUNX1-ETO Conditional Tet tTA BM Abnormal haematopoiesis. No AML [60]

2001 RUNX1-ETO Conventional hMRP8 Myeloid (neutrophils
& monocytes) AML-Only upon new-born treatment with ENU [61]

2006 Cbfb-MYH11 Conditional Cbfβ Mx-iCre BM (LSK) AML-Aberrant myeloid progenitors, blocked
megakaryotic differentiation. [62]

2008 Mll-AF9 Knock-in (Mll1;
Mllex8-AF9 cDNA) Mll AML-Higher MLL-AF9 expression in HSCs than GMPs. [63]

2014 MLL-ENL Conditional TRE (Col1a) rtTA LT-HS, pMeg/E, HSC,
MPP, GMLP, CLP AML- no leukaemia from HSC [64]

2016 MLL-AF9 Conditional TRE (Hprt) rtTA LT-HSC, ST-HSC,
CMP, GMP AML-dependent on DOX dose and cellular origin [65]

2018 MLL-ENL Conditional TRE (Hprt) rtTA LT-HSC, LMPP, CMP AML-MLL-dependent on DOX dose and cellular target [66]

Conventional (DNA injection into Oocytes), Knock-in (homologous DNA recombination in ES cells), Conditional (regulated expression), LSK (lineage marker negative, Sca1+, cKit+),
MPP (multipotent progenitors), GMLP (granulocyte-macrophage-lymphoid progenitors), CLP (common lymphoid progenitor), ST-HSC (short term hematopoietic stem cells), DOX
(doxycycline).
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3.2. Transgenic AML Models by Homologous Recombination in ES Cells

The site of integration of the cloned DNA can be specifically directed toward the desired gene
locus thanks to the development of targeted homologous recombination (HR) in murine embryonic
stem (ES) cells [67]. This technology was explored early on to establish AML mouse models and a
positive proof of concept was provided by the first transgenic model for the MLL-AF9 fusion gene
associated with myelomonocytic leukaemia [68]. Physiologically, the mixed lineage leukaemia (MLL;
aka KMT2A) gene encodes for a regulator of self-renewal and differentiation of hematopoietic stem cells
(HSC) and is target of recurrent chromosomal translocations that lead to fusions of its amino-terminus
to the carboxy-terminus of one of > 60 different partner loci [68]. MLL fusion genes are the molecular
hallmark of more than 70% of infant acute leukaemia, 5–10% of adult de novo AML and an increasing
number of secondary and therapy-related AML [69]. The most prevalent translocations comprise
t(9;11)(p22;q23), t(11;19)(q23;p13) and t(4;11)(q21,q23) leading to the MLL-AF9, MLL-ENL and MLL-AF4
fusion genes, respectively [69]. To express the MLL-AF9 fusion from its native regulatory elements,
Rabbitts and co-workers successfully integrated a short MLL exon8-AF9 cDNA-poly-A fragment into
the mouse Mll1 locus by homologous recombination [70]. Interestingly, despite the widespread activity
of the Mll1 promoter, chimeric mice only developed AML. Notably, joining Mll1 exon8 with a bacterial
lacZ gene was sufficient to induce leukaemia in some chimeric mice after prolonged latency [71].
Subsequent studies with the Mll-AF9 knock-in mouse line demonstrated pre- and postnatal stepwise
progression of the disease [72], the role of the HOXA9 homeobox transcription factor as downstream
effector [73] and gene dosage effects as well as putative cellular targets of MLL-AF9 to initiate AML [63].

The success of modelling AML by constitutive integration of a driver fusion oncogene into its
natural locus encouraged researchers to model the function of other alterations. The fusion genes of
the core-binding factor (CBF), a heterodimeric essential HSC regulator composed of RUNX1 (AML1)
bound to CBFβ, is involved in balanced chromosomal rearrangements found in 20–30% of human
AML [74]. RUNX1, was initially identified as a target of the t(8;21)(q21;q22) chromosomal translocation
which results in expression of a fusion protein that contains the N terminus of RUNX1 fused to a nearly
full-length ETO (Eight-Twenty-One, aka RUNXT1 or MTG8) protein. Knocking-in the RUNX1-ETO
fusion gene into the murine Runx1 promoter lead to embryonic lethality and a lack of definitive
haematopoiesis in the foetal liver, very similar to those seen in Runx1−/− knockout mice [75]. CBF
is also target of inv(16)(p13q22) leading to expression of a CBFβ-MYH11 fusion gene. The resulting
fusion protein was shown to interact with RUNX1 and to outcompete binding of wild-type CBFβ in a
dominant-negative fashion. Not surprisingly, expression of a single copy of CBFβ-MYH11 from the
Cbfb promoter (Cbfb+/MYH11) resulted in a similar lethal phenotype as Runx−/− mice [76]. Thus, to be
able to study the role of these CBF fusions for leukemogenesis in vivo, it was essential to express them
in a spatially and temporally-controlled manner.

3.3. Conditional Transgenic AML Mouse Models

3.3.1. Modelling AML-Associated Fusions

Conditional gain-of-function models of AML-driving (fusion)-oncogenes are mostly generated
by inserting a strong translational and transcriptional termination (STOP) sequence flanked by LoxP
or Flp recombinase recognition target site (FRT) cleavage sites between the promoter sequence and
the ORF of interest. In presence of a C- (Cre) or FLP recombinase, the STOP cassette is removed,
allowing the expression of the transgene. The same approach can also be used to ablate essential parts
of a gene of interest by deleting regions flanked by LoxP sites. Utilizing this setting, transgenic mice
carrying the floxed genes are usually crossed with transgenic lines that express the Cre recombinase
in the hematopoietic tissue. Cre expression is typically driven under the control of spatially and/or
temporally controllable promoters such as the hematopoietic-restricted Vav1 (Vav1-iCre) promoter,
the interferon-inducible Mx1 promoter (Mx1-iCre) or as a fusion to a mutated oestrogen receptor (ER)
ligand binding domain (Cre-ER), which can be activated by tamoxifen (TAM) [77].
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An additional layer of complexity can be added by engineering transgenic cassettes controlled
by minimal promoters that are sensitive to chemical inducers like tetracycline (Tet) [78], or one of its
derivative such as doxycycline (DOX). The Tet system can be designed to inhibit (Tet-off) or induce
(Tet-on) the expression of a transgene, by either coupling it with a Tet-sensitive transcriptional repressor
(tTA) or a reverse-tTA (rtTA) transcriptional activator respectively [79]. A Tet-off expression system was
applied to bypass the embryonic lethality associated with constitutive RUNX1-ETO expression [60].
Another study established Cre-responsive conditional RUNX1-ETO knock-in mice [80]. However,
despite robust expression of the RUNX1-ETO fusion transgenes in the BM upon tetracycline withdrawal
in the first model and efficient excision of the floxed STOP codon in the second model, no leukaemia
developed. In subsequent studies, researchers showed that mice conditionally expressing RUNX1-ETO
developed leukaemia only upon treatment with genotoxic agents such as N-ethyl-N-nitrosourea
(ENU) [61]. ENU is a strong carcinogenic mutagen which transfers its ethyl group to oxygen or
nitrogen radicals into DNA, resulting in miss-pairing and base pair substitutions which translates to
the production of proteins with missense mutations and aberrant splicing events [81]. A RUNX1-ETO
leukaemia model that allows for conditional and reversible controlled mosaic expression of the fusion
in hematopoietic progenitors was established by transplanting whole BM carrying a ROSA26-iM2-tetO
DOX inducible promoter and the fusion cDNA (ROSA26-iM2-tetOGFP/TgPtet-AML1-ETO) into
lethally irradiated mice [82]. Hereby the researchers were able to recapitulate the slow disease
evolution and mosaic expression found in human RUNX1-ETO+ AML. Transcriptional analysis from
different hematopoietic populations during disease progression demonstrated that the fusion alters
the transcriptional expression of HSC and committed progenitors. However, despite showing signs
of a myeloproliferative leukaemia-like disease, all the mice survived. This finding is consistent with
the idea that RUNX1-ETO expression is necessary but not sufficient to induce a fully penetrant AML.
Indeed shRNA-targeted degradation of the fusion significantly reduced proliferation and survival of
RUNX1-ETO-expression AML cells [83]. Later studies found functional cooperation of RUNX1-ETO
with mutations in tyrosine kinases such as c-KIT, FLT3-ITD or the TEL-PDGFβR fusion in different
mouse models [84,85].

A similar conditional mouse model was developed for the CBFβ-MYH11 fusion gene, called
Cbfb+/56M [62]. Wild-type Cbfb cDNA (exon 5 and 6 and a polyadenylation signal) flanked by LoxP1 sites
was inserted into intron 4 of the previously generated transgenic Cbfb+/MYH11 knock-in allele. Hereby
the wild-type Cbfb transcript is temporarily expressed from the ‘’floxed” Cbfb56M allele. However,
in presence of Cre, the knock-in allele is restored and a Cbfβ-MYH11 fusion is expressed. Strikingly
following injection of polyinosinic:polycytidylic acid (poly(I:C)) activating Mx1-iCre, 90% of the mice
developed AML after a median latency of 5 months demonstrating that the fusion is indeed a driver of
AML [62].

We have established a series of Tet-regulated transgenic mice to model acute leukaemia driven
by the most prevalent MLL fusion genes [65,66]. We were particularly interested to study the role
of the cellular origin on AML onset and progression. Using this model, we were able to show
that conditional expression of the MLL-AF9 fusion in long-term HSC (LT-HSC) resulted in a more
aggressive phenotype than activation in the committed granulocyte-macrophage (GMP) or common
myeloid progenitors (CMP) [65]. Notably, in a subset of mice, activation of MLL-AF9 led to a
particularly invasive and drug-resistant phenotype characterized by expression of genes previously
associated with epithelial-mesenchymal transformation (EMT) observed in solid cancers. Cross-species
comparative gene expression profiling suggested that similar to MLL-AF9 driven AML in mice, some
AML patients (not only those carrying MLL-fusions) expressed similar EMT-related genes associated
with poor outcome [65]. In contrast to MLL-AF9, conditional expression of the MLL-ENL fusion
using the same conditional Tet-on system was not able to transform GMP but induced a rather mixed
myeloid-lymphoid leukaemia when activated in HSC, lymphoid-myeloid progenitor population
(LMPP) or CMP [66]. Comparison with another Tet-regulated MLL-ENL transgenic mouse model
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suggested that the leukemic phenotypes might be influenced by the expression level of the transgene
in cells of a particular stage of the hematopoietic hierarchy [64].

3.3.2. Modelling AML-Associated Mutations and Aberrantly Expressed Genes

Several transgenic mouse models have been generated to model AML carrying NPM1
mutations [86]. Conventional transgenes in which expression of mutated NPM1 was regulated by
the human MRP8 promoter [87] and a knock-in model mimicking the human mutation in the mouse
Npm1 [88] developed myeloproliferative disease only but no AML. Conditional ex vivo activation of a
human NPM1 mutant cDNA integrated in the Hprt locus followed by transplantation into irradiated
WT mice induced a late-onset AML-like disease in about 30% of the recipients [89]. Conditional
expression of a humanized NPM1c knock-in allele in the hematopoietic system (mediated by Mx1-iCre)
resulted in the development of late onset AML in about 30% of the mice, however this percentage
increased to 80% following the activation of cooperating proto-oncogenes through the use of the
Sleeping Beauty insertional mutagenesis system [46]. Collectively, these models indicated that an NPM1
mutant is not sufficient to induce clinical AML.

Transgenic mouse models have also been established to model the role of the Flt3 (Fms-related
tyrosine kinase 3) internal tandem repeats (FLT3-ITD) mutation found in > 20% of human AML [90].
Two independently established knock-in mouse lines carrying an ITD mutation in the juxta-membrane
domain of murine Flt3 slowly developed a myeloproliferative disease but no acute leukaemia [91,92].
However, it is important to note that Flt3ITD models were instrumental to demonstrate the impact of
the gene dosage, loss of the wild-type allele and FLT3 ligand on phenotype development [93,94].

Very similar to FLT3 mutations, activation of conditional transgenic knock-in alleles of
AML-associated K-RASG12D and N-RASG12D mutations resulted a highly penetrant myeloproliferative
phenotype but was not sufficient to induce AML [95]. Thus, to be able to study cooperation between
co-occurring mutations in AML, an increasing number of compound transgenic/knock-in mouse lines
are generated (Table 2). For example, crossing the NPM1c with Flt3ITD knock-in strains revealed
a powerful molecular synergy with the development of highly penetrant acute leukaemia [96].
Transgenic Flt3ITD expression was also shown to cooperate with MllPTD [97], the NUP98-HOXD13
fusion [98], the Wt1R394W [99] mutation or with Dnmt3a [100] haploinsufficiency to cause AML. Potent
in vivo oncogenic cooperation was also demonstrated by crossing the N-RasG12D knock-in strain with
transgenics expression of the MLL-AF9 fusion gene [101], the anti-apoptotic regulator BCL2 [102] or
the Cbfβ-SMMHC fusion [103]. Transgenic expression of K-RASG12D increased the penetrance of the
APL-like phenotype in cathepsin-G driven PML-RARA transgenic mice [104]. Collectively, mouse
models have shown that AML-associated NPM1c, FLT3-ITD and N-/K-RAS mutations are per se not
sufficient to induce the disease but act as potent cooperating lesions.
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Table 2. Compound transgenic mouse AML models.

Year Co-Op Mutations Activity Promoter Inducer Cellular Target Phenotype Ref.

2007 NRAS12D + BCL2 Const. hMPP8 Myeloid lineage (BM,
periphery) MDS/AML [102]Cond. Tet rtTA

2012 MLL-PTD + FLT3-ITD Const. Mll + Flt3 Mll and Flt3 expressing
cells AML with 100% penetrance [97]

2012 NUP98-HOXD13 + FLT3-ITD Conv. (FLT3-ITD) Flt3 Hematopoietic lineage
cells (FL, BM)

AML with 100% penetrance [98]Conv. (NUP98-HOXD12) Vav

2012 KRAS-G12D + PML-RARA Cond. (Kras-G12D) Mx-iCre Myeloid lineage (BM,
periphery)

APL-like Disease with 69% penetrance,
remaining mice developed MDS [104]Const. (PML-RARA) hCG

2013 NPM1c + FLT3-ITD Cond. (NPM1c) Mx1 Mx-iCre Hematopoietic lineage
cells (BM)

AML after short latency (median 49 days) [96]Const. (Flt3-ITD)

2014 NRAS-G12D + CBFβ-SMMHC Cond. Mx1 Mx-iCre Hematopoietic lineage
cells (BM)

AML after short latency (median 13.7
weeks) and full penetrance [103]

2017 NPM1c + NRAS-G12D
Cond. Mx1 Mx.iCre

Hematopoietic lineage
cells (BM)

AML with 95% penetrance, some mice
develop MPN [46]

NPM1c + FLT3-ITD AML with 100% penetrance

2018 WT1-R394W + FLT3-ITD Const. Wt1 and Flt3 Wt1 and Flt3 expressing
cells

MPN-like disease or T-ALL after short
latency-AML associated with LOH of Flt3 [99]

Const. (constitutive expression), Cond. (regulated expression), Conv. (conventional), FL (fetal liver), MPN (myeloproliferative neoplasms), T-ALL (T-cell acute lymphoblastic leukemia).
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A transgenic mouse line remodelling the aberrant expression of the EVI1 gene mediated by
3q21-3q26 chromosomal translocations or inversions leading a hallmark of particularly aggressive
AML was recently established [105,106]. All the breakpoints detected in patients cluster within an
approximately 25kb region, which in the mouse maps to -77 kb upstream of the Gata2 gene. To
test whether this region possess enhancer activity, researchers established a transgenic mouse line
with a fluorescent reporter cloned 186 kb downstream of 5’ sequences flanking the Gata2 gene [106].
Strong reporter signal was detected in HSPC and the sequence was thus designated as the Gata2
distal hematopoietic enhancer (G2DHE). The same researchers then established a bacterial artificial
chromosome (BAC) transgenic mouse that allowed the induction of EVI1 expression with or without
G2DHE region. All mice with an intact G2DHE developed leukaemia in accordance with transgene
copy number, where two copies gave rise to B-cell, three copies resulted in myeloid and four copies
led to mixed lineage leukaemia within 200 days. However, mice lacking the G2DHE region did
not show sign of disease during the 400 days of observation indicating that the GATA2 enhancer
plays a critical role [106]. This study confirmed and extended the observations that genomic excision
of a distal GATA2 enhancer led to EVI1 silencing, growth inhibition and differentiation of human
AML cells with inv(3)(q21q26) or t(3;3)(q21;q26) [107]. More recently, a transgenic mouse line was
established in which EVI1 expression is under the control of a Tet inducible (tet-on, “TO”) promoter
(Evi1TO/+/Rosa26rtTA) [108]. To recapitulate the clinical presentation of EVI1 overexpressing leukaemia,
researchers performed competitive 1:1 transplantation with Evi1TO/TO/Rosa26rtTA with WT BM cells.
Using this approach all mice developed symptomatic AML within 90–119 days, clearly demonstrating
its oncogenic activity [108].

Transgenic mouse models of leukaemia have been vital for our understanding of the role of genetic
aberration in the induction and maintenance of the leukemic condition. However, one of the main
shortcomings of these models is their inability to reliably reproduce the leukemic phenotype observed
in patients carrying the genetic lesion. Several factors could attribute for that; such as the evolutionary
difference between the human and mouse haematopoiesis systems, the effect of unaccounted genetic
variability in the human genome (e.g., SNP) and generating transgenic mouse lines with the cDNA
sequence only. This might subsequently lead to the potential loss of essential regulatory elements
located in the intronic regions of mutated genes, causing an alteration in the dynamic expression of the
genetic lesion in targeted cells and thus phenotypic differences. For example, the dynamic expression
of the Gata1 gene in erythroid cells versus HSC was shown to be depended on untranslated regulatory
elements located at its 5’ region [109,110].

4. Mouse Models Based on Adaptive Transfer of Hematopoietic Cells Virally Expressing an
AML-Associated Proto-Oncogene

Technologies developed during last two decades of the 20th century allowed to transfer the
cloned leukaemia-associated genetic aberrations into hematopoietic cells to explore their transforming
potential in vitro and in vivo. Production of replication-incompetent high titre retrovirus expressing
a gene of interest was critical to develop the widely used adoptive transfer protocol to model the
effects of leukaemia-associated genetic lesions in hematopoietic stem and progenitor cells (HSPC) of
the mouse. Hereby, virally transduced cells are transplanted into lethally or sub-lethally irradiated
syngeneic recipients, resulting in chimeric animals in which the donor-derived transformed HSPC
may outcompete the host haematopoiesis ultimately leading to leukaemia (Figure 1C). The power of
this strategy became first evident by studies of the Baltimore laboratory that modelled the effect of the
chronic myeloid leukaemia (CML)-associated BCR-ABL fusion gene [111]. Transplantation of BM cells
transduced with a retrovirus carrying the BCR-ABL fusion cDNA induced hematologic malignancies
in about half of the recipients: either a CML-like myeloproliferative syndrome, acute lymphoblastic
leukaemia (ALL) or tumours containing macrophage-like cells occurring after mean latencies of 9, 14
and 16.5 weeks respectively. Notably they were able to transfer the disease phenotype by transplanting
tumour cells into irradiated secondary recipients.
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Following this landmark study, this approach, often referred to as the transduction-transplantation
model, was further refined and successfully used to model the transforming activity of a large number
of AML-associated genetic alterations [112]. BM reconstitution with HSPC expressing a gene or
mutation of interest was not only instrumental to demonstrate the transforming potential but also to
validate functional cooperation of different mutation classes necessary to induce a leukemic phenotype,
such as transcription factor fusion genes involving CBF, RARA or NUP98 cooperating with FLT3 or
N-/K-RAS mutations [113]. Some of the most important models that were established by this approach
are listed in Table 3. Many of these studies suggested that most AML-associated mutations are not
sufficient to induce the disease. The versatility of the system allowed researchers to define many
critical downstream effectors of AML driver mutations. In addition, such studies also suggested that
the cellular origin might be an important nominator of transforming potential of AML-associated
mutations. Transduction of enriched hematopoietic stem and distinct progenitor cells showed that
in contrast to BCR-ABL, AML-associated MOZ-TIF2 [114], MLL-AF9 [115,116], MLL-ENL [117,118],
AML1-ETO [119] and MLL-GAS7 [120] fusion genes were able to transform committed progenitor
cells. In addition, selective expression in different myeloid progenitor cell populations (CMP vs. GMP)
revealed a differential transforming activity of the of the meningioma 1 (MN1) gene, often overexpressed
in aggressive AML [121].

In the majority of these studies, researchers used replication-deficient murine stem cell virus
(MSCV)-based expression vectors, which allow efficient transduction and stable transgene expression
in hematopoietic progenitor cells [122]. However, it is worth noting that viral integration events,
potentially non-physiological expression level, batch to batch transduction and transplantation
variability and the inherent transduction bias for early multi-potent HSPC may influence the disease
phenotype. Nevertheless, in general the AML disease arising in these mice share a common
histopathological and immunophenotypic features, best illustrated by the MLL-AF9 fusion. Independ
whether the fusion is expressed retrovirally or as a knock-in transgene, the resultant disease is
characterized by extensive infiltration of the BM and other organs by myeloid progenitors and
monoblasts expressing high levels of Gr1, Mac1 and c-Kit surface markers [63,65,115,116]. The adaptive
transfer model is still the prime experimental method to investigate the in vivo transforming potential
of AML-associated genetic aberration. It provides a relatively rapid and robust methodology to
explore the function of one or more AML-associated mutations or overexpressed genes in cells of the
hematopoietic system.
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Table 3. AML mouse models based on viral transduction and transplantation.

Year Transgene Viral Vector Cellular Target Phenotype Ref.

1990 BCR-ABL pMSCV-pgk-neo Total BM Myeloproliferative malignancy, ALL and CML-like [111]

1997 MLL-ENL pMSCV-IRES-GFP Thy-1loSca-1+Hi-2Khi, 5-FU
treated BM

Self-renewal in vitro & AML in vivo [117]

2002 RUNX1-ETO pMSCV-IRES-GFP HSC c-Kit+Sca-1−Lin− Myeloid developmental abnormality but no AML [118]

2003 MLL-GAS7 pMSCV-pgk-neo HSPC Mixed lineage leukaemia phenotype [120]

2004 MOZ-TIF2, BCR-ABL pMSCV-IRES-GFP CMP, GMP MOZ-TIF2 but not BCR-ABL resulted in transplantable AML in vivo [114]

2006 MLL-AF9 pMSCV-IRES-GFP GMP Transplantation of transduced cells propagated in MC resulted in
AML in vivo [115]

2011 MN1 pMSCV-pgk-neo CMP, GMP CMP are susceptible for MN1 transformation, GMP required
co-expression of MEIS1 for AML induction [121]

2012 MLL-AF9 pMSCV-pgk-puro Evi1+/− MLL-AF9
transduced cells

Knockdown of Evi1 delayed leukaemia induction in vivo [116]

FU (Fluorouracil), MC (methylcellulose).
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5. Modelling AML by Transferring Patient-Derived Cells into Immune-Compromised Mice

Ex vivo maintenance and expansion of even the most clinically aggressive patient-derived
leukemic blasts remains a technical challenge. Even very sophisticated culture systems cannot
fully replace the complex interactions between leukaemia cells and the BM microenvironment. To
overcome these limitations researchers explored transplantation of human primary AML cells into
immune compromised mice (Figure 1D). Several immunodeficient mouse strains were developed for
patient-derived cell xenotransplants (PDX) including nude (nu), severe combined immunodeficient
(SCID), non-obese diabetic (NOD), NOD-SCID and NOD-SCID-IL2rγnull (NSG) strains [123,124].

In one of the first PDX experiments, researchers transplanted primary AML cells into nude mice
that are athymic due to a homozygous nude mutation (encoding for a forkhead box transcription factor
(FoxN1), resulting in lack of functional T cells. However, due to an intact B cell and NK cell function,
grafting of normal as well as leukemic cells remained poor and was often associated with formation of
extramedullary granulocytic tumours [125]. Even in mice carrying triple homozygous mutations in
nude, beige (affecting the lysosomal trafficking regulator; Lyst) and Xid (X-linked immunodeficiency
gene, Bruton’s tyrosine kinase; Btk) xenografting of human AML cells remained inconsistent and
unreliable [126]. The development of severe combine immunodeficient (SCID) mice was an important
step forward for the development of humanized AML mouse models. SCID mice carry inactivating
mutations in the protein kinase DNA-activated catalytic polypeptide (Prkdc) gene, which protein product is
involved in DNA repair pathways. This leads to improper immunoglobulin V-D-J gene recombination,
subsequently resulting in mice lacking functional mature T and B cells, however retaining NK
function [125]. Although primary AML injected intraperitoneally or implanted under the kidney
capsules showed improved engraftment rates, intravenous injection remained poor [127]. To overcome
these limitations, researchers began to transfer the cells directly into the recipients’ BM by intrafemoral
injection. To further improve engraftment rates, mouse models with more severe immunodeficiency
were developed by combining the SCID background with the non-obese diabetic (NOD) strain.
Combined non-obese diabetic NOD-SCID mice have no functional B or T cells and reduced NK
cell and macrophage activity [128]. They showed superior engraftment rate compared to SCID mice
even when injecting fewer primary AML cells [129]. Moreover, the morphologic, phenotypic and
genetic characteristics of the expanded AML specimens seemed mostly preserved [129]. The ability
to initiate the AML from few number of phenotypically stable cells allowed researchers to propose
the existence of an AML-cell hierarchy with leukemic stem cells (or SCID-Leukaemia initiating cells;
SL-ICs) enriched in the lineage marker-negative CD34+/CD38− compartment [130,131]. Crossing of
NOD-SCID mice with IL2Rγ−/− mice resulted in an even more immune compromised (NOD/LtSz-scid
with IL2γc

null; NSG) strain [132]. Deletions in the interleukin-2 receptor gamma chain (IL2Rγ) led to
an almost complete absence of the murine immune system and improved AML engraftment [133]. To
further humanize the hematopoietic system, the NSG strain was crossed with knock-in mice expressing
genes of three human cytokines (hIL3, hGM-CSF and hSCF) (NOD/LtSz-scid IL2γc

null–SGM3; or
NSG-S) [134,135]. NSG-S mice showed significantly improved expansion of normal human myeloid
cells and enhanced engraftment rates of primary patient AML cells [134,136]. NSG strains carrying
null alleles for major histocompatibility complex class I and class II beta2-microglobulin (β2m) called
NSG-β2m were developed to minimize reactivity of human immune cells against host tissue and thus
specifically reduce graft versus host disease (GVHD) [137,138]. Notably, increased in engraftment rate
for AML cell lines and primary paediatric patient samples in these mice without the need for irradiation
was reported [139]. More recently, NSGW/V and NSGW41 mouse strains were obtained by breeding
NSG with strains carrying c-kit loss-of-function alleles (KitWV/WV and/or KitW41/W41) [140]. Loss of c-Kit
impairs HSCs of the host and thereby creating empty BM niches leading to a competitive advantage
for transplanted human HSPC. These strains supported engraftment of human CD34+ cord blood
cells (CBCs) without prior host irradiation. They also showed greater engraftment and appropriate
differentiation of human cells of the erythroid and megakaryocytic lineages [141]. In addition to the
severity of immunodeficiency of the host, expression of human engraftment-enhancing cytokines and
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creating empty niches in the BM, the mutational status of the AML cells and the observation time seem
also key determinants for successful expansion in PDX [142–144].

Many compounds that showed significant anticancer effects in vitro and in transgenic mouse
models failed to show efficacy in clinical trials, most likely due to the unaccounted complexity of the
mutational load of human AML and effect of the microenvironment [145]. To circumvent this limitation,
the PDX model has been suggested as a good system to evaluate the efficacy of chemotherapeutic
agents on human AML cells in vivo [146,147]. Combination therapy of cytarabine and doxorubicin
on freshly transplanted human MLL-AF9+ leukaemia in NSG mice resulted in a reduction in residual
disease burden [147]. Doxorubicin treatment had a profound effect on AML cells compared to mouse
BM cells, in contrast to cytarabine which had a greater toxic effect on mouse BM cells. Transplanted
primary samples showed variable sensitivity to chemotherapy, correlating with patients’ clinical
outcome [146]. In another study, transplantation of Ara-C-resistant primary human AML cells into
NSG mice revealed a role for mitochondria and elevated oxidative metabolism in leukemic cells’
chemo-resistance [148]. Thus, the PDX system seem to provide an experimental platform to test
the efficacy of novel therapeutic compounds against primary human AML cells and to study the
mechanisms of chemo-resistance.

Although AML xenotransplantation into immunodeficient murine models is a valuable tool
for the expansion and study of some aspects of the biology of human AML, these models are
still limited by their inability to address the interplay of leukemic blasts with different cells of the
immune system and to dissect the cell autonomous from cell non-cell autonomous aspect of the
disease as they tend to develop other spontaneous malignancies. To overcome these limitations,
scientists took advantage of new advances in the fields of bioengineering and synthetic material
development to create biological inserts or scaffolds [149]. The function of these scaffolds is to
create humanized microenvironment in the mouse that is efficient in supporting implanted cells
expansion and differentiation without altering their character and function. Successful primary
AML cells engraftment was achieved using polyurethane scaffolds coated with freshly isolated
human BM-derived mesenchymal stem cells (hMSC) in NOD-SCID mice [150]. The subcutaneously
implanted scaffold remodelled the architecture of human BM niche (with de novo vascularization and
osteoclast and adipocyte development) at the site of implantation and supported the initial expansion
and spreading (BM, liver and kidney) of pre-implanted and retro-orbitally injected AML cells. In
another study, hMSC coated ceramic scaffolds were able to support the engraftment of favourable
non-engrafting AML samples when implanted subcutaneously in NSG mice [151]. The implanted
insert supported cellular proliferation and maintained clonal heterogeneity and leukemic stem cells’
(LSC) self-renewal capacity in methylcellulose cultures. In a different approach, researchers also used
freshly collected human BM biopsies from hip replacement patients and directly transplanted them
subcutaneously into the flanks of NSG mice, using Matrigel as carrier [152]. The human BM tissue
showed vascularization and rapid engraftment of intravenously injected MOLM-13 human AML cells.

In an attempt to study the heterogenous sub-clones detected in human patients [153] and follow
the stage specific transformation of MDS to AML [154], scientists took advantage of induced pluripotent
stem cells (iPSC) technique to establish AML- and MDS-iPSC respectively. Despite the challenges
in deriving myeloid malignant IPS cells due to their inherent resistance to reprogramming and
apoptotic priming in ex vivo culture, both studies showed that in a pluripotent state, AML-iPSC do
not possess a transformed phenotype. However, these cells appear to retain their leukemic potential
upon induced hematopoietic differentiation and are able to induce disease in NSG mice. Interestingly,
when stimulated to differentiate towards non-hematopoietic lineage, AML-derived IPSC are able to
form non-malignant cells from all three embryonic germ layers [153].

These novel approaches in leukemic remodelling using the classical PDX system have provided
proof of concept solutions on how to overcome some of challenges associated with the system, such as
the difference between the mouse and human BM microenvironment and AML samples the intra and
inter heterogeneity.
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6. AML Mouse Models Generated with Genome-Editing Techniques

The recent development of gene editing tools such as the clustered regularly interspaced short
palindromic repeats (CRISPR) and the transcription activator-like effector nucleases (TALEN) offer
novel tools to study the biology of AML by engineering disease-associated mutations in primary cells
(Figure 1C,D). Pioneering work by the Ebert lab explored disease modelling by genome-editing of
AML-associated mutations and inactivation of multiple tumour suppressor genes using a double
lentiviral expression system [155]. Hereby, one vector delivered Cas9 and a green fluorescent marker
(eGFP), while the other carried the guide RNA (sgRNA) targeting the Tet2, Runx1, Dnmt3a, Nf1, Ezh2
and Smc3 genes in conjunction with another fluorescent marker (RFP-567). Viral transduction of
lineage marker-depleted Sca1+; cKit+ (LSK) cells from C57B1/6 wild-type and Flt3-ITD knock-in
mice with pooled sgRNA virus followed by transplantation into lethally irradiated recipients caused
significant myeloid skewing of haematopoiesis and development of splenomegaly and leukaemia
in some mice. Sequencing of genomic DNA from clonal leukemic cells revealed mutations in Tet2,
Dnmt3a, Runx1, Nf1 and Ezh2 in single cells, thus indicating clonal outgrowth and transformation. This
strategy was further refined to model mutations associated with CHIP [156]. Several CHIP and AML
mutated genes (Dnmt3a, Ezh2, Nf1, Runx1, Ascl1, Smc3 and/or Ep300) were edited simultaneously
in murine HSPC, followed by transplantation into lethally irradiated recipients [156]. Genomic
sequencing following long term observation and malignancy development showed single clonal
expansion, especially from those harbouring Dnmt3a mutations. The mice showed a general increase
in myeloid chimerism and clonal expansion reminiscence of CHIP. Some mice died of severe anaemia,
while others progressively developed hematopoietic failure and AML. Genomic DNA sequencing
detected deleterious mutations in all targeted genes except Ep300, leading to block in differentiation
and activation of RAS-MAPK pathway [156]. A similar approach was used by another group to
edit commonly mutated AML genes such as TET2, ASXL1, DNMT3A, RUNX1, TP53, NF1, STAG2
and SMC3 in human umbilical cord blood (UCB) and adult CD34+ cells, by introducing a pool of
11-targeted sgRNAs [157]. Consistent with patients’ data, in vitro generated colonies derived from
single edited UBC carried bi-allelic loss-of-function (LOF) mutations in TET2, DNMT3, EZH2, TP53
and NF1 but only single allele mutations of SMC3, ASXL1 and RUNX1 were detected. To employ
the multiplex genome editing in vivo, the researchers edited human adult CD34+ cells with the same
pool of sgRNAs together with FLT3-ITD and mutated NPM. Transplantation of edited cells into
immune-compromised NSG-S mice resulted in the development of CHIP and MDS. Genomic DNA
screening of in vivo expanded clones showed mutagenic pattern similar to the in vitro experiments,
with overrepresentation of clones carrying LOF mutation (mostly deletions leading to frame shift) in
TET2, DMNT3A and ASXL1. Despite these promising observations, none of the mice developed AML.
The authors suggested that differences between the human and murine BM microenvironment might
impair in vivo leukemogenesis [157].

Another study used CRISPR/Cas9-based genome editing to model the recurrent 7q deletion
associated with MDS and AML [158]. The commonly deleted region contains the mixed lineage
leukaemia 3 (MLL3) gene but mutations and deletions of MLL3 have been only detected on one allele,
suggesting that MLL3 functions as a haplo-insufficient tumour suppressor. To prove this hypothesis,
researchers transduced tumour-prone (p53−/− with reduced expression of the tumour suppressor Nf1)
HSPC with sgRNA targeting Mll3 followed by transplantation into sub-lethally irradiated C57Bl/6 mice.
Compared to controls, targeting Mll3 significantly accelerated leukaemia development. Subsequent
gDNA sequencing of individual Mll3 edited AML clones revealed both wild type and mutant alleles
in the majority of samples. This suggested that leukemogenesis selects for partial but not complete
Mll3 inactivation, providing compelling evidence that Mll3 is a haplo-insufficient tumour suppressor
gene in AML [158].

Genome editing using TALEN effector nucleases was used to specifically generate reciprocal
chromosomal translocations of the MLL and AF9 genes (MLL-AF9 and AF9-MLL) in primary human
CD34+ UCB-derived HSC, to recapitulate MLL rearrangements in patients’ cells [159,160]. In the first
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study, edited HSPC showed heterogeneous response to the fusion whereby only some cells showed a
clear proliferative advantage. The cells were not sufficiently transformed and could not be significantly
expanded in culture and had a limited replating capacity in methylcellulose culture [159]. In contrast,
in the second study, researchers were able to induce a leukemic phenotype by transplanting in vitro
expanded monoclonal and immortalized cells into NSG mice. Notably, no secondary pathogenic
mutations were found by targeted exome and RNA-sequencing, suggesting that this MLL fusion might
be sufficient to initiate the disease [160]. Using engineered lentiviral vectors carrying Cas9 and two
sgRNA sequences targeting the MLL and ENL locus researchers were able to generate the reciprocal
t(11;19) translocation leading to expression of the MLL-ENL fusion in human CD34+ UCB cell [161].
Unfortunately, similar to the first study done with MLL-AF9 fusion, the cells did not display enhanced
self-renewal capacity in vitro when cultured in methylcellulose media. However, when injected in
sub-lethally irradiated NSG-S mice, they were able to produce leukaemia with monocytic features.
Future work will show whether Crispr/Cas9 genome editing will be suitable for the generation of
animal models carrying multiple functionally cooperating genetic lesions ultimately progressing into
clinical AML.

7. Conclusions

None of the currently used mouse AML models faithfully recapitulate the complex biology, cell
to microenvironment interactions and dynamic progression of AML. Nevertheless, they have been
instrumental in deciphering the underlying pathology of the disease and advancing AML research.
Historically, the chemical, irradiation and viral models set the field of AML modelling in mice and were
used to develop many AML drugs. Transgenic mouse lines harbouring AML associated mutations have
enabled researchers to directly link genetic aberrations to AML initiation and progression. The creation
of immunocompromised mouse strain has allowed for the expansion and study of human primary
AML cells and the discovery of a hierarchy led by leukemic stem cell. In the future, advancement in
genome editing technologies and collaboration between multidisciplinary fields would lead to the
generation of more humanized mouse strains, which will ultimately help scientists to accurately model
the complex biology of AML in mice.
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