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efficiency with pyroptosis-derived genes
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Abstract 
Lung squamous cell carcinoma (LUSC) is a common subtype of lung cancer that exhibits diverse pyroptosis regulatory patterns. 
Studies have highlighted the significance of pyroptosis in cancer invasion and immune responses. We aimed to explore the 
signatures of pyroptosis-related genes and their immune relevance in LUSC. Using The Cancer Genome Atlas (TCGA)-LUSC 
cohort and 5 gene expression omnibus (GEO) datasets, we performed consensus clustering based on 41 pyroptosis-related genes, 
and single sample gene set enrichment analysis (ssGSEA) was employed to calculate the infiltration levels of distinct clusters. A 
pyroptosis scoring scheme using the principal component analysis (PCA) method was used to quantify pyroptosis regulation in 
patients with LUSC and predict their prognosis. Four pyroptosis clusters were identified among 833 LUSC samples, which were 
associated with different Kyoto encyclopedia of genes and genome (KEGG) signaling pathways and tumor microenvironment 
infiltration features, and were highly consistent with 4 reported immune phenotypes: immune-responsive, immune-non-functional, 
immune-exclusion, and immune-ignorance. We then divided the patients into high- and low-pyroptosis score subgroups, and 
patients with higher scores were characterized by prolonged survival and attenuated immune infiltration. Moreover, higher scores 
were correlated with male patients, higher microsatellite instability, lower immune checkpoint inhibitor expression (such as CTLA-4 
and GAL-9), and high mutation rates of typical mutated genes (e.g., TP53 and TTN). In particular, patients with lower pyroptosis 
scores showed better immune response to immune checkpoint inhibitor treatment. Pyroptosis regulatory patterns in the immune 
microenvironment can predict the clinical outcomes of patients with LUSC. Accurately quantifying the pyroptosis of individual 
patients will strengthen the understanding of heterogeneity within the LUSC tumor microenvironment infiltration areas.

Abbreviations: DEG = differentially expressed genes, GSDMD = gasdermin D, GSDME = gasdermin E, GSVA = gene set 
variation analysis, ICI = immune checkpoint inhibitors, IHC = immunohistochemistry, IPS = immunophenoscore, LUSC = lung 
squamous cell carcinoma, MSI = microsatellite instability, NK = natural killer, NSCLC = non-small cell lung cancer, PCA = principal 
component analysis, RFE = recursive feature elimination, ssGSEA = single sample gene set enrichment analysis, TCGA = the 
Cancer Genome Atlas, TIDE = tumor immune dysfunction and exclusion, TILs = tumor-infiltrating lymphocytes, TMB = tumor 
mutational burden, TME = tumor microenvironment.

Keywords: immune checkpoint inhibitor, immune microenvironment, lung squamous cell carcinoma, prognosis prediction, 
pyroptosis

1. Introduction

Pyroptosis is a type of an inflammatory programmed cell death 
characterized by membrane rupture, cellular swelling, cell extrav-
asation, chromatin condensation, and DNA breakage, and plays 
a central role in provoking microbial infections and endogenous 
danger signals.[1] During inflammatory responses, gasdermin D 
(GSDMD)-mediated activation is regulated by caspases ¼/5/11, 

as well as caspase 3 that induces GSDME-dependent activation, 
which consists of 2 main approaches of pyroptosis-facilitated cell 
death.[2–4] The activity of these regulators has a great impact on 
pyroptosis and their examination can improve the understanding 
of pyroptosis mechanisms in diverse diseases such as hepatitis,[5] 
neurodegeneration,[6] atherosclerosis,[7] and tumors.[8] However, 
studies have demonstrated that pyroptosis exerts dual effects 
on tumors: it directly suppresses tumor cell proliferation on the 
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one hand, while on the other hand it forms a microenvironment 
promoting cancer growth, invasion, and drug resistance.[9] An 
intensive investigation of genetic variations and expression per-
turbation will further elucidate cancer heterogeneity and identify 
pyroptosis-related therapeutic targets.[10]

Lung squamous cell carcinoma (LUSC), a predominant sub-
type of non-small cell lung cancer (NSCLC), has an unfavorable 
prognosis, with a <15% 5-year survival rate and limited ther-
apy targets.[11] Accumulating studies have proven that immune 
checkpoint inhibitors (ICI) such as PD-1/PD-L1 and CTLA-4 
have transformed therapeutic strategies for LUSC and signifi-
cantly improved clinical outcomes in treatment-I patients with 
advanced cancer.[12] With an increased understanding of the role 
of the tumor microenvironment (TME) in tumorigenesis and 
metastasis, it was observed that tumor-infiltrating lymphocytes 
(TILs) constitute a critical approach for predicting the response 
to ICI treatments.[13,14] Indeed, PD-1 expression in tumor-infil-
trating CD8+ T cells has been indispensable for PD-L1 ICI ther-
apeutic efficacy in LUSC.[15,16] However, obvious heterogeneity 
of the TME may exist in LUSC, and their characteristics might 
influence LUSC response to ICI therapy. Herbst et al[17] classified 
NSCLC into 4 types based on the histological observations of 
the immune environment: immunological response, a non-func-
tional immune response with decreased PD-L1 expression, 
immunological ignorance, and excluded immune infiltration. 
Another TME 4-type classification method for NSCLC was pro-
posed by Teng et al,[18] which is unique and represents a state of 
PD-L1 expression induced by oncogenic mutations. Thus, there 
is an urgent need to elucidate immunophenotypic changes in the 
LUSC TME.

Recently, increasing evidence has demonstrated the inter-
actions between TME-infiltrated immune cells and pyropto-
sis, creating an opportunity to turn “immune cold” tumor 
to “immune hot” tumor with the induction of immunogenic 
death of tumor cells.[19–21] Pyroptosis could strengthen vari-
ous signaling pro-inflammatory pathways and “fire up” the 
TME to overcome the immune desert phenotype, thus pro-
moting cancer cell death. Zhang et al[22] discovered that 
high expression of wild-type GSDME was associated with 
augmented TILs, including CD8+ T cells and natural killer 
(NK) cells. Meanwhile, the release of pyroptosis-produced 
cytokines might reform the TME and enhance tumor cell sur-
vival by evading immune surveillance.[14] For example, IL-1β 
release induced by pyroptosis may trigger the transport of 
myeloid cells into the TME and promote breast cancer prolif-
eration and metastasis.[23] GSDMD-mediated pyroptosis has 
been found to assist NSCLC in evading the innate immune 
response through dysregulation of immunomodulatory fac-
tors.[24] However, these studies merely focused on limited 
pyroptosis factors that might exert a coordinated function 
with other pyroptosis genes. Currently, a growing number of 
high-throughput sequencing datasets offer a comprehensive 
approach to identify the association between multiple pyro-
ptosis genes and TME cell infiltration characteristics, which 
will broaden our understanding of the role of pyroptosis in 
LUSC immunity.

In our study, we systematically appraised the linkage between 
41 pyroptosis genes and TME characteristics in more than 830 
LUSC samples from The Cancer Genome Atlas (TCGA) and 
Gene Expression Omnibus (GEO) databases. Four different 
pyroptosis-related immunoinfiltration patterns with consen-
sus clustering were identified, which are strongly interrelated 
with the previously reported 4-phenotype immune infiltration 
features: immune-responsive, immune-ignorant, immune-non-
functional, and immune-exclusion.[17,18] Finally, we established 
a scoring method to determine the role of pyroptosis in TME 
shifting and its potential to predict the response to ICI therapy. 
Our results provide new insights into pyroptosis in the hetero-
geneity of the cancer immune microenvironment and highlight 
its efficacy in cancer immunotherapy.

2. Methods

2.1. Data acquisition and sample collection

The RNA transcriptome sequences and corresponding clini-
copathological data were collected from the public database 
TCGA portal (https://portal.gdc.cancer.gov/), which includes the 
data of 502 patients with LUSC and 49 normal tissue samples, 
and the NCBI GEO database (https://www.ncbi.Nlm.Nih.gov/
geo/), including those from GSE17710 (N = 56),[25] GSE30219 
(N = 61),[26] GSE37745 (N = 66),[27] GSE41271 (N = 80),[28] and 
GSE73403 (N = 69).[29] Fragments per kilobase of transcript per 
million mapped reads (FPKM) format sequencing data from 
TCGA dataset were transformed into transcripts per kilobase mil-
lion (TPM) format. We used the “Combat” in R language “sva” 
package to remove batch effects among these platforms from 
multiple GEO cohorts. Somatic gene mutations and copy number 
variations in TCGA-LUSC sample data were obtained from the 
UCSC Xena database. The exclusion criteria were samples with-
out information on survival times or outcomes, status, age, sex, 
grade, smoking status, or TNM classification; and patients who 
received any treatment or neoadjuvant therapy before surgery.

Varscan, a tool to detect variants (single nucleotide polymor-
phisms (SNPs) and indels) in next-generation sequencing data, 
was used to recognize somatic mutations in mutation annotation 
format files, which are tab-delimited files containing somatic and/
or germline mutation annotations.[30] The R package “maftools” 
was used to visualize the mutations in top mutated genes and 
“Rcircos” was used to plot the copy number variation landscape 
of pyroptosis-related genes in human chromosomes.

To verify the expression of genes compromising the pyroptosis 
score in LUSC and normal tissues, we conducted an experimen-
tal validation using 3 LUSC patient specimens (tumor specimens 
and adjacent normal tissues) from patients who underwent pul-
monary lobectomy from January 2020 to December 2020 at the 
First Affiliated Hospital of Nanjing Medical University. During 
recruitment before surgery, patients provided written informed 
consent by trained interviewers through face-to-face interviews. 
An independent pathological review confirmed that the fea-
tures of tumor specimens were histologically consistent with the 
pathological features of LUSC. The Nanjing Medical University 
Ethics Committee approved this study and its design, and all 
patients provided written informed consent.

2.2. Consensus clustering of 41 pyroptosis-related genes

In total, 41 pyroptosis-related genes were obtained from the 
MSigDB gene set (https://www.gsea-msigdb.org/gsea/msigdb/, 
v7.1) and from previous studies.[8,10,31] Due to the lack of normal 
LUSC tissue data in the GEO datasets, only TCGA-LUSC data 
were calculated to identify the differential expression of these 
pyroptosis-related genes using the R package “limma”. A pro-
tein-protein interaction (PPI) network for these pyroptosis-re-
lated genes was constructed using the STRING website (https://
string-db.org/), and the R package “reshape2” was used to draw 
a co-expression network.

Samples from TCGA and GEO cohorts were classified into dif-
ferent subgroups using consensus clustering, which was performed 
using the K-means algorithm with Spearman distance. The max-
imum cluster number was 10, and the final cluster number was 
determined using the consensus matrix and cluster consensus score 
using the R package “ConsensusClusterPlus”. Repetition was per-
formed 1000 times to guarantee the stability of the classification.

2.3. Gene set variation analysis (GSVA) and immune 
cell infiltration estimation by single sample gene set 
enrichment analysis (ssGSEA)

GSVA was conducted by the R package “GSVA” to investi-
gate the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
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discrepancy among the 4 pyroptosis clusters. The KEGG sig-
natures “c2.cp.kegg.v7.2. symbols” were acquired from the 
Hallmarker-geneset in the MSigDB and the annotation was 
achieved with the R package “clusterProfiler” with a cutoff 
value of P < .05. We then utilized ssGSEA to quantify the infil-
tration of 23 immunocytes in the TME.[32] The ESTIMATE 
algorithm was used to quantify the immune and stromal scores 
which were combined to infer tumor purity.[33]

2.4. Identification of differentially expressed genes (DEGs) 
and construction of a pyroptosis score

The R package “limma” package was used to detect DEGs 
among these 4 pyroptosis clusters, and a Venn diagram was con-
structed to view the number of overlapping genes among these 
DEGs. The cutoff of the DEGS was set at adjusted P < .001. 
The LUSC samples were then classified into 3 subgroups based 
on the transcriptomic landscape of the 17 intersecting genes. 
Using recursive feature elimination (RFE) with a 10-fold cross 
validation method in the R package “caret,” the genes with a 
significant prognostic value, which were analyzed by a univari-
ate Cox regression model, were examined further. Using princi-
pal component analysis (PCA), the selected genes were divided 
into principal components 1 and 2 and the pyroptosis score 
=
∑

(PC1i + PC2i). The advantage of this method was that it 
focused mainly on the score of genes that were positively or neg-
atively correlated to the largest block, while downweighing con-
tributions from genes that were isolated from other members. 
Kaplan–Meier survival curves were used to assess the ability of 
the pyroptosis score to discriminate between different subtypes 
of patients. Clinical parameters such as age, sex, TNM stage, 
and pyroptosis score were applied to univariate and multivar-
iate Cox regression analyses using a backward stepwise Cox 
proportional hazard model. The coefficients of each parameter 
derived from the multivariate analysis were used to construct 
a prognostic nomogram. The survival status for patients at 1, 
3, and 5  years was used as the endpoint parameters for the 
development of the nomogram[34] with the R package “regplot”. 
The discrimination and calibration of the nomogram for the 
endpoint index were measured using the concordance index 
(C-index) and a calibration plot comparing the expected and 
observed survival probabilities, respectively.

2.5. Quantify the immune response prediction ability by 
tumor immune dysfunction and exclusion (TIDE) and 
immunophenoscore (IPS)

The TIDE algorithm was applied to imply tumor immune eva-
sion possibilities, including the exclusion and dysfunction of 
TILs affected by immunosuppressive factors.[35] The IPS, a pre-
dictor of ICI therapy, especially for anti-CTLA-4 and anti-PD-L1 
therapies, was calculated based on the sum of the weighted aver-
aged Z score of immune-related genes grouped into 4 classes: 
effector cells, immunosuppressive cells, MHC molecules, and 
immunomodulators.

2.6. Experimental validation

Frozen sections cut at 5 μm thickness were stained for immu-
nohistochemistry (IHC). IHC was performed using antibod-
ies against ABCF3 (1:200, bs-7941R; Bioss, Beijing, China), 
FGFR2 (1:200, bs-7941R; Bioss), IGSF11 (1:50, 14003-1-AP; 
Proteintech, Wuhan, China), P2RY6 (1:100, ab92504; Abcam, 
Cambridge, UK), and SOX2 (1:100, ab92497; Abcam). Slides 
were incubated overnight with the primary antibody at 4°C 
and horseradish peroxidase (HRP) secondary antibody (KIT-
5005; MaxVision, Fuzhou, China) for 30 minutes at 37°C. 
Then, the samples were incubated with a 3,3ʹ-diaminobenzidine 

tetrahydrochloride (DAB) Kit (DAB-1031; Maxim, Fuzhou, 
China) for 2 minutes at 37°C, followed by hematoxylin coun-
terstaining at room temperature. The Human Protein Atlas 
database was utilized to determine expression levels of pro-
teins (ACSL5, DVL3, LAMC2, NTS, SOX21, and SPAST), for 
which we could not obtain antibodies. No staining indicated the 
absence of protein expression. The presence of staining in cells 
was deemed positive irrespective of the proportion or intensity. 
Moreover, the mRNA expression levels of the candidate genes 
were further validated using the data in our own RNA-seq data-
bases, including that of 19 paired LUSC samples.[36]

2.7. Statistical analysis

R software (v4.0.3) was used for the statistical analysis. The 
correlation between the mutant genes and TMB was deter-
mined using the Mann–Whitney U test. The enriched functions 
associated with DEGs were determined using the R package 
“clusterProfiler.” Spearman’s correlation and bi-directional 
detection were computed using the Cor.test function in R. The 
survival-cutpoint function from the R package “survival” was 
applied to stratify the samples into distinct pyroptosis scores. 
Two-tailed P < .05 was considered statistically significant for all 
comparisons.

3. Results

3.1. Landscape of expression and genetic variations of 
pyroptosis-related genes in LUSC

The expression of 41 pyroptosis-related genes was explored 
in 502 LUSC and 49 normal samples from TCGA dataset, 
and 35 genes were identified as DEGs. As shown in Figure 1A, 
the expression of BAX, CASP3, CHMP4B, CHMP4C, CYCS, 
GSDME, HMGB1, TP53, TP63, AIM2, CASP6, GSDMB, 
GSDMC, and NLRP7 was upregulated, whereas that of another 
21 genes (CASP1, CASP4, CASP5, CHMP2B, CHMP6, CHMP7, 
GSDMD, GZMB, IL18, IL1B, IRF1, IRF2, CASP9, IL6, 
NLRP1, NOD1, NOD2, PRKACA, NLRP3, TIRAP, and TNF) 
was downregulated in malignant group. We then constructed a 
PPI network to determine the interactions between these pyro-
ptosis-related genes with a minimum required interaction score 
of 0.700 (Fig. 1B). With the exception of PYCARD, pyropto-
sis-related genes including NLRP3, GSDMD, NLRP1, CASP1, 
CASP3, TP53, and CASP5 were all differentially expressed in 
LUSC tissues and were highly interrelated with other genes in 
this network. Moreover, as shown in Figure 1C, NLRP3, AIM2, 
CASP4, and CASP5 were positively coexpressed, whereas TP63 
and CYCS showed negative coexpression trends within the cor-
relation network.

Furthermore, we investigated pyroptosis-related gene muta-
tions in TCGA samples. As shown in Figure 1D, since TP53 is 
well known to be frequently mutated in LUSC, TP53 mutations 
were excluded, and it was found that 113 of 491 (23.01%) sam-
ples demonstrated genetic mutations. Of these, NLRP3 showed 
the highest frequency of mutations, and missense mutations were 
the most common. The copy number variation (CNV) alteration 
frequency results demonstrated that 12 genes had copy num-
ber deletions, whereas AIM2, CHMP6, GSDMD, GSDMC, and 
TP63 showed widespread CNV amplifications (Fig.  1E). The 
locations of the CNV alterations in the 28 pyroptosis-related 
genes are shown in Figure 1F.

3.2. Identification of LUSC classification pattern mediated 
by pyroptosis-related genes

To further elucidate the potential LUSC classification pattern, 5 
GEO datasets containing LUSC cases with overall survival (OS) 
data and clinical information were examined. Kaplan–Meier 
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Figure 1. The landscape of expression and genetic variations of pyroptosis-related genes in LUSC. (A) The expression of 41 pyroptosis-related genes in LUSC 
tumor and normal samples. Yellow: Tumor, Green: Normal. *P < .05, **P < .01, ***P < .001. (B) A PPI network demonstrating the interactions of the pyropto-
sis-related genes (interaction score = 0.7). (C) The correlation network of the pyroptosis-related genes. Yellow: positive correlation; Green: negative correlation. 
The depth of the colors imitates the strength of the correlation. (D) The landscape of mutation profiles in 491 LUSC patients from TCGA dataset. The left panel 
indicates the mutation frequency ordered by gene frequencies. The right panel presents different mutation categories. (E) CNV frequency of pyroptosis-related 
genes in TCGA cohort. The height of the columns showed proportions of CNV deletion (Blue) and CNV amplification (Brown). (F) The location of CNV alteration 
of pyroptosis-related genes on chromosomes. CNV = copy number variations, LUSC = lung squamous cell carcinoma, PPI = protein-protein interactions, TCGA 
= The Cancer Genome Atlas.
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curves were constructed to screen for pyroptosis-related 
genes with prognostic value. The elevated expression of BAX 
(P = .048), TP63 (P = .018), NLRP2 (P = .043), CHMP6 
(P = .035), GZMB (P = .024), CYCS (P = .002), GSDMC 
(P = .038), and CASP3 (P = .018) was found to represent a bet-
ter survival rate; nevertheless, the high expression of NOD2 
(P < .001), NOD1 (P = .036), NLRP7 (P = .027), NLRP3 
(P = .012), IRF1 (P = .013), IL6 (P < .001), IL1B (P < .001), 
IL1A (P < .001), CASP9 (P = .019), GSDMD (P = .001), 
GSDME (P = .002), CHMP2B (P < .001), CHMP4C (P < .001), 
and CASP5 (P = .019) suggest a poor prognosis (see Figure S1, 
Supplemental Digital Content 1, http://links.lww.com/MD/
H203, which illustrates overall survival in different pyropto-
sis-related gene expressions). Next, a summarized network of 
pyroptosis-related genes that might be involved in canonical 
and non-canonical inflammasome pathways was created, and 
the gene correlations and prognostic values were panoramically 
illustrated. The results indicated that canonical and non-canon-
ical inflammasome pathways might not function independently 
but interact with each other in cancer deterioration (Fig. 2A). 
Based on the consensus clustering of 41 pyroptosis-related 
genes, we identified 4 classification patterns: 328 samples in 
ClusterA, 72 samples in ClusterB, 164 samples in ClusterC and 
269 samples in ClusterD (Fig. 2B). Prognostic analysis showed a 
significant survival advantage in ClusterD and a relatively worse 
survival in ClusterC (P = .005, Fig. 2C). Moreover, as shown in 
Figure  2D, prominent variations in expression were observed 
among these pyroptosis clusters. The expression of CASP4, 
CASP5, IL1A, IL1B, IRF1, AIM2, IL6, TNF, NLRP3, NLRP7, 
and NOD2 is significantly diminished in ClusterD; IL1A and 
TP63 expression is significantly mitigated in ClusterB, and 
CASP5, IL1A, IL1B, IRF1, AIM2, and IL6 expression is nota-
bly ameliorated in ClusterC.

GSVA was conducted to further delineate the molecular 
mechanisms underlying distinct pyroptosis expression patterns, 
and KEGG heatmaps were constructed to provide a more intu-
itive interpretation of clustering differences. The enrichment 
pathways of ClusterA are principally associated with innate 
immune processes and stromal formation, such as focal adhe-
sion (Fig. 2E and G). ClusterC is significantly associated with 
immune signaling processes such as NOD-like receptor signal-
ing, Toll-like receptor signaling, RIG-I-like receptor signaling 
pathways, cytokine-receptor interaction, T cell receptor sig-
naling pathway, and natural killer cell-mediated cytotoxicity 
(Fig. 2F and J). ClusterD is enriched mainly in the Hedgehog 
signaling pathway and basal cell carcinoma (Fig. 2I). However, 
ClusterB is highly enriched in primary immunodeficiency and 
metabolic diseases, such as type I diabetes and autoimmune 
thyroid disease (Fig. 2E, H, and I). In particular, compared to 
clusters A, C, and D, ClusterB presents a significantly downreg-
ulated activity of oncogenic pathways including the P53 signal-
ing pathway, MAPK signaling pathway, Wnt signaling pathway, 
ErbB signaling pathway, and other pathways in malignancy 
such as basal cell carcinoma, small cell lung cancer, and glioma 
(Fig. 2E, H, and J).

3.3. Immune infiltration landscape characterization of 
distinct pyroptosis clusters

Previous studies have shown that the classification of various 
types of TME in LUSC is primarily correlated with the distri-
bution of tumor immune cell infiltrates and the expression of 
immune checkpoints such as PD-L1. ssGSEA was used to gen-
erate a heatmap that visualizes the abundance of 23 infiltrating 
immunocytes from different pyroptosis clusters (Fig.  3A). As 
shown in Figure 3A and B, activated B cells, activated CD4 cells, 
activated CD8 cells, and natural killer T cells, which mainly 
exert anti-tumor functions, are significantly concentrated in both 
clusters B and C. In ClusterD, the population of most of these 

23 infiltrating cells are diminished, which obviously represents 
the immune-desert landscape, except for CD56 bright natural 
killer cells, the populations of which are remarkably downreg-
ulated in ClusterB. The immune infiltration pattern in ClusterA 
shows a modest expression level compared to the other clusters. 
In addition, we examined the PD-L1 expression level in multiple 
pyroptosis clusters and found that ClusterC shows a notably 
elevated level of PD-L1, followed by clusters B and A (Fig. 3C). 
As expected, ClusterD has the lowest PD-L1 level.

To further determine whether the abundance of immune cells 
is retained in the tumor center or the stroma surrounding the 
tumor parenchyma, the ESTIMATE algorithm was used to cal-
culate the immune score and tumor purity of the 4 pyroptosis 
clusters (Fig. 3D and E). The results demonstrated that ClusterB 
has the highest immune score but the lowest tumor purity sug-
gesting that tumors in ClusterB might be surrounded by more 
non-tumor ingredients, especially non-infiltrating immune cells 
or stromal cells. However, ClusterD possesses the lowest stro-
mal and immune scores and the highest tumor purity, indicat-
ing its immune-desert phenotype. Thus, the 4 pyroptosis-related 
clusters were categorized by distinct immune infiltration pat-
terns: ClusterA is an immune non-functional phenotype charac-
terized by immune cell infiltration with low PD-L1 expression; 
ClusterB is characterized by immune infiltration at the tumor 
margin (immune-exclusion); ClusterC is immune-responsive 
with activated immune infiltration and increased PD-L1 expres-
sion; and ClusterD is as an immune-ignorant phenotype with no 
immune infiltration.

3.4. Development of a scoring method based on pyroptosis 
regulatory patterns

DEGs reflect the inherent discrepancy within the 4 pyroptosis 
clusters and represent critical discriminating indicators when 
comparing the clusters. A Venn diagram was used to ascertain 
the overlapping DEGs, and 17 DEGs representing different reg-
ulatory patterns were identified (Fig. 4A). GO and KEGG analy-
ses showed that these 17 DEGs are mainly enriched in signaling 
pathways regulating the pluripotency of stem cells, positive 
regulation of intracellular transport, organophosphate biosyn-
thetic process, and neuron projection morphogenesis (see Figure 
S2A, Supplemental Digital Content 2, http://links.lww.com/
MD/H204, which shows KEGG and GO enrichment analysis 
of 17 intersected DEGS). Furthermore, 12 genes were identified 
with prognostic values using univariate Cox regression analy-
sis (Table  1). Based on these prognostic gene expressions, we 
used a consensus clustering method, and 3 transcriptomic phe-
notypes were acquired (Fig. 4B). We found that the expression 
of FGFR2, SOX2, IGSF11, DVL3, NCBP2, ABCF3, SOX21, 
NTS, and SPAST were critically suppressed in gene-C2, whereas 
they were highly expressed in gene-C3. In gene-C1, NTS also 
showed a diminished expression. Conversely, ACSL5, LAMC2, 
and P2RY6 were upregulated in gene-C2 but downregulated in 
gene-C3 (Fig.  4C). Moreover, obvious prognostic differences 
were observed among the 3 pyroptosis gene subgroups. It was 
shown that gene-C3 is correlated with better outcomes, whereas 
gene-C2 demonstrated a relatively worse prognosis (Fig.  4D, 
P = .003). As shown in Figure 4E, we also examined the expres-
sion levels of the 41 pyroptosis-related genes, and significant 
expression differences were observed among the 3 pyroptosis 
gene subgroups.

To apply these classifications to the clinical therapy of LUSC 
and to quantify the degree of pyroptosis, we constructed a scor-
ing method based on 12 prognostic pyroptosis signature genes 
(Table 1). We first examined the pyroptosis score in pyroptosis and 
gene clusters, and significant results were observed in these correla-
tion analyses, indicating that the pyroptosis score could serve as an 
explicit cluster-distinguishing factor (Fig. 4F and G). Additionally, 
we divided the patients into high and low pyroptosis scores with 

http://links.lww.com/MD/H203
http://links.lww.com/MD/H203
http://links.lww.com/MD/H204
http://links.lww.com/MD/H204
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Figure 2. LUSC classification pattern mediated by pyroptosis-related genes and relevant KEGG pathway enrichment. (A) The interaction of 41 pyroptosis 
regulators expressions in LUSC. The pyroptosis-related genes involving inflammasome pathways are shown on the left side of the circles. Yellow: canonical 
inflammasome pathway; Grey: non-canonical inflammasome pathway; Red: both inflammasome pathways. The lines represent the interaction of each pyro-
ptosis gene and the size of the circles show the prognosis effect scaled by the P-value. Green: defensive factors for patient survival; Purple: risk factors for 
patients’ survival. (B) The consensus score matrix of all samples when k = 4 in TCGA and GEO cohorts (GSE17710, GSE30219, GSE37745, GSE41271, 
and GSE73403). (C) Overall survival curves of the 4 pyroptosis clusters based on 833 patients with LUSC (Log-rank test, P = .005). (D) A heatmap was used 
to visualize the variant pyroptosis-related gene expression among distinct pyroptosis clusters. Clinicopathological information including age, sex, stage, and 
survival status is revealed in the above annotations. Red: high expression; blue: low expression. (E–J) These heatmaps showed the KEGG pathway differences 
analyzed by GSVA between every 2 pyroptosis-related clusters with Bayes moderation. (E) A vs B; (F) A vs C; (G) A vs D; (H) B vs C; (J) C vs D; (I) B vs D. Yellow 
embodied the high expression and green embodied the low expression. GEO = gene expression omnibus, GSVA = gene set variation analysis, KEGG = Kyoto 
Encyclopedia of Genes and Genomes, LUSC = lung squamous cell carcinoma, TCGA = The Cancer Genome Atlas.
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the best cut-off value of −0.352. Next, we analyzed immunog-
enomic profiling of patients with LUSC using ssGSEA and clas-
sified them into immunity-high and immunity-low subtypes to 
associate the pyroptosis regulatory TME patterns (Fig.  4H). To 
visualize the multi-stage design of the quantification of pyroptosis 
regulation, we illustrated an alluvial diagram to unfold the pro-
cess of pyroptosis score construction with immune infiltration 

features (Fig. 4I). The results indicated that pyroptosis-ClusterA, 
classified as gene-C3, is mostly linked to a low immunity level. 
Pyroptosis-ClusterB is assembled mainly in gene-C1 and -C2 and 
presents a high immunity level, and pyroptosis-ClusterB, which is 
simultaneously exhibited in gene-C3, exhibits a restrained immu-
nity. Notably, samples from pyroptosis-ClusterB were significantly 
associated with a lower pyroptosis score.

Figure 3. Immune microenvironment infiltration landscape characterization of distinct pyroptosis clusters. (A) A heatmap was used to visualize immune infil-
trating cell discrepancy among the 4 pyroptosis clusters. Red embodies high expression and blue embodies low expression. (B) The fraction of TILs among 
pyroptosis clusters with the ssGSEA algorithm. The line embodies the median value. The scattered dots represent distinct immune cell expression values. (C) 
Comparison of PD-L1 expression level across 4 pyroptosis-related clusters. (D–E) The stromal score, immune score, ESTIMATE score (D) and tumor purity 
(E) of 4 clusters were analyzed and plotted. *P < .05, **P < .01, ***P < .001, *****P < 1 × 10-5. ssGSEA = single sample gene set enrichment analysis, TILs = 
tumor-infiltrating lymphocytes.
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Figure 4. Construction of a scoring method based on pyroptosis regulatory patterns. (A) 17 pyroptosis cluster DEGs among the 4 clusters were shown in the 
Venn diagram. (B) The consensus score matrix of all samples when k = 3 in TCGA and GEO cohorts (GSE17710, GSE30219, GSE37745, GSE41271, and 
GSE73403) based on the 17 DEGs. (C) 12 DEGs identified using prognostic value by univariate Cox regression analysis in 3 gene clusters were shown in the 
heatmap. Clinicopathological information including age, sex, stage, and survival status were revealed in the above annotations. Red: high expression; blue: low 
expression. (D) Kaplan–Meier curves show overall survival of the patients in 3 gene clusters (Log-rank test, P = .003). € Variant expression of 41 pyroptosis-re-
lated genes among the 3 gene clusters. The line embodies the median value. The scattered dots represent distinct pyroptosis gene expression levels. *P < .05, 
**P < .01, ***P < .001. (F–G) Distribution of pyroptosis score in the different pyroptosis clusters (F) and gene clusters (G). The differences amid every 2 groups 
were compared using the Kruskal–Wallis H test. Precise P values are shown in the graph. (H) Totally, 833 samples were divided into immunity-high level and 
immunity-low level according to the ssGSEA analysis. Red: immunity-high; Blue: immunity-low. (I) Alluvial diagram of pyroptosis clusters and gene clusters in 
groups with different immunity level, pyroptosis score, and survival status. DEGs = differentially expressed genes, GEO = gene expression omnibus, ssGSEA = 
single sample gene set enrichment analysis, TCGA = The Cancer Genome Atlas.
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3.5. Pyroptosis score association with LUSC clinical 
characteristics and TME alterations

To evaluate the prognostic ability of the pyroptosis score in pre-
dicting the outcomes of patients with LUSC, a Kaplan–Meier 
curve was constructed, and patients with a low pyroptosis score 
were meaningfully related with a worse prognosis, as expected 
(P = .009, Fig. 5A). We further explored the association between 
clinical characteristics and pyroptosis score subgroups, and 
the results indicated that males had a higher pyroptosis score 
than females (Fig.  5B and C). However, age and TNM stage 
did not demonstrate any association with pyroptosis scores (see 
Figure S2B–G, Supplemental Digital Content 2, http://links.lww.
com/MD/H204, which demonstrated the association between 
pyroptosis score and clinical features). Further stratified sur-
vival analysis showed that for both female and male patients 
aged > 65 years, a high pyroptosis score was significantly asso-
ciated with a better prognosis. Nonetheless, patients with early 
stage LUSC (stage I-II) with a high pyroptosis score suffer from 
a poor prognosis (Fig. 5D–G; see Figure S2H–I, Supplemental 
Digital Content 2, http://links.lww.com/MD/H204, which 
illustrates overall survival curves based on clinical features). 
Moreover, univariate and multivariate regression analyses 
revealed that age, T stage, and pyroptosis score could serve as 
independent predictors affecting the prognosis of patients with 
LUSC (Fig. 5H and I).

We then built a prognostic nomogram integrating the pyro-
ptosis score and clinicopathological variables such as age and 
TNM stage to strengthen the predictive ability in patients with 
LUSC (Fig. 5J). Survival status at 1, 3, and 5 years was used as a 
parameter of clinical outcome. The calibration plots were highly 
consistent with the OS predictions and the actual observations 
of the 1-, 3-, and 5-year survival rates, and the results of receiver 
operating characteristic (ROC) curves confirmed the predic-
tion advantage of this scoring scheme (1-year area under the 
curve (AUC) = 0.620, 3-year AUC = 0.660, 5-year AUC = 0.656; 
Fig. 5K and L).

According to the aforementioned results, the pyroptosis score 
is considered a good indicator for clinical prediction. We then 
investigated the role of the pyroptosis score in TME alterations. 
We first inspected the correlation between pyroptosis and infil-
tration scores in the LUSC microenvironment. ESTIMATE 
scores showed that stromal and immune scores were attenuated 
as pyroptosis score increased (Fig. 5M). The abundance of infil-
trating immunocytes was evaluated using the pyroptosis score. 
Identical to our prediction, almost all the immune infiltration 
subtypes were negatively related with pyroptosis scores, such as 
activated B cells, activated CD4+ T cells, activated CD8+ T cells, 
and natural killer T cells (Fig. 5N). The type 2 T helper cells 
showed no correlation with pyroptosis scores. To further clarify 

the immune cell variance from different pyroptosis score sub-
groups, a heatmap was generated to show the infiltrated immu-
nocyte abundance according to the ESTIMATE and pyroptosis 
scores (Fig. 5O). The results clearly showed that low-score group 
had a more active immune response than high-score group. 
Tumors could be referred to as “immune-hot” and “immune-
cold” depending on their TME infiltration cells, which showed 
different responses to immunotherapy.[21] Therefore, as indi-
cated, low-score group could be classified into “immune-hot” 
and high score group was evidently “immune-cold” subgroup.

3.6. The role of pyroptosis score in predicting ICI 
immunotherapy

Accumulating evidence has shown that genomic somatic 
mutations, tumor mutational burden (TMB), and micro-
satellite instability (MSI) might serve as biomarkers for ICI 
immunotherapy outcomes, similar to immune cell infiltration. 
The distribution of mutated genes was appraised individ-
ually from high and low pyroptosis score groups, and low 
pyroptosis score group was shown to exhibit 100% mutation 
frequencies (Fig.  6A). Significantly mutated gene landscapes 
showed that TP53, TTN, and CSMD3 retain elevated somatic 
mutation rates in high pyroptosis score group (low vs high, 
62% vs 78%, 62% vs 70%, and 35% vs 41%, respectively). 
Alternatively, MUC16 and RYR2 mutations were more fre-
quent in low score group (39% vs 34% and 38% vs 31%, 
respectively). Missense mutations remain the most prevalent 
mutation type in all frequently mutated genes. Moreover, we 
explored the TMB and MSI of different pyroptosis scores in 
TCGA cohort and discovered that lower score group had a 
higher MSI, whereas no significant results were observed for 
TMB (Fig. 6B–E). We also found a connection between pyro-
ptosis clusters and MSI, which suggested that pyroptosis-Clus-
terD with the highest pyroptosis score has the highest MSI, 
whereas pyroptosis-ClusterB with the lowest score is associ-
ated with the lowest MSI (R = −0.21, P < .001). Consistent 
with previous studies, prognosis analysis demonstrated that 
patients with LUSC with higher TMB and MSI had a better 
prognosis (P < .001, P = .024, Fig. 6F and G). In addition, we 
combined TMB and MSI with pyroptosis scores and classi-
fied them into 4 components (Fig. 6H and I). We found that 
patients with both high TMB and pyroptosis scores had a sig-
nificantly better prognosis than patients with low TMB and 
pyroptosis scores. Reciprocally, the combination of MSI and 
pyroptosis scores did not demonstrate a significant outcome 
prediction. Considering these results, the pyroptosis score 
might be a valuable predictor of the survival of patients with 
LUSC. When combined with TMB, the pyroptosis score takes 
a step further in improving the prediction performance com-
pared to the pyroptosis score applied alone.

ICI treatment, represented by PD-L1 and CTLA-4 inhibi-
tors, is ubiquitously used in NSCLC therapy. We first checked 
the expression variation of immune checkpoints according 
to the pyroptosis scores and found that except for PD-L1, 
CTLA-4, GAL-9, and LAG-3 were highly expressed in high 
pyroptosis score group, suggesting a better response to immu-
notherapy (Fig.  6J). Considering the tight linkage between 
pyroptosis scores and LUSC microenvironment, emerging 
indicators of immunotherapy such as tumor immune dysfunc-
tion and exclusion (TIDE) and immunophenoscore (IPS) were 
utilized in TCGA cohort to predict the response to ICI ther-
apy. Our results showed that TIDE was negatively correlated 
with the pyroptosis score. Moreover, high pyroptosis score 
group showed higher immune exclusion and lower immune 
dysfunction (Fig.  6K–M). We further gauged the connec-
tion between the pyroptosis score and ICI therapy response 
with anti-CTLA4 and anti-PD-L1 treatment. The IPS results 
showed that for patients who did not receive immune therapy, 

Table 1

The overlapping differential expressing genes with a significant 
prognostic impact with a univariate Cox regression model.

Gene P value HR (95% CI) 

FGFR2 .001 0.879 (0.813–0.950)
ACSL5 .026 1.097 (1.011–1.190)
LAMC2 .005 1.090 (1.026–1.158)
SOX2 .002 0.929 (0.891–0.969)
IGSF11 .011 0.897 (0.825–0.976)
DVL3 .043 0.886 (0.788–0.996)
NCBP2 .047 0.867 (0.753–0.998)
ABCF3 .035 0.855 (0.738–0.989)
SOX21 .027 0.939 (0.888–0.993)
NTS <.001 0.950 (0.924–0.976)
P2RY6 .021 1.130 (1.019–1.253)
SPAST .003 0.818 (0.717–0.933)

CI = confidence interval, HR = hazard ratio.

http://links.lww.com/MD/H204
http://links.lww.com/MD/H204
http://links.lww.com/MD/H204
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Figure 5. Pyroptosis score association with LUSC clinical characteristics and TME immune infiltration. (A) Kaplan–Meier curves showed overall survival of the 
patients associated with different pyroptosis scores (Log-rank test, P = .009). (B) The correlation of pyroptosis score with the gender of patients. (C) The proportion 
of patients’ gender in the pyroptosis score groups. (D–G) Overall survival curves for the pyroptosis score groups based on patients’ clinical characteristics such as 
age >65 (D, Log-rank test, P = .002), male (E, Log-rank test, P = .037), (F, Log-rank test, P = .035) and stage I–II (G, Log-rank test, P = .002). Red: low pyroptosis 
score; Blue: high pyroptosis score. (H–I) Hazard ratio and P-value of the constituents involved in the univariate (H) and multivariate (I) Cox regression considering 
clinical characteristics and pyroptosis scores in LUSC. (J–L) A nomogram to predict the 1-, 3-, and 5-year overall survival rate of patients with LUSC (J). An example 
was shown in the nomogram as red dots representing a patient with LUSC who was a 62-year-old female with T1N0M0 stage and a low pyroptosis score. She was 
calculated as 240 points with a survival time of 37.90% probability and <5 years, 28.8% probability and <3 years, and 9.41% probability and <1 year. Calibration 
curves for the overall survival nomogram model (K) and ROC curves for the predictive efficiency of the pyroptosis score (L). (M) The stromal score, immune score, 
and ESTIMATE score of different pyroptosis score groups were analyzed and plotted. *P < .05, **P < .01, ***P < .001. (N–O) Correlation between pyroptosis scores 
and the immune infiltration cells using Spearman analysis (N) and a heatmap visualizing the abundance of tumor-infiltrating lymphocytes (O). The negative correlation 
was marked with blue and the positive correlation was marked with red. ESTIMATE scores such as immune score, stromal score, and tumor purity are shown in 
annotations above. LUSC = lung squamous cell carcinoma, ROC = receiver operating characteristic, TME = tumor immune microenvironment.
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Figure 6. The role of pyroptosis score in predicting ICI immunotherapy benefits. (A) Mutational landscape of frequently mutated genes in TCGA-LUSC stratified 
by low (left) and high pyroptosis scores (right). Each column represents individual patients. The number on the right indicates the mutation frequency in each 
gene. (B–E) The relationship between pyroptosis score and high or low TMB (B), as well as MSI (D). The correlation of pyroptosis score with TMB and MSI in 
different pyroptosis clusters are also shown in C and E. (F–I) Overall survival curves for the TMB (F) and MSI (G) and the combination of TMB with pyroptosis 
scores (H), as well as MSI with pyroptosis scores (I) based on patients in TCGA-LUSC cohort. (J) Differential expression of immune checkpoints in high or low 
pyroptosis score group. *P < .05, **P < .01, ***P < .001. (K–M) The relative distribution of TIDE was compared between pyroptosis score groups in TCGA-LUSC 
cohort (K) simultaneously calculating immune dysfunction (L) and exclusion (M). (N–Q) The relative distribution of IPS was compared between pyroptosis score 
subgroups in TCGA-LUSC cohort representing patients receiving no ICI therapy (N), anti-PD-1 therapy (O), anti-CTLA-4 therapy (P), and anti-PD-1/CTLA-4 
therapy (Q). ICI = immune checkpoint inhibitor, IPS = immunophenoscore, LUSC = lung squamous cell carcinoma, MSI = microsatellite instability, TCGA = The 
Cancer Genome Atlas, TIDE = tumor immune dysfunction and exclusion, TMB = tumor mutational burden.
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a significant difference was observed between the pyropto-
sis score subgroups (P < .001). Once patients received one of 
these 2 ICI therapies, patients in low pyroptosis score group 
therapeutically benefited more than those in high score group 
(anti-CTLA-4: P < .001; anti-PD-L1: P < .001; anti-CTLA-4 
and anti-PD-L1: P < .001; Fig.  6N–Q). Taken together, our 
results strongly suggest that the pyroptosis score might predict 
the response to immunotherapies.

3.7. Clinical experimental validation

We performed IHC and RNA-seq validation of the clinical spec-
imens following the steps described above. IHC results showed 
that ABCF3, IGSF11, P2RY6, and SOX2 proteins were expressed 
at higher levels in LUSC tissues than in normal tissues, whereas 
FGFR2 expression was diminished in tumors (Fig. 7A–E). In the 
Human Protein Atlas (HPA) database validation, ACSL5, DVL3, 
LAMC2, and SPASR showed higher expression in LUSC sam-
ples, whereas NTS and SOX21 showed no evident difference in 
expression between tumor and normal tissues (see Figure S3A–
F, Supplemental Digital Content 3, http://links.lww.com/MD/
H205, which shows IHC images of candidate genes in HPA).

In our RNA-seq database validation, only ACSL5, FGFR2, 
LAMC2, and P2RY6 showed differential expression between 
tumor and normal tissues, among which ACSL5 (P < .01) and 
P2RY6 (P < .001) were upregulated, whereas FGFR2 (P < .01) 
and LAMC2 (P < .01) were downregulated in LUSC tissues 
(Fig. 7F–I, see Figure S3G–N, Supplemental Digital Content 3, 
http://links.lww.com/MD/H205, which shows expression levels 

of candidate genes). Interestingly, the LAMC2 levels found 
here were not consistent with the IHC results, which might be 
explained by limited sample size and gene regulation.

4. Discussion
Chronic inflammation is a prolonged immune response that 
contributes to the pathogenesis of cancer.[37] As a lytic, pro-in-
flammatory type of cell death, pyroptosis leads to inflammation 
induced by various stimuli and plays a pivotal role in many 
cancers.[38] Although mounting studies have emphasized the 
reprogramming roles of pyroptosis in the tumor immune micro-
environment, the general TME features facilitated by pyropto-
sis factors have not been given a comprehensive insight.[39,40] 
Therefore, exploring the alterations in the immune microen-
vironment and its association with pyroptosis will provide an 
in-depth understanding of the LUSC inflammation response and 
offer an innovative immunotherapy strategy.

In our study, 4 pyroptosis-related clusters, characterized by 
tumor PD-L1 expression and immune infiltration profusion, were 
discovered. Pyroptosis-ClusterA is distinguished by restrained 
PD-L1 expression with TIL, indicating that non-functional 
immune cell infiltration might be induced by certain suppressors 
involved in promoting immune tolerance. Pyroptosis-ClusterC is 
obviously characterized by an ameliorated PD-L1 level together 
with abundant TILs, representing an active immune response. The 
pyroptosis-ClusterD is characterized by PD-L1 negativity with no 
TIL corresponding to an immune-ignorant phenotype. Pyroptosis-
ClusterB could be classified as intrinsic induction immunocyte 

Figure 7. Validation of candidate gene expression in clinical tissue samples. (A–E) Representative images of IHC staining in clinical samples. (A) ABCF3; 
(B) FGFR2; (C) IGSF11; (D) P2RY6; (E) SOX2. The upper row of each figure represents tumor tissues and the lower row represents normal tissues. Scale 
bar = 20 μm: magnification = ×10; Scale bar = 100 μm: magnification = ×40. (F–I) The expression levels of ACSL5 (F), FGFR2 (G), LAMC2 (H) and P2RY6 (I) in 
normal and LUSC tissues in our own RNA-seq database. **P < .01, ***P < .001. IHC = immunohistochemistry, LUSC = lung squamous cell carcinoma, ns = 
not significant.

http://links.lww.com/MD/H205
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infiltration with diminished tumor purity. Specifically, studies 
have shown that this type of TME classification might be more 
commonly accompanied by oncogenic mutation-driven mecha-
nism.[41,42] We identified that typical oncogenic pathways such as 
P53 signaling, MAPK signaling, Wnt signaling, and ErbB signal-
ing pathways are significantly attenuated in the pyroptosis-Clus-
terB, which might be interpreted by mutations of the genes 
involved in the pathway. The state of “immunological ignorance” 
(pyroptosis-ClusterD) and “immune exclusion” (pyroptosis-Clus-
terB), which could be termed an immunologically quiet TME, has 
been verified to be associated with a poor response to ICIs.[43] 
The immune phenotype of pyroptosis-ClusterC supported the 
potential benefits of a single anti-PD-L1 blockade, which could 
be explained by its pre-existing intratumoral T cells being turned 
off by PD-L1.[44] Moreover, we found that pyroptosis-related 
regulators exhibit different expression levels among these 4 clus-
ters owing to various heterogeneities, which showed positive 
correlations with immune cell infiltration abundance. Wang et 
al[45] conducted single-cell sequencing and discovered that pyro-
ptosis-inducible therapy increases NK, CD4+ T, and CD8+ T cell 
infiltration in breast cancer. Meanwhile, pyroptosis can eliminate 
the populations of monocytes, neutrophils, and myeloid-derived 
suppressor cells, as well as induce the polarization of macrophage 
M1.[45] In particular, the tumor suppressive effect of GSDME, a 
well-known non-canonical inflammasome member, was observed 
in immune-deficient mice that lack a pyroptosis-dependent anti-
tumor immune response.[46,47] Moreover, GSDME expression was 
found to increase antitumor immunity by enhancing the function 
and abundance of NK lymphocytes to prevent immune evasion of 
tumor.[48,49] Consistent with previous studies, our results demon-
strated that GSDME expression and NK lymphocyte infiltration 
are simultaneously restrained in pyroptosis-ClusterB, indicating 
the lack of non-canonical pyroptosis inflammasome pathways 
and possible immune evasion in ClusterB. Apart from the mech-
anism of directly eradicating tumor cells, pyroptosis may also 
overcome immunosuppression and reactivate adaptive antitumor 
immune responses.[50] According to the findings, we conjecture 
that pyroptosis-related genes might provide an opportunity to 
turn “cold” tumor to “hot” and overcome the immune-desert 
phenotype of TME.

We identified 17 DEGs from 4 pyroptosis subgroups, and 
these 17 genes are significantly enriched in the cell differentiation 
process and intracellular transport, which might be considered 
pyroptosis-related gene signatures. Based on these 17 pyropto-
sis signature genes, 3 transcriptomic subtypes were clustered by 
consensus, which provide an accurate long-term survival pre-
diction. To further guide individual treatments for patients with 
LUSC, we developed a pyroptosis scoring method to quantify 
the heterogeneity between distinct pyroptosis patterns. Our 
results verified that immune-responsive and immune-exclusion 
phenotypes showed a lower pyroptosis score, whereas immune-
non-functional and immune-ignorant phenotypes mainly exhib-
ited a higher pyroptosis score. In addition, the pyroptosis score 
could effectively discriminate between pyroptosis clusters and 
gene signature clusters, which emphasized that pyroptosis scores 
could represent patients with different pyroptosis regulation 
patterns. A low pyroptosis score is remarkably correlated with 
worse clinical traits and worse prognosis. The pyroptosis score 
is positively associated with MSI and enhanced the ability to 
predict LUSC prognosis when combined with TMB, suggesting 
that the pyroptosis score could provide sufficient information 
on patient outcomes. Further analysis was performed to evalu-
ate the mutation frequencies of the onco-driver genes to gain a 
better understanding of pyroptosis scores in cancer progression. 
We found that MUC16 and RYR2 mutations were more fre-
quent in low score subgroup, whereas TP53, TTN, and CSMD3 
had a novel mutation rate in this high score subgroup. Previous 
studies have shown that MUC16 mutations are associated with 
higher immune response rates, prolonged OS, and better anti-
PD-L1 response, especially in NSCLC.[51] The RYR2 mutational 

signature was correlated with the presence of dendritic cells, 
which were more efficient in stimulating T-cell proliferation.[52] 
It has been reported that the RYR2 mutation is associated with 
a favorable outcome and immune infiltration in high PD-L1-
expressing tumors.[52] TP53 and TTN are widespread mutated 
genes in LUSC, and both mutations could serve as predictors of 
improved outcomes in response to ICI therapy.[52] The CSMD3 
mutation was found to be related to resistance to etoposide 
in small-cell lung cancer.[53] However, limited evidence exists 
regarding the role of CSMD3 mutations in the immune regu-
lation of cancer. These pyroptosis-related oncogene mutations 
were confirmed in our study to be linked to immune activity, sig-
nifying the potential role of pyroptosis in the immunogenomic 
features of LUSC.

Using the TIDE and IPS methods, the vigorous estimation 
capacity of the pyroptosis score in ICI therapy response was 
confirmed in our analysis. TME infiltration results demon-
strated that the pyroptosis score was valuable for immunother-
apy response, and stimulated immune cell infiltration led to a 
low pyroptosis score and better response to ICI therapy. ICI 
treatment efficacy is limited, and approximately one-third of 
patients are responsive.[35] For tumors deemed “cold,” ICIs could 
efficiently kill cold tumor cells with the concomitant induction 
of pyroptosis.[54] Zhou et al[1] found that granzyme A could 
trigger tumor cell pyroptosis through the cleavage of GSDMB, 
which could play a pivotal role in cytotoxin-induced pyropto-
sis. GSDMD is upregulated in activated CD8+ T cells, and its 
downregulation might reduce its cytolytic capacity in lung can-
cer.[55,56] A synergistic effect of ICI- and GSDM family-mediated 
cell membrane defects induces intense inflammatory responses 
and massive infiltration of lymphocytes, which positively form a 
feedback to induce pyroptosis.[46,57]

Although we included most of the pyroptosis-related genes 
as well as all GEO datasets containing LUSC samples and per-
formed multi-perspective analysis, our study still has limita-
tions. First, our study did not show a correlation between the 
pyroptosis score and clinicopathological characteristics, such 
as smoking status, KRAS/EGFR/STK11 mutations, and dis-
tant metastasis, which require more extensive information to 
improve accuracy. Second, no significant results were implied 
between pyroptosis score and TMB of LUSC in TCGA cohorts, 
which still needs validation to confirm their relationship. In 
addition, all databases utilized in this study were retrospective, 
and a well-designed prospective cohort of patients with LUSC 
receiving immunotherapy is recommended.

In this study, we estimated the pyroptosis regulatory pat-
terns of 833 LUSC samples based on 41 pyroptosis-related 
genes and classified them according to specific TME infil-
tration features. Our integrated analysis provides a deeper 
understanding of the role of pyroptosis in cancer immunity 
regulation, and precise evaluation of the pyroptosis signature 
will enhance our prediction of LUSC prognosis and ICI treat-
ment response.
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