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Abstract

Liver disease has long been a heavy health and economic 
burden worldwide. Once the disease is out of control and 
progresses to end-stage or acute organ failure, orthotopic 
liver transplantation (OLT) is the only therapeutic alternative, 
and it requires appropriate donors and aggressive adminis-
tration of immunosuppressive drugs. Therefore, hepatocyte 
transplantation (HT) and bioartificial livers (BALs) have been 
proposed as effective treatments for acute liver failure (ALF) 
in clinics. Although human primary hepatocytes (PHs) are 
an ideal cell source to support these methods, the large 
demand and superior viability of PH is needed, which re-
strains its wide usage. Thus, a finding alternative to meet 
the quantity and quality of hepatocytes is urgent. In this 
context, human pluripotent stem cells (PSC), which have 
unlimited proliferative and differential potential, derived 
hepatocytes are a promising renewable cell source. Recent 
studies of the differentiation of PSC into hepatocytes has 
provided evidence that supports their clinical application. 
In this review, we discuss the recent status and future di-
rections of the potential use of PSC-derived hepatocytes in 
treating ALF. We also discuss opportunities and challenges 
of how to promote such strategies in the common applica-
tions in clinical treatments.
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Introduction

Liver diseases, including acute liver failure (ALF) are a pub-
lic health challenge worldwide, because of death caused by 
liver dysfunction.1–3 ALF is a severe condition with signifi-
cant morbidity and mortality even for the patients without 
pre-existing liver disease. The causes of ALF vary geograph-
ically with viral infections of the liver, primarily hepatitis B, 
C, and E in developing countries and drug overdose-induced 
ALF, usually paracetamol (acetaminophen), in developed 
countries such as USA and parts of Europe.4–8 Because of 
the severity of ALF, there are few ways to prevent or cure 
patients other than orthotopic liver transplantation (OLT), 
which is now the only treatment that is considered effective 
to avoid the life-threatening complications caused by ALF.9–
11 However, OLT is limited by the scarcity of available donor 
livers, complicated surgery procedures, and high financial 
burden.12 Therefore, other than OLT and drug supplements 
for the maintenance of basic vital signs, there is a need for 
effective therapeutic treatments for ALF.

In recent years, hepatocytes transplantation (HT) and bio-
artificial liver (BAL) system have emerged as effective meth-
ods for the compensatory treatments of ALF related liver 
dysfunction.13–16 These two methods potentially build up the 
fundamental niche for host liver regeneration and decelerate 
the disease progression, which creates a bridging time for 
OLT. As reported, effective HT involves reconstitution of as 
much as 2.5% functional liver tissue in treating acute-on-
chronic liver failure (ACLF).17 Consistent with that, primary 
hepatocytes (PHs) are considered the ideal cell source for 
such treatments. Unfortunately, it remains a bottleneck to 
meet the demand of large quantity and clinical quality of PH 
from limited viable organ donation. To solve these problems, 
studies have focused on developing strategies using human 
pluripotent stem cell (PSC)-derived hepatic-like cells (HLCs), 
including hepato-blasts and hepatocytes. The differentiation 
of PSCs into clinical-grade HLCs has been studied.18–20 The 
aim of this review is to summarize the current opinions re-
garding the therapeutic effectiveness of PSC-derived HLC for 
ALF treatment and to discuss recent progresses in preclini-
cal and clinical treatments and challenges, which need to be 
improved in using PSC-derived HLC (Fig. 1).

Characteristics of ALF

ALF is characterized by severe injury of liver cells that has 
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a rapid onset and leads to a frequent fatal outcome, with 
up to 30% mortality.21 Paracetamol overdose and autoim-
munity caused liver injuries are the most frequent causes 
in developed countries. HBV infection is the primary cause 
of ALF in developing countries.2 Paracetamol toxicity, which 
induces mitochondrial oxidant stress-related cell death and 
sterile inflammatory responses in hepatocytes, accounts for 
more than 46% of the ALF cases in the USA.22 At the early 
stage of paracetamol-induced liver injury, treatment with 
N-acetyl-cysteine or 4-methylpyrazole (fomepizole) can ef-
fectively control the progress.23 However, at later stages, 
drugs are no longer effective to slow disease progression, 
which leaves OLT as the last option to save such patients. 
HBV infection has plagued China for a long time, and is in-
volved in 84% of hepatocellular carcinoma and 77% of liver 
cirrhosis patients annually.6 Control of HBV is fundamental 
to preventing ALF. Anti-HBV drugs focus on how to slow 
the replication of viral DNA, but completely eliminating HBV 
DNA is hard to achieve, and is the main reason of HBV re-

lapse and progression.24,25 Once the HBV replication is out 
of control, there’s a large chance to cause ALF. The pathol-
ogy and autopsy of ALF patients often shows widespread 
hepatic apoptosis and necrosis with few viable hepatocytes 
remaining, which leads to the failure of liver regeneration. 
To save ALF patients, the question to answer is how to buy 
time for patients to carry out liver regeneration.

Treatment of ALF must deal with systemic complications 
including the release of pro-inflammatory cytokines, multi-
ple organ failure, and a hypotensive environment. Hepatic 
encephalopathy frequently appears because they hepato-
cyte death results in aberrant liver function and toxins that 
travel to the brain and affect the brain function. Although 
L-ornithine-L-aspartate and ornithine phenylacetate inhibit 
ammonia synthesis to relieve symptoms, OLT is current, y 
the last chance for ALF patients currently. Development of 
novel treatments of ALF patients is currently urgent.

Current knowledge of the treatments for ALF

In addition to the basic symptomatic supporting treatments 
to stabilize the vital signs, cell therapy-based supplement 
for liver regeneration and bioartificial liver (BAL) support 
system have been developed as effective tools for ALF pa-
tients. Both of these methods require a large quantity of 
viable hepatocytes.

BAL system

Before the emergence of BAL, abiotic artificial liver therapy, 
including plasmapheresis, hemoperfusion absorption, and 
venous hemodiafiltration, were used as clinical treatments 
with limited success.26,27 The molecular adsorbent recircu-
lating system and Prometheus system are widely used non-
bioartificial liver systems with benefits for ALF patients.28,29 
However, as it relies on exogenous detoxification, is not able 
to provide an environment needed for hepatic regenera-
tion as it is complicated to mimic all the functions of host 
hepatocytes. BAL systems include functional hepatocytes in 
a bioreactor that simulates the function of a normal human 
liver. To a large extent, it can not only remove the toxic 
substances but also provide functions such as synthesis and 
metabolism, which temporarily replace the function of the 
damaged liver in order to survive from the fatal onsets of 
ALF.16,30 The indispensable factor within the BAL system are 
the functional hepatocytes. The quality of functional hepat-
ocytes, the ease of obtaining them and safety are decisive 
in determining whether the BAL can play an important role 
in clinical treatment.

Prior to this, the main sources of functional hepatocytes 
were primary liver cells, porcine liver cells, human liver can-
cer cell lines like HepG2, HepaRG, and immortalized human 
liver cell lines like L-02. Human PH are the best for use in 
BALs, but organ sources are limited, and it is difficult to 
obtain a sufficient number of human PH for BALs. Porcine 
liver cells are used because of their functions, abundant 
source, and the easy accesses. For example, the AMC artifi-
cial liver system using porcine liver cells successfully helped 
12 patients with ALF to gain time for OLT. One patient no 
longer needed because of the effectiveness of therapy.31,32 
The HepaAssist system, which uses porcine liver cells, is 
the only BAL system that has been a investigated in a mul-
ticenter randomized controlled clinical trial in the USA. Al-
though it has achieved encouraging therapeutic effects in 
phase III clinical trials, it has not yet obtained Federal Drug 
Administration approval. It is underlying safety concerns 
including heterogeneous immune rejection and animal-de-
rived virus infections have made it difficult to obtain regula-

Fig. 1.  Producing pluripotent stem cell (PSC)-derived hepatic-like cells 
(HLCs) for use in bioartifical liver support and hepatocyte transplanta-
tion applications. The advantage of using PSC derived of HLC is their unlimited 
proliferation potential, which addresses both the shortage of viable donor livers 
and primary hepatocytes. By differentiating PSC (hESCs or iPSCs) or genome 
edited PSC into HLC, we can obtain HLCs of the required quantity and quality for 
BAL and HT in severe liver disease (e.g., ALF, ACLF, and ESLD). After BAL or HT 
treatment, the ideal outcome is either graft expansion and the regeneration of 
the host liver or bridging to OLT. ALF, acute liver failure; ACLF, acute on chronic 
liver failure; BAL, bioartificial liver; ESLD, end-stage liver disease; hESC, hu-
man embryonic stem cell; HLC, hepatic-like cell; HT, hepatocyte transplanta-
tion; iPSC, induced pluripotent stem cell; OLT, orthotopic liver transplantation; 
PSC, pluripotent stem cell.
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tory approval.33 The superiority of human liver cancer cell 
lines and immortalized human liver cell lines is that they can 
proliferate indefinitely in vitro. However, their functions are 
greatly compromised and there is a potential tumorigenic 
risk, which limits their application prospects. For example, 
the Vital Therapies artificial liver system, which uses C3A 
liver cancer cells, failed a phase III clinical trial because of 
poor therapeutic effects, even though the effectiveness in 
animal experiments was good.34,35 Therefore, to obtain a 
large quantity and clinical-grade quality of functional hepat-
ocytes is the major hindrance for BAL.

Nowadays, in the research of regenerative medicine, PSC 
has received much attention due to the potential to be dif-
ferentiated into functional hepatocytes as the source of seed 
cells in the BAL system. Precise differentiation of human 
embryonic stem cell (hESCs) or induced pluripotent stem 
cell (iPSCs) into HLC has been achieved and improved tre-
mendously. In addition, with the appearance of 3D culturing 
system, hepatic organoid formation brings out more mature 
HLC, which owns comprehensive functions.36,37 Moreover, 
Lijian Hui of Shanghai also successfully transdifferentiated 
human fibroblasts into human hepatocytes (hiHep), and 
overexpressed SV40 Large T through gene editing, thus 
obtaining the ability to be expanded in vitro, providing a 
potential cell source for BAL.38 This technology also suc-
cessfully conducted a clinical trial of a bioartificial liver in 
2016, and achieved good therapeutic effects, which greatly 
improved the confidence to promote hiHep into the clinic 
applications. In addition, bioreactors, as the key devices in 
BAL system, are able to provide a favorable proliferative 
and metabolic platform for a large-scale liver cell culture 
and storage.39 For example, a fluidized-bed bioreactor with 
alginate-based spherical beads is able to scale up 1011 liver 
cells culture and retains their hepatic functions.40 Yet the 
challenge is to extend such design to clinical applications.

Hepatocyte transplantation (HT)

The concept of HT therapy was first described by scientists 
in the early 1970s. After more than 20 years of develop-
ment, HT therapy was translated from animal experiments 
to clinical trials, and was shown to be effective in ALF, or 
acute-on-chronic liver failure (Table 1).17,41–45 HT has sev-

eral key therapeutic advantages. (1) It is less invasive OLT 
surgery and can be performed multiple times. (2). The pa-
tient’s liver is preserved and retains its ability to regenerate 
itself. (3) With the development of gene editing and stem 
cell technology, HT can be coupled with targeted genome 
modifications, realizing individualized and precise treat-
ment.15,46 These advantages are not available in OLT or BAL 
support systems. So far, many liver diseases have under-
gone clinical trials of HT treatment, laying the foundation for 
clinical promotion and application.

How to gain time is a significant issue for ALF patients. For 
one thing, HT helps patients to regenerate their own livers, 
providing a proliferative niche for transplanted hepatocytes. 
While OLT is inevitable, HT plays a role as a transitional 
bridge connecting patients with an appropriate donor liver. 
In animal models of drug-induced ALF, HT significantly im-
proves survival. In clinical trials, there have been more than 
40 cases of ALF caused by drugs or viral infections treated 
by HT worldwide.47,48 Although, they were not multicenter 
randomized controlled trials and the delivery method, vol-
ume of transplanted cells, and cell sources were not stand-
ardized, which makes them difficult to compare statistically, 
most patients responded well to treatment, with prolonged 
survival time, bridging to OLT, and even fully recovery (Ta-
ble 1).17,41 The limited clinical data fully confirms the thera-
peutic effect of HT, but it needs to be further standardized 
and unified.

PSC-derived hepatocytes

With both BAL support or HT treatment, the key to success 
is the quality and quantity of functional liver cells. Human 
PSCs, including human embryonic stem cells (hESCs) and 
induced pluripotent stem cells (iPSCs), have unlimited pro-
liferation ability and the pluripotency to differentiate into 
any somatic cell type. Therefore, the differentiation of PSCs 
into HLCs with similar gene expression profiles and func-
tions as human hepatocytes can, to a large extent, solve 
the problem of limited sources of functional hepatocytes. 
Recent advances in stem cell research have found methods 
that have increased the ease of inducing in vitro differentia-
tion into HLCs. However, often not more than 109–1010 the 
hepatocytes are available for treatment, which is a barrier 

Table 1.  Clinical use of hepatocyte transplantation to treat acute liver failure (ALF)

Time (year) Number of 
recipients Delivery route Outcomes Reference

Drug-induced ALF

    1999 2 Portal vein 2 Deaths: days 4 and 35 41

    2000 3 intrasplenic 3 Deaths: 6 h, days 14, and 20 42

    2006 6 Intrasplenic and 
portal vein

3 Deaths: days 1, 3, 18; 2 OLT: 
days 2 and 10; 1: Full recovery

43

Hepatitis virus-induced ALF

    2000 1 Intrasplenic 1 Full recovery 45

    2000 2 Intrasplenic and 
portal vein

2 Deaths: 18 h and day 52 42

    2006 2 Portal vein 2 Deaths: days 2 and 7 43

    2010 1 Portal vein 1 Death: day 11 44

Acute-on-chronic liver failure

    2014 7 Intrasplenic 3: Full recovery; 3 Death: 
2.5–12 months; 1: OLT

17
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between PSC differentiation and clinical application. One of 
the obstacles is that the efficiency of differentiation is lim-
ited, which often accompanied by the risk of incomplete dif-
ferentiation or incorrect cell fates, resulting in unpredictable 
safety issues. Additionally, the current hepatocyte culture 
system has not been well developed, which is hard to main-
tain the proliferation ability and the functions of cultured 
hepatocytes at the same time. Therefore, we need to reach 
a more comprehensive and in-depth understanding of the 
molecular mechanisms of direct differentiation of PSC into 
HLC, to establish an efficient and stable differentiation sys-
tem. We need to find ways to culture and expand hepat-
ocytes in vitro to obtain a large number of clinical-grade 
hepatocytes, which is of great significance for the treatment 
of ALF by BAL and HT. The paragraphs below review the 
current status and progress of PSCs used for the treatment 
of ALF.

Differentiation of PSCs into HLCs

The study of precise differentiation of PSC into HLC in vitro is 
mainly through simulating the development of human liver, 
which is accomplished by adding growth factors and small 
molecules that regulate the related signal pathways. Meth-
ods described in the available studies can be used to induce 
the differentiation of PSC into definitive endoderm (DE), 
hepatoblasts (HB), and mature hepatic cells, i.e. HLCs. Al-
though the specific induction schemes adopted by different 
research groups are not the same, the basic method is: (1) 
induction of DE cells by activin-A; (2) Transformation of DE 
to HB by treatment with FGF, BMP, and HGF; and (3) use of 
OSM and dexamethasone (DEX) to induce maturation of HB 
into HLC (Fig. 2).49

The induction of DE is the first step of differentiation and 
is a key step that determines the final differentiation ef-
ficiency. The most frequently used method is the induction 
of PSC to form DE cells by activin-A. The underlying mech-
anism is activation of the Nodal signaling pathway, which 
simulating the early steps of liver development in vivo.50–52 
Some studies have reported that inhibiting the PI3K sign-
aling pathway was a prerequisite for the effective use of 
activin-A for DE induction. Adding PI3K signaling pathway 
inhibitors improves the efficiency of DE differentiation.53 
Adding a rho kinase (ROCK) inhibitor at that stage reduces 
cell apoptosis to a certain extent, which improves cell sur-
vival and differentiation efficiency. Compared with the com-
plex signaling pathways regulated at the DE stage, the reg-
ulation of the differentiation of HB and HLC cells is relatively 
clear. In vivo studies of liver development, in-vitro coculture 
studies and the single-cell sequencing have shown that the 
transforming growth factor beta (TGF-β), Wnt and NOTCH 

signaling pathways are the pathways most involved in the 
induction of DE cells by growth factors such as BMP, FGF, 
and HGF. This step avoids the establishment of an incorrect 
cell fate (e.g., bile duct or pancreas cells) and improves the 
purification of HLC at the final stage.54

Differentiation induced by growth factors is recognized 
as an efficient method of obtaining functional HLCs, but 
growth factors are expensive and difficult to store, which 
limits their use for large-scale production of HLCs. In addi-
tion, most growth factors are protein products containing 
animal components that may cause adverse reactions as-
sociated with clinical use. In that context, a combination of 
small molecules can be used to replace the growth factors 
and obtain functional HLC with high efficiency. Properties of 
the small molecules include the ability to freely penetrate 
cell membranes, stable structures, no immunogenicity, low 
cost, and wide variety. The use of small-molecule com-
pounds is expected to become a safer and more effective 
method of inducing clinical-grade HLCs. Recent reports by 
multiple research groups have described the use of small 
molecules to induce differentiation into HLCs. IDE1 and 
IDE2 are small molecules that can efficiently induce PSC 
to form DE, act much as activin-A by simulating the Nodal 
signaling pathway.55 In the HB stage, glycogen synthase 
kinase (GSK)-3β is used to simulate the Wnt pathway to 
guide DE to a hepatic fate and not bile duct fate.56,57 Re-
cently, Asuma et al.20 reported the use of small molecules 
to differentiate hESCs into HLC. A comparison of HLCs in-
duced by small molecules and those derived from growth 
factors showed a considerable number of functions, such 
as albumen (ALB) secretion, CYP450 activity which me-
tabolizes drugs and enzymes. In addition, Pan et al.58 in-
troduced an improved combination of small molecules for 
robust HLC induction. The use of small molecules activity 
has promising prospects, but further research is needed 
to develop more stable and efficient combinations of small 
molecules to increase effectiveness and safety for adapting 
to clinical use.

Functional HLCs can be obtained by direct differentiation 
of PSCs. There are also reports of transdifferentiating so-
matic cells to obtain functional HLCs. Hui, L et al.38 reported 
that after human fibroblasts overexpressing the transcrip-
tion factors FOXA3, HNF1α and HNF4α can be transdiffer-
entiated into HLCs and perform a series of functions similar 
to those of PHs. Transdifferentiation provides another way 
to source of HLC, but it safety needs further verification, as 
such transcriptional factors are known to participate in the 
carcinogenesis of hepatocellular carcinoma.

In vitro expansion of HLCs

Obtaining HLCs from PSCs has been validated by multiple 

Fig. 2.  Introduction of the differentiation of human pluripotent stem cells (hPSCs) into mature hepatocyte-like cells (HLCs). Adapting hPSCs with activin-
A is a well-known protocol for definitive endoderm (DE) induction. IDE-1 and IDE-2 are small molecules that can replace activin-A, which is an easier and inexpensive 
way of induction. The combination of growth factors for hepatoblast (HB) induction is well studied. Hepatic-like cell (HLC) induction and maturation is the last step for 
a successful differentiation. This step can be induced by dexamethasone (DEX) and oncostatin M (OSM). Small molecules could be developed for use in clinical ap-
plications.
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research groups, proving its reproducibility and efficiency. 
However, owing to the required volume of cells for trans-
plantation for clinical applications, relying on the differenti-
ated HLC is not enough. As a result, how to expand hepato-
cytes in vitro has attracted widespread attention in recent 
years. Hepatocytes are terminally differentiated cells, which 
makes them difficult to culturing in vitro and maintain their 
inherent functional properties. Hui Lijian et al.59 reported 
that a combination of small molecules, adding Wnt3a to 
hepatocyte medium and removing Rspo1, Noggin, and for-
skolin increased the fold-expansion of human hepatocytes 
by 10,000 times. However, they found that the expanded 
hepatocytes had a bidirectional differentiation potential 
that placed them between HPCs and mature hepatocytes. 
It seems to be a complicated task to expand hepatocytes 
in vitro, and the research is focused on the expansion of 
hepatic progenitor cells like HBs that still have some degree 
of stemness.

Compared with mature hepatocytes, HBs has a stronger 
proliferation ability and the potential of rapid differentiation 
into both hepatocytes and bile duct cells.60–63 Amplifying 
PSC-derived HBs is an ideal alternative source of hepato-
cytes. On the one hand, it is feasible to develop the pro-
liferation potential of HB, and on the other hand, amplified 
HBs can be frozen to establish a cell bank, acting as seed 
cells that could be rapidly obtained for functional HLC dif-
ferentiation. Recent reports have found that multiple small-
molecule compounds are suitable for amplifying HB, such 
as the GSK-3β inhibitor CHIR99021, the TGF-β signaling 
pathway inhibitor A83-01, and the ROCK inhibitor Y27632. 
A recent study combined small molecules to simultaneously 
regulate the BMP/WNT/TGF-β/Hedgehog pathway, which 
not only maintains the stemness of HBs, but also retains 
their proliferative capacity. The HBs amplified by the com-
bination had therapeutic effectiveness after transplantation 
into ALF-model mice.64,65 Large-scale expansion of HBs, 
would be a major step in producing the HLCs in the quantity 
and with the quality required for clinical development and 
application.

Clinical benefits of PSC-derived cell therapy

Much effort has been made worldwide to promote PSC-de-
rived methods to cure chronic and acute illness. Induced 
PSC-derived retinal pigment epithelium cells have used clin-
ically to cure patients with macular degeneration, with good 
outcomes 1 year after transplantation, which supports the 
use of PSC-derived cells in clinical applications.66 The use 
of PSC-derived HLC for ALF, HT, and BAL applications would 
serve as a promising tool for clinical alternatives. The clini-
cal indications and benefits of PSC-derived cell therapies 
for treating ALF or end-stage liver disease are summarized 
below.

Modulating the regeneration niche

A positive outcome requires that HT promotes sufficient re-
generation of the host liver. Besides increasing the homing 
and engraftment of transplanted hepatocytes, modulating 
the injury niche to include host immune responses such 
as the macrophage activation and cytokine release,67,68 is 
also an important benefit of using PSC-derived HLCs. Un-
like PH-derived HLCs, as hypoimmunogenic PSC-derived 
HLCs would modulate the host immune recruitment to re-
strain systemic inflammation. For example, phagocytosis 
mediated by macrophage activation might be limited by 
the CD47-SIRPα axis if PSC-derived HLCs overexpressing 
CD47 were transplanted.69–72 Such clinical applications 

could be useful in a broader scope of liver disease and not 
limited to ALF.

Transplantation feasibility and safety

Even if the shortage of donor livers could be solved, OLT is 
still a challenging procedure with risks including intraopera-
tive bleeding, postsurgical cardiovascular dysfunction, and 
unavoidable death.73,74 PSC-derived HT is a safer alterna-
tive with infusion that does not require major surgery and 
the possibility of multiple transplantation procedures.75 Im-
provements in cell culture would make PSC-derived HLCs 
are a good alternative source of hepatocytes compared with 
PHs. The feasibility of PSC-derived HLCs is not limited by 
lack of a large quantity of HLCs, which can be cryopreserved 
to ensure a constantly available cell source for emergency 
treatment of ALF patients.76,77

Individualized treatment

PSC-derived HLCs combined with Crispr/Cas9 genome edit-
ing and PSC differentiation would allow generating multi-
ple PSC cell lines that met individual patient requirements 
or those of the primary illness.78,79 For instance, the HBV-
induced liver disease could theoretically be corrected by 
transplantation with HBV receptor (NTCP) knock-out or 
ectopic expression of NTCP variants in HLCs derived from 
edited PSCs.80,81 Following transplantation in such patients, 
HBV could not enter hepatocytes as they lacked the recep-
tor, which would avoiding the recurrence of HBV. Treatment 
might thus be adjusted depending on the pathophysiology 
of the primary illness that caused ALF.

Challenges of current PSC based options

Clinical trials of HT and BAL support systems are ongoing, 
and strive to promote the two therapeutic methods with 
broad application prospects in clinical treatment. However, 
the novelty of the methods and the complexity of ALF, are 
challenging, and can be summarized as follows:

The lack of rigorous clinical trials makes it difficult to 
achieve a unified and standardized treatment. Most ALF 
patients indicated for HT and BAL are in a life-threatening 
stage of disease and require urgent treatment intervention. 
It is not possible for multiple centers to formulate detailed 
treatment procedures in time, which makes it difficult to 
reach a consensus. Standardized treatment indications, 
treatment procedures, countermeasures for complications, 
and the introduction of appropriate treatment guidelines are 
the prerequisites for the adoption of HT and BAL as clinical 
applications.

The key requirement of these two treatments is the quan-
tity and quality of functional liver cells. No matter which 
method is used to obtain functional liver cells, an inevitable 
core problem is the immunogenicity of the cells. At pre-
sent, adjuvant immunosuppressive agents or pretransplant 
radiotherapy are used in patients receiving HT, to suppress 
the patient’s immune system and protect the transplanted 
cells. Once the immune system is suppressed, the patient 
is exposed to risks of tumorigenesis and infection. Recently, 
hypoimmunogenic PSC have been developed to overcome 
the issue of immune rejection. Through knocking out hu-
man lymphocyte antigen (HLA) Class I and II molecule 
accompanied by overexpression of the natural killer (NK) 
cell specific inhibition receptor (HLA-E) might help to evade 
host immune surveillance.82,83 Human embryonic stem cells 
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overexpressing CTLA4-Ig and PD-L1 are immune-evasive 
and have shown therapeutic effectiveness in a humanized 
mouse model of acute liver injury.84,85 Further research 
should be carried out to elucidate the underlying mecha-
nism. Its safety should not be neglected as the risk of tu-
mor formation increases without host immune recognition. 
The development of novel immune tolerance strategies is of 
great significance for HT therapy.

Improvement of transplanted-cell engraftment and hom-
ing needs to be studied. After the liver is damaged, hepatic 
stellate cells are activated, become fibroblasts, deposit col-
lagen that makes it difficult for transplanted cells to enter 
damaged regions of the liver. Different routes of delivery 
have been validated, among which splenic transplantation 
and hepatic portal vein are typically used in clinical treat-
ments. There are three ways of delivery via the portal vein, 
ultrasound guided intrahepatic portal vein puncture, trans-
cutaneous splenic vein puncture, and intrahepatic portosys-
temic shunt via the hepatic venous system.35 However, the 
procedures are associated with risks of portal vein hyper-
tension, bleeding, or thrombosis.86 Alternate routes include 
the hepatic artery, which has a higher blood flow velocity 
and lower thrombosis formation risk.87 More clinical data 
should be collected to choose the appropriate routes of de-
livery. Coupling nanomaterials and HT is a novel opinion 
that would improve the viability, homing, and engraftment 
of transplanted hepatocytes.88,89 Micro-encapsulated HLC 
patches or decellularized liver scaffolds would avoid intrave-
nous or arterial injection.90–92 Increasing the rate of homing 
of transplanted cells is a guarantee for the clinical therapeu-
tic effectiveness of HT and needs further validation.

Concluding remarks

In summary, HT and BAL support have bright prospects and 
application value in the treatment of ALF. PSC-derived HLCs 
have the potential for wide clinical application, but dem-
onstration of effectiveness and lack of complications are 
still needed. The use of humanized immune system animal 
models can provide more accurate immune-response data 
for HT studies of reducing the immunogenicity of trans-
planted cells, establishing immune tolerance strategies, and 
safety. Last but not least, the combining various therapies 
for ALF treatment is a future trend.
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