
Citation: Tagi, V.M.; Mainieri, F.;

Chiarelli, F. Hypertension in

Patients with Insulin Resistance:

Etiopathogenesis and Management

in Children. Int. J. Mol. Sci. 2022, 23,

5814. https://doi.org/10.3390/

ijms23105814

Academic Editor: Dumitru

Constantin-Teodosiu

Received: 13 April 2022

Accepted: 19 May 2022

Published: 22 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Hypertension in Patients with Insulin Resistance:
Etiopathogenesis and Management in Children
Veronica Maria Tagi, Francesca Mainieri and Francesco Chiarelli *

Department of Pediatrics, University of Chieti, Via dei Vestini 5, 66100 Chieti, Italy;
veronica.tagi@gmail.com (V.M.T.); mainieri.francesca@gmail.com (F.M.)
* Correspondence: chiarelli@unich.it; Tel.: +39-0871-358015

Abstract: Insulin resistance (IR) is a key component in the etiopathogenesis of hypertension (HS)
in patients with diabetes mellitus (DM). Several pathways have been found to be involved in
this mechanism in recent literature. For the above-mentioned reasons, treatment of HS should be
specifically addressed in patients affected by DM. Two relevant recently published guidelines have
stressed this concept, giving specific advice in the treatment of HS in children belonging to this group:
the European Society of HS guidelines for the management of high blood pressure in children and
adolescents and the American Academy of Pediatrics Clinical Practice Guideline for Screening and
Management of High Blood Pressure in Children and Adolescents. Our aim is to summarize the main
pathophysiological mechanisms through which IR causes HS and to highlight the specific principles
of treatment of HS for children with DM.
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1. Introduction

IR is the principal mechanism responsible for the development of HS in patients
with DM [1]. In fact, it contributes to an increase blood pressure (BP) in several ways,
including the enhanced tissue angiotensin II (AngII) and aldosterone activities [2,3], the
increased sympathetic nervous system activity [4], and oxidative stress [5]. Nevertheless,
the hypothesis of the “endothelial IR” has been postulated, according to which endotelial
disfunction precedes peripheric IR due to the impairment of blood flow in peripheral
tissues. This mechanism is mediated by increased oxidative stress, through a protein kinase
C β-dependent pathway. In fact, the suppression of reactive oxygen species-dependent
pathways in the endothelium has been shown to restore insulin delivery to peripheral
organs by preserving nitric oxide (NO) availability [6,7].

The higher risk of developing cardiovascular morbidity in children with a youth-onset
Type 2 DM (T2D) is well known. Longitudinal data from the Treatment Options for T2D
in Adolescents and Youth (TODAY) study revealed that in a group of 677 participants
with a mean age of 14 ± 2 years the cumulative incidence of HS, LDL-C dyslipidemia,
and hypertriglyceridemia was 59%, 33%, and 37% respectively and at the end of a mean
10.2 ± 4.5 years follow-up 54% had ≥2 cardiovascular risk factors in addition to T2D.
Male sex, non-Hispanic white race/ethnicity, obesity, poor glycemic control, lower insulin
sensitivity, and reduced β-cell function were identified as the main risk factors [8].

Agbaje et al. investigated the temporal causal longitudinal associations of carotid-
femoral pulse wave velocity (cfPWV), an index of arterial stiffness, with the risk of devel-
oping IR, measured with the homeostatic model assessment (HOMA) index, in a group of
3862 followed-up 17.7-year-old participants from the Avon Longitudinal Study of Parents
and Children. HOMA index is a paradigm model which allows for determining the IR
rate using only the fasting glucose and insulin values. Levels above 2.9 signal significant
insulin resistance. A higher value of HOMAIR corresponds to a more severe IR. The study
showed that a higher cfPWV at 17.7 years was associated with higher HOMA index at age
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24.5 years, supporting the hypothesis according to which arterial stiffness in adolescence
may be a causal risk factor for hyperinsulinemia and IR in young adulthood [9].

Adults with DM are two to four times more likely to die from heart disease than those
who do not have DM [10].

The prevalence of HS is higher in patients with DM than in the general population.
In fact, it is estimated that about 69.0% have a systolic blood pressure of 140 mmHg or
higher or diastolic blood pressure of 90 mmHg or higher or are on prescription medication
for their high blood pressure [11]. If HS and DM are both present, the incidences of
cardiovascular diseases (CVD) and mortality increase, such as the risks of nephropathy
and retinopathy [12–14].

Given these premises, specific management of HS in children affected by DM is manda-
tory. The two most relevant societies that have recently proposed a peculiar treatment and
follow-up of children with DM in their guidelines are the European Society of HS [15] and
the American Academy of Pediatrics [16]. In this review, we will provide an overview of
the most recent knowledge about the etiopathogenesis of the development of HS in patients
with IR and of the principal recommendations for the treatment of HS in children with DM.

2. Etiopathogenesis

The association between IR and HS is multifactorial [1].
IR is involved in the development of HS and atherosclerotic cardiovascular disease

through three main mechanisms [17]: the basic molecular etiology of IR [18–27], the
compensatory hyperinsulinemia that occurs in response to IR [24,28–34], and the association
between IR and some cardiometabolic abnormalities [28–30,35,36].

Insulin acts on its target organs phosphorylating a transmembrane-spanning tyrosine
kinase receptor, the insulin receptor (IR). It binds to the α subunit of its receptor activating
the tyrosine kinase of the β subunit of the receptor, causing autophosphorylation and phos-
phorylation of several IR substrates (IRS), such as IRS-1 and IRS-2 [37]. These substrates
activate phosphatidylinositol 3-kinase (PI3K), which stimulates Akt, a serine/theronine
kinase, which in turn stimulates the glucose uptake through the translocation of GLUT-4,
the major glucose transporter to the cell membrane [38]. Akt is also responsible for the
activation of nitric oxide synthase, which leads to the production of NO. If this pathway
is impaired, NO, which is a potent vasodilator and antiatherogenic agent [28,29], is not
produced, favouring vascular resistance, HS and atherogenesis (Figure 1).

One of the mechanisms through which hyperinsulinemia causes an increase of BP is
dysregulation of peripheral vascular resistance, stimulating the sympathetic system and
therefore causing vasoconstriction [4]; furthermore, hyperinsulinemia contributes to the de-
velopment of HS-related target organ damage, in particular: impairment of cell membrane
ion exchange, enhanced sympathetic nervous and renin-angiotensin systems, suppressed
atrial natriuretic peptide activities, sodium retention, and plasma volume expansion lead
to chronic kidney disease, left ventricular hypertrophy and carotid atherosclerosis [1].

Moreover, insulin-resistant states, such as T2D, are associated with several cardiometabolic
abnormalities factor abnormalities, including elevated PAI-1, increased fibrinogen, and
higher platelet stickiness, which are important cardiovascular risk factors [39,40].

Obesity is one of the leading causes of IR [14,28,29], and is strongly associated to
atherosclerotic cardiovascular disease [41–43].

IR in obese subjects is mainly determined by lipotoxicity: the effect of excessive lipid ac-
cumulation which occurs when energy intake exceeds energy consumption [28–30]. Elevated
free fatty acids in blood promote lipid deposition in tissues, including vessels [44–49] and
activation of inflammatory pathways [43]. Excessive fat in adipocytes induces enhances the
secretion of proinflammatory/prothrombotic cytokines, such as TNFa, PAI-1 and resistin,
which promote atherogenesis [50–53].
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Figure 1. Pathophysiological mechanisms linking IR and hypertension in children with DM. The
signaling is impaired at the level of IRS-1, therefore, glucose transport is decreased and nitric oxide
synthase activation is impaired, leading to decreased NOS production and therefore vasoconstriction.
At the same time, insulin signalling through the MAPK pathway remains normally sensitive to insulin.
For this reason, compensatory hyperinsulinemia (secondary to insulin resistance in the IRS-1/PI3K
pathway) causes excessive stimulation of the MAPK pathway, which is involved in inflammation,
vascular smooth muscle cell proliferation, and atherogenesis. Ab—Abbreviations: NOS—nitric oxide
synthase; SHC—Src homology collagen.

3. Management of HS in Children with DM

According to the SEARCH for DM in Youth Study, only 7.4% of youth with type 1
DM (T1DM) and 31.9% of youth with T2D who attended a visit between 2001 and 2010
knew their BP status and, after becoming aware of the diagnosis of HS, only 57.1% of
patients with T1DM and 40.6% of patients with T2DM achieved good BP control [54]. In
comparison with youth with DM1, those with DM2 were older and more likely women,
had an older age at diagnosis, were more likely to be obese (26.5 vs. 11.1%) and belong
to ethnic minorities (19–76% vs. 2.9%). Furthermore, they presented higher systolic and
diastolic BP, lower glycated hemoglobin, and higher prevalence of microalbuminuria [47].
Recent data confirm that HS is underdiagnosed in youths with DM1 younger than 13 years
of age [55].

The European Society of Hypertension (ESH) and the American Academy of Pediatrics
(AAP) have recently published their new guidelines for the treatment of elevated BP in
children. In both the documents, specific indications are reserved for the detection and
management of HS in children with DM [15,16].

3.1. Definition

The definitions of elevated BP and HS in children provided by the ESH and the
AAP present some differences [15,16]. First, they suggest two distinct age classifications:
according to the ESH BP percentiles should be considered until the age of 15 years, while
for the AAP they should be used only until the age of 12 years. Second, the ESH calls
the transient stage between normal and HS high-normal BP, while the AAP talks about
elevated BP. Third, the AAP’s values for the suggested definitions substantially differ from
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the ESH ones, generally being lower. Table 1 illustrates the principal differences in the two
societies’ definitions.

Table 1. Comparison between the ESH’s and the AAP’s definitions of elevated BP and HS in children.

ESH AAP

Category
0–15 years

SBP and/or DBP
(percentile values)

≥16 years
SBP and/or DBP

(mmHg)

1–12 years
(percentile values)

≥13 years
(mmHg)

Normal <90th <130/85 <90th <120/<80

High-normal/
Elevated BP ≥90th to <95th 130 to 139/85

to 89 ≥90th to <95th 120/<80 to
129/<80

Stage 1 HS 95th to 99th
+5 mmHg

140 to 159/90
to 99

95th to 95th
+12 mmHg

130/80 to
139/89

Stage 2 HS >99th + 5 mmHg 160 to 179/100
to 109 ≥95th + 5 mmHg ≥140/90

Abbreviations: ESH—European Society of Hypertension; AAP—American Academy of Pediatrics; HS—
hypertension; BP—blood pressure; SBP—systolic blood pressure; DBP—diastolic blood pressure.

3.2. Prevention

Data about the efficacy of preventive antihypertensive treatment in children with DM
is still lacking; however, evidence in adults suggests that a strict BP control should be
aimed [15].

Furthermore, in obese adults, ACE inhibitors and AngII Receptor Blockers (ARB) seem
to reduce the incidence of new-onset DM and may increase insulin sensitivity [56].

3.3. Lifestyle Intervention

Lifestyle intervention is recommended in children affected by DM.
The National Heart Lung and Blood Institute’s Growth and Health Study demon-

strated that consuming ≥2 servings of dairy and ≥3 servings of fruit and vegetables daily
was associated with lower BP in childhood not only in healthy subjects but also in children
and adolescents with DM [16,57]. Furthermore, an improved diet was shown to be related
to a lower BP in adolescents with elevated BP [58] and youth with T2DM [59].

Exercise is fundamental as well, given its effects on both lowering BP and improving
insulin sensitivity [15,16].

Other lifestyle changes, such as a reduction in salt intake, tobacco cessation, and
appropriate sleep hygiene, are known to improve metabolic health and reduce BP in
patients with DM [10].

3.4. First-Line Pharmacologic Treatment

Although lifestyle intervention plays an important role in lowering BP in youth with
IR, pharmacological interventions are required to achieve optimal BP [10].

Children at any stage of HS with DM should undergo pharmacologic treatment starting
with a single medication at the low end of the dosing range. Depending on repeated BP
measurements, the dose of the initial medication can be increased every 2 to 4 weeks until
BP is controlled, the maximal dose is reached, or adverse effects occur [16].

According to the American DM Association (ADA), a drug class with demonstrated
cardiovascular benefits such as a renin-angiotensin system (RAS) inhibitor (angiotensin-
converting enzyme inhibitor [ACEI] or ARB) should be chosen as first-line therapy, unless
there is an absolute contraindication [15,16]. These two families of drugs are useful also in
case of microalbuminuria, because of their antiproteinuric effect [15,60].

It has been demonstrated that the ACEI do not only act as lowering agents, but also as
modulators of metabolic anomalies [61]. Several mechanisms of function are involved in the
treatment of the latter pathological condition. First, ACEI interfere with the conversion of
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angiotensin I into AngII; furthermore, they increase the circulating level of the bradykinin
by inhibiting the kininase II breakdown [62] and higher kinin levels are responsible for a
major production of prostaglandins (prostaglandin E1) and NO, which improve exercise-
induced glucose metabolism and muscle sensitivity to insulin [63,64], therefore insulin-
mediated glucose uptake increased. Moreover, ACEI have the ability of causing peripheral
vasodilation, leading to an increased surface area for glucose exchange between vessels
and skeletal muscles [61]. A study conducted by Morel et al. [65] demonstrated that IR
was reduced in patients with high cardiovascular risk treated with enalapril for 12 weeks.
Captopril was shown to have similar effectiveness in improving insulin sensitivity [66].

The effect of ACEI on IR may be also explained by the regulation of adipocyte cell
cycle. This hypothesis is supported by data showing that higher levels of AngII interfere
with the differentiation of pre-adipocytes into mature adipocytes, and therefore that fat cells
are not able to store fat. Consequently, fats are stored into the liver, skeletal muscle, and
pancreas, increasing IR. On the contrary, ACEI reduces AngII levels, therefore promoting
the differentiation of pre-adipocytes into mature adipocytes and enhancing the storage of
fat into mature adipocytes [67].

Another mechanism underlying the role of ACEI in modulating metabolic anomalies
involves pancreatic β cell protection. In fact, reduced AngII levels leads to a milder vaso-
constriction increases the islet blood flow [68], and therefore enhancing insulin releasing by
β cells.

There is no compelling evidence in favour of one drug class over another except for
data supporting the early use of RAS inhibitors in patients with overt proteinuria (urine
albumin-to-creatinine ratio >300 mg/g) [10]. Other antihypertensive medications (e.g.,
α-blockers, β-blockers, combination α- and β-blockers, centrally acting agents, potassium-
sparing diuretics, and direct vasodilators) should be used only in case of no response to
2 or more of the preferred agents [15,16]. If β-blockers are a compelling indication, those
with vasodilating capacity should be used [15].

According to the Eight Joint National Committee (JNC 8), non-black patients with DM
should benefit similarly from treatment with ACEI/ARB, CCB, or thiazide-like diuretic,
while black patients with DM benefit more from treatment with tha iazide-like diuretic or a
CCB [69].

According to the ESH and the European Society of Cardiology (ESC), all classes of
antihypertensive agents are recommended and can be used in patients with DM, keeping
in mind that RAS blockers may be preferred in the presence of proteinuria or microalbu-
minuria [70].

Table 2 lists the age and dosing recommendations, contraindications, and adverse
drug reactions of anti-hypertensive drugs for children.

Table 2. Antihypertensive drugs: age and dosing recommendations, contraindications, and adverse
drug reactions.

Drug Age Initial Dose
(mg/kg per Dose)

Maximal Dose
(mg/kg per Dose)

Dosing
Interval

Contraindications and
Adverse Drug Reactions

ACE inhibitors
Contraindications:

pregnancy, angioedema.
Common ADR: cough,

headache, dizziness,
asthenia.

Severe ADR:
hyperkaliemia, acute kidney

injury, angioedema,
fetal toxicity

Benazepril ≥6 y 0.2 (up to 10 mg/d) 0.6 (up to 40 mg/d) 1/day
Captopril Infants 0.05 6 1–4/day

Children 0.5 6 3/day
Enalapril ≥1 mo 0.08 (up to 10 mg/d) 0.6 (up to 40 mg/d) 1–2/day
Fosinopril ≥6 y 0.1 (up to 5 mg/d) 40 mg/d 1/day

<50 kg
≥50 kg 5 mg/d 40 mg per d

Lisinopril ≥6 y 0.07 (up to 10 mg/d) 0.6 (up to 40 mg/d) 1/day
Ramipril - 1.6 mg/m2/d 6 mg/m2/d 1/day
Quinapril - 5 mg/d 80 mg/d 1/day
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Table 2. Cont.

Drug Age Initial Dose
(mg/kg per Dose)

Maximal Dose
(mg/kg per Dose)

Dosing
Interval

Contraindications and
Adverse Drug Reactions

ARB

Contraindications:
pregnancy.

Common ADR: headache,
dizziness.

Severe ADR:
hyperkaliemia, acute kidney

injury, fetal toxicity

Candesartan 1–5 y 0.02 (up to 4 mg/d) 0.4 (up to 16 mg/d) 1–2/day
≥6 y

<50 kg 4 mg/d 16 mg/d
≥50 kg 8 mg/d 32 mg/d

Irbesartan 6–12 y 75 mg/d 150 mg/d 1/day
≥13 y 150 mg/d 300 mg/d

Losartan ≥6 y 0.7 (up to 50 mg/d) 1.4 (up to 50 mg/d) 1/day
Olmesartan ≥6 y 1/day

<35 kg 10 mg 20 mg
≥35 kg 20 mg 40 mg

Valsartan ≥6 y 1.3 (up to 40 mg/d) 2.7 (up to 160 mg/d) 1/day

Thiazide diuretics Contraindications: anuria.
Common ADR:

hypokalemia, dizziness.
Severe ADR: dysrhythmias,

cholestatic jaundice,
new-onset DM, pancreatitis.

Chlorthalidone Child 0.3 2 (up to 50 mg/d) 1/day
Chlorothiazide Child 10 20 (up to 375 mg/d) 1–2/day

Hydrochlorothiazide Child 1 2 (up to 37.5 mg/d) 1–2/day

Calcium channel
blockers

Contraindications:
hypersensitivity to CCB.
Common ADR: flushing,

peripheral edema, dizziness.
Severe ADR: angioedema.

Amlodipine 1–5 y 0.1 0.6 (up to 5 mg/d) 1/day
≥6 y 2.5 mg 10 mg

Felodipine ≥6 y 2.5 mg 10 mg 1/day

Isradipine Child 0.05–0.1 0.6 (up to 10 mg/d)

Capsule:
2–3/day

Extended-
release tablet:

1/day

Abbreviations: ACE—angiotensin-converting enzyme; ARB—AngII receptor blockers; d—dose; ADR—adverse
drug reaction; DM—diabetes mellitus; CCB—calcium channel blockers.

Once the appropriate drug has been chosen, treatment should start with the lowest
recommended dose [15,71], this dose should be up-titrated until the BP falls within the
target range or until the maximum recommended dose is reached or side effects are
developed [15,16]; for example, in children treated with ACE inhibitors and ARB kidney
function and potassium balance should be strictly monitored [15].

3.5. Second Agent Treatment

If a single agent is not sufficient, a second agent can be added and up-titrated with the
same modalities of the initial drug. Since salt and water retention usually occurs with many
antihypertensive medications, a thiazide diuretic is often the preferred second agent [15,16].
The preferred combinations are a thiazide diuretic with an ARB, a calcium antagonist, or
an ACE-inhibitor. The association between thiazides and β-blockers increases the risk of
developing DM and should therefore be avoided, especially in children with IR or with
other risk factors for T2DM [72].

The association of an ACE inhibitor and an ARB is always contraindicated due to the
absence of demonstrated benefits in front of an increase in adverse events.

Few drug-related side effects may be dose-limiting. In these cases, the early addition of
a second agent or complete replacement of the initial agent are both therapeutic options [15].

3.6. BP Goal

In adults, there is no clear evidence that BP should be lower in diabetic than in
nondiabetic hypertensive patients [73]. In children, data are lacking; however, it has been
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observed that youth with DM1 or DM2 develop early atherosclerotic lesions before the age
of 30 [74].

Since evidence has emerged that markers of target organ damage, such as increased LVMI,
can be detected among some children with BP in the >90th percentile (or >120/80 mmHg) but
in the <95th percentile [75–77], the American Heart Association suggests that the BP goal
should be lower than the 90th percentile for age, sex and height, or below 130/80 mmHg at
age 16 and above [78], and the ESH and the AAP provide the same recommendations [15,16].

A post-hoc analysis of a trial on DM1 suggests that a lower BP target may be beneficial
in reducing urinary albumin excretion and the risk of developing proteinuria [73].

3.7. Heart Failure

Children and adolescents with DM have an increased risk of developing early car-
diovascular events and heart failure than their non-diabetic peers [74]. Given the high
rates of coronary artery disease among patients with DM, patients with DM have a higher
risk of developing ischemic cardiomyopathy and, consequently, heart failure; however,
heart failure and IR are not only linked by a higher prevalence of ischemic heart disease
since heart failure is more frequent in patients with DM despite the presence of ischemic
disease [75].

In case of heart failure, first-line therapy includes salt restriction and agents that
target the renin–angiotensin–aldosterone-system combined with β-blockers in low doses if
necessary to achieve BP control. Adding diuretics is recommended in patients with volume
overload [75,76]. In the case of coarctation of the aorta, presenting with heart failure and
upper limb HS, surgery or catheter intervention is the first treatment of choice [15].

Treatment of a hypertensive crisis causing acute heart failure includes the use of
intravenous vasodilatory agents (nicardipine), with nitroprusside limited to situations
where other agents fail, or to brief periods of time [73].

3.8. Metabolic Syndrome

IR and HS are part of a cluster of cardiometabolic risk factors named metabolic
syndrome (MetS). Hypertension is often associated with other risk factors for IR present in
metabolic syndrome, particularly type 2 diabetes, in both adults and children. In adults,
through randomized multicenter studies, it has recently been possible to demonstrate the
importance of intensified multifactorial treatment to reduce morbidity in such situations. It
would be desirable that RCTs were designed to evaluate the long-term clinical impact of
controlling the risk factors associated with IR also in the pediatric population [77].

Even though non-alcoholic fatty liver disease (NAFLD) is not yet included in the
current definition of MetS, it is well known to be its frequent hepatic manifestation. MetS
and NAFLD are two different entities sharing common clinical and physio-pathological
features, with insulin resistance as the most relevant. The increased MS incidence world-
wide, above all due to changes in diet and lifestyle, is associated with an equally significant
increase in NAFLD, in children too [79].

Despite the definition of MetS in children and adolescents being still uncertain, what is
clear is that a combination of physical exercise and dietary intervention, together with phar-
macologic treatment and bariatric surgery in selected cases, in order to reduce overweight
and obesity are crucial for an improvement of all the clinical conditions [80]. The use of
metformin for abdominal obesity seems to be effective in the short-term but information
about the efficacy over time is lacking [78]; obviously, the rest of the cardiometabolic risk
factors should be treated singularly as well [15].

3.9. Glucose Lowering Therapies

The role of some glucose-lowering molecules has been evaluated also in the manage-
ment of HS. For example, sodium-glucose co-transporter-2 (SGLT2) inhibitors are used
in adult patients with T2DM; however, their use in the pediatric population has been
proposed by many experts [81]. Recent evidence suggests that inhibiting SGLT2 may have
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an effect on lowering BP and reducing body weight, significantly reducing cardiovascular
risk [82].

SGLT2 inhibitors block the renal sodium-glucose cotransporter-2, increasing the
urinary excretion of glucose, and leading to osmotic diuresis [75]. Luo et al. [82] con-
ducted a study on mice with HS and DM, with the aim of finding whet (sEH) inhibitor
1-trifluoromethoxyphenyl3-(1-propionylpiperidin-4-yl) urea (TPPU) could reduce their BP
and glucose. sEH is ubiquitary and highly expressed in the human liver, followed by the
kidney [83,84]; it hydrolyzes epoxyeicosatrienoic acids (EETs) [85], which are metabolites
of arachidonic acid produced by the cytochrome P450 pathway [86]. Data from this study
demonstrated that TPPU administration ameliorated HS and IR by decreasing renal glucose
and sodium reabsorption via inhibitory kappa B kinase α/β (IKKα/β)/NF-κB signalling
pathway-mediated SGLT2 inhibition [82].

Regarding heart failure, no relationships between the degree of glycated hemoglobin
(HbA1c) reduction under glucose-lowering treatment and reduction in the incidence of
heart failure have been observed [87]. Data from the Candesartan in Heart failure: Assess-
ment of Reduction in Mortality and Morbidity (CHARM) program, showed that an increase
in HbA1C level of 1% was associated with a 25% increased risk of cardiovascular (CV)
death, hospitalization for worsening heart failure, and all-cause death [88]. Findings from
a Veterans Affair registry study on more than 5000 outpatients with heart failure and DM,
supported the hypothesis that patients who achieved moderate glucose control (HbA1C
>7.1% and <7.8%) had the lowest mortality [89].

Even though intensive glucose control has been demonstrated to reduce microvas-
cular complications of DM [90], a strict glucose control does not seem to strongly impact
the reduction in CV mortality among patients with DM [91]. Furthermore, some specific
medications seem to worsen outcomes among patients with DM and heart failure and
have therefore required caution when used in this population; however, other molecules,
such as SGLT-2, have been demonstrated to have some CV benefits. The multicenter
Empagliflozin, Cardiovascular Outcomes, and Mortality in T2D trial (EMPA-REG OUT-
COME) has demonstrated positive effects of SGLT-2 inhibitors on CV outcomes [92]. A
randomized case-control study was conducted on the treatment with empagliflozin 10 or
25 mg in more than 7000 subjects with a diagnosis of atherosclerosis. Empagliflozin was
demonstrated to statistically significantly reduce the incidence of CV mortality, nonfatal
MI, or nonfatal stroke; a significant reduction in heart failure incidence was also observed.
In the CANagliflozin cardioVascular Assessment Study (CANVAS), [93] patients with
T2DM and high CV risk (including those with and without established CV disease) ran-
domly received, treated with canagliflozin or placebo and were followed for more than
3.5 years, revealing that canagliflozin significantly reduced the incidence of death from
CV causes, nonfatal MI, or nonfatal stroke; moreover, the secondary outcome, which was
the reduction of hospitalisation for heart failure, was reached in patients treated with
canagliflozin. Dapagliflozin has been shown to have similar effects on BP and heart failure
hospitalisation in a trial with a predominant observation of patients without established
CV disease and in observational studies [93,94]. Although CV risk has a major impact
in African-American patients with IR, a concerning representation of this population is
present in the above-mentioned studies [95]. Hitherto, only one randomised trial is present
in the literature, focusing on minorities and analysing 150 African-Americans with DM
and HS randomised to empaglilozin or placebo. Empagliflozin was shown to reduce blood
pressure, body weight, and HbA1C [96]. Afterwards, these findings were confirmed by
a large real-world population study of African-American patients with DM and HS from
the DM Collaborative Registry (an observational US registry of patients recruited from pri-
mary care, cardiology, and endocrinology practices). Among the 74,290 African-American
patients with DM in this registry, 34.5% had a systolic BP greater than or equal to 140 mm
Hg; of these, only 1.7% had been prescribed an SGLT-2 inhibitor. Assuming an 8 mmHg
reduction in BP with the use of these medications, the mean estimated 5-year risk of CV
death was estimated to be reduced from 7.7% to 6.2% if SGLT-2 inhibitors were used in
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this population [97]. Interestingly, SGLT-2 have been demonstrated to reduce CV events
mainly through their effect on obesity and BP rather than their impact on blood glucose
levels [95,96]. The mechanism of action, underlying the effect of SGLT-2 inhibitors in
decreasing BP is not fully understood; however a multifactorial action has been postulated
including osmotic and natriuretic diuresis and decrease in arterial stiffness and sympathetic
tone [97]; their mechanism of action supports the hypothesis according to which reduction
of risk of heart failure is higher than the atherothrombotic-related effects [98].

3.10. Follow-Up

The AAP recommends that all children ≥3 years of age, especially those with DM,
should have BP measured at every health encounter [16,99–102].

According to the ESH, in children with DM, regular ABPMs at 6–12-month intervals
should be performed to rule out selective nocturnal HS [15].

4. Conclusions

Consistent evidence suggests that IR is involved in the development of HS and
atherosclerotic cardiovascular disease.

Children with T1DM and T2DM and HS deserve particular attention in the diagnosis
and specific management.

Besides lifestyle intervention, children at any stage of HS with DM should undergo
pharmacologic treatment starting with ACE inhibitors or ARB and eventually adding a
second drug if BP goal <90th percentile for age, sex and height, or below 130/80 mmHg at
age 16 and above is not reached.

Strict follow-up, in order to early detect long-term complications of HS, is particularly
recommended in this category of patients.

Glucose-lowering drugs, especially SGLT-2 inhibitors, have been evaluated as potential
anti-hypertensive agents; however, their use in the pediatric population has not been
approved yet; therefore, large-population clinical trials should be started in order to make
this therapeutic option available for children and adolescents.
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