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Abstract The complexity of biological neural networks
does not allow to directly relate their biophysical prop-
erties to the dynamics of their electrical activity. We
present a reservoir computing approach for function-
ally identifying a biological neural network, i.e. for
building an artificial system that is functionally equiv-
alent to the reference biological network. Employing
feed-forward and recurrent networks with fading mem-
ory, i.e. reservoirs, we propose a point process based
learning algorithm to train the internal parameters of
the reservoir and the connectivity between the reser-
voir and the memoryless readout neurons. Specifically,
the model is an Echo State Network (ESN) with leaky
integrator neurons, whose individual leakage time con-
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stants are also adapted. The proposed ESN algorithm
learns a predictive model of stimulus-response relations
in in vitro and simulated networks, i.e. it models their
response dynamics. Receiver Operating Characteristic
(ROC) curve analysis indicates that these ESNs can
imitate the response signal of a reference biological
network. Reservoir adaptation improved the perfor-
mance of an ESN over readout-only training methods
in many cases. This also held for adaptive feed-
forward reservoirs, which had no recurrent dynamics.
We demonstrate the predictive power of these ESNs
on various tasks with cultured and simulated biological
neural networks.

Keywords Cultured neural networks ·
Echo State Networks · Reservoir computing

1 Introduction

One central goal in neuroscience is to understand how
the brain represents, processes, and conveys infor-
mation. Starting from Hebb’s cell assemblies (Brown
and Milner 2003; Hebb 1949), many neurobiologically
founded theories and hypotheses have been developed
towards this goal. It stands clear now that spikes are
the elemental quanta of information processing in the
mammalian cortex (Hodgkin and Huxley 1952; Kandel
et al. 2000). As a result of extensive experiments of
cortical recordings, it has been widely postulated and
accepted that function and information of the cortex
are encoded in the spatio-temporal network dynam-
ics (Abeles et al. 1993; Lindsey et al. 1997; Mainen and
Sejnowski 1995; Prut et al. 1998; Riehle et al. 1997; Villa
et al. 1999). The right level of describing the dynamics,
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however, is a matter of intensive discussions (Prut et al.
1998; Rieke et al. 1999). Are spike rates or spike timings
more relevant? What is the right temporal precision
if the latter proves significant? What should be the
spatial resolution of this description? How far can the
population activity of neurons be related to function
or behavior? Does the correlated activity of multiple
neurons indicate a functionally relevant state?

Depending on the answers to the above questions
one would preferably apply different models to relate
the network activity to function. Another approach is
to employ a generic network model, which can be as-
sumed to be universal for problems of neural encoding.
The parameters of the model would be learned by
adaptive algorithms. Obviously, such a model should
be able to deal with single spikes with high temporal
precision as well as population rates. It should also be
able to catch, with the appropriate parameters, network
synchrony and polychrony (Izhikevich 2006).

1.1 Reservoir computing

Liquid State Machines (LSM) and Echo State Net-
works (ESN) have been introduced as efficiently learn-
ing recurrent neural networks (Jaeger 2001; Maass
et al. 2002). The common key contribution of these ap-
proaches is the proposal of a recurrent neural network
with a fixed connectivity, i.e. a reservoir, which does not
have stable states and has a fading memory of the pre-
vious inputs and network states. In response to an input
stream, the reservoir generates a higher-dimensional
spatio-temporal dynamics reflecting the structure in the
input stream. The higher dimensional reservoir state
can be mapped to a target output stream online, with a
second module, namely a readout. LSMs are networks
of spiking integrate-and-fire (IAF) neurons whereas
ESNs use continuous valued sigmoid neurons and a
single layer of readout neurons (see Section 2).

With the appropriate parameters, reservoir dynam-
ics can be sensitive to different features of the input
such as correlations, polychronous and synchronous
spikes, different frequency bands or even temporally
precise single spikes. For instance, LSMs can approx-
imate any time invariant filter with fading memory if
their traces of internal states differ at least for one time
point in response to any two different input streams
(Separation Property, SP) and if the readout modules
can approximate any continuous function from R

m →
R, where m ∈ N (Approximation Property, AP) (Maass
et al. 2002). Satisfying the separation property depends
on whether the reservoir is composed of sufficient basis
filters. A random reservoir needs to have a rich reper-
toire of basis filters in order to approximate the target

time-invariant filter. This could be achieved for several
tasks with sufficiently large random reservoirs (Maass
et al. 2002). Furthermore, reservoirs have been shown
to simulate a large class of higher order differential
equations with appropriate feedback and readout func-
tions (Maass et al. 2007). These findings suggest that
reservoir computing can be used as a generic tool for
the problems of neural encoding.

Biological neural networks, in vivo, process a con-
tinuous stream of inputs in real time. Moreover, they
prove successful to react and compute fast, independent
of their instantaneous state and ongoing activity, when
prompted by sudden changes in stimuli. In other words,
they perform any time computing. Reservoir computing
has also been suggested as a model of cortical informa-
tion processing for their capability of online and any-
time computing, for their fading memory and for their
separation properties. It has been argued that specific
cortical circuitry is possible to build into generic LSM
framework (Maass et al. 2004). Bringing reservoir com-
puting into the problem will not only deliver expressive
models that can distinguish a rich set of input patterns,
but also may provide more biological relevance to the
theoretical tool.

1.2 Neuronal cell cultures as biological
neural networks

While brain tissue has highly specialized architecture
and developmental history, generic biological networks
can be created as cell cultures of mammalian corti-
cal neurons that have been dissociated and regrown
outside an organism. They are closed system in vitro
living networks, which are frequently used to study
physiological properties of neural systems (Marom and
Shahaf 2002). Although the anatomical structure of
the brain is not preserved in cultures, their inherent
properties as networks of real neurons, their acces-
sibility and small size make them very attractive for
investigating information processing in biological net-
works. Using cultured networks also eliminates the
problem of interference with ongoing activity from
different parts of the brain. Compared to in vitro brain
slices, cultured networks are more accessible in terms of
ratio of the recorded neurons to the whole network. In
other words, they pose a less serious under-sampling
problem. Studying such networks can provide insight
into the generic properties biological neural networks,
independent of a specific anatomy (Marom and Shahaf
2002). Another motivation to study cultures is under-
standing and employing them as biological computers.
For instance, neuronal cell cultures have been shown
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Fig. 1 A photo image of a neuronal culture with MEA elec-
trodes. We aim at generating an equivalent network in terms of
input–output relations. Photo was taken by Steffen Kandler from
BCCN Freiburg

to be able to learn. Shahaf and Marom (2001) demon-
strated how the response of the network to a stimulus
can be ‘improved’ by systematically training the culture.
Jimbo et al. (1999) showed how neuronal cultures can
increase or decrease their overall response to pulse
inputs stimulus by tetanic stimuli training.

Micro-Electrode Arrays (MEA) have commonly
been employed to both stimulate and record from neu-
ronal cultures and slices (Egert et al. 2002; Marom
and Shahaf 2002) (Fig. 1). Standard MEAs allow for
simultaneous recordings and stimulations from up to
60 electrodes from a surface area of around 2 mm2.
Each electrode picks up the extracellular electrical field
of one or several (1 to 3) neurons. Neurons transmit

information by action potentials, or spikes, which can be
extracted by adaptive high-pass filtering of the extracel-
lular signals (Egert et al. 2002; Wagenaar et al. 2005).

The activity in neuronal cultures is composed of ir-
regular network-wide bursts of spikes, even in absence
of an external stimulation (Marom and Shahaf 2002).
These networks display little or no spiking activity most
of the time (that is, between bursts) and very high
spiking activity during the bursts (Fig. 2). Although the
inter-burst intervals are not necessarily regular, there
seem to be spatio-temporal patterns that occur within
bursts (Feber le et al. 2007; Rolston et al. 2007). For
example, a burst might always start with the activity
of the same channel and continue with the activity of
another particular channel.

1.3 Problem statement

Although we cannot relate the activity dynamics to
a physiological function in random in vitro BNNs,
by studying their activity dynamics, we gain experi-
ence and information about generic network proper-
ties forming the basis of in vivo networks. Moreover,
one can assign pseudo-functions to random BNNs by
artificially mapping network states to a predefined set
of actions (Chao et al. 2008). One can also regard the
response spike train of a BNN to a stream of various
stimuli as a very detailed characterization of its pseudo-
function and aim at modeling stimulus-response rela-
tions. In the present work, we take this approach. We
record the output responses of simulated and cultured
BNNs to random multivariate streams of stimuli. We
tackle the question whether it is possible to train an
artificial neural network that predicts the response of
a reference biological neural network under the ap-
plied stimulus range. In other words, we aim at gen-
erating an equivalent network of a BNN in terms of
stimulus-response relations. Given the same stimulus,
the equivalent network should predict the output of the
biological neural network.

Fig. 2 Spike activity in
neuronal cultures. Burst
activity (left). Zoom into a
burst. Each dot shows
a spike detected on the
corresponding electrode at
the corresponding time
(right)
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A model or a predictor for biological neural net-
works can be useful for relating the physiological and
physical determinants of its activity and thereby, can
be a tool for analyzing information coding in these net-
works. It can also be helpful for interacting with BNNs
by means of electrical stimulation. Here, we employ
Echo State Networks (ESN) as a reservoir computing
tool and propose an algorithm to find appropriate mod-
els for the relations between continuous input streams
and multi-unit recordings in biological neural networks.
The algorithm uses point process log-likelihood as
an optimization criterion and adapts the readout and
reservoir parameters of ESNs accordingly. Moreover,
we investigate the performance of our approach on dif-
ferent feed-forward and recurrent reservoir structures
and demonstrate its applicability to stimulus-response
modeling problem in BNNs.

We shortly review ESNs in Section 2 and point
process modeling of spike data in Section 3. An elab-
oration of ESN adaptation for point processes is pre-
sented in Section 4. In Section 5 we present our
evaluation methods. A detailed experimental section
and their implications can be found in Sections 6 and 7,
respectively.

2 Echo State Networks

Echo State Networks (ESN) (Jaeger 2001) consist of
a recurrent neural network (RNN) reservoir and a
readout module (Fig. 3). Recurrent neural networks
(RNN) are in general difficult to train with gradient
descent methods (Bengio et al. 1994). The echo state
approach to RNNs is motivated by the observation
that a fixed (untrained) RNN can be very useful for
discriminating multivariate time series if the RNN is
gradually forgetting internal states and thereby also the
inputs at previous time steps. This property is described
as generating the echo states of the input. Existence of
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        L
output neuronsreservoir neurons

        N        K
input neurons

Fig. 3 Architecture of Echo State Networks

echo states is independent of the specific structure of
the reservoir, but strongly determined by the extension
of the eigenvalues of its connectivity matrix. The in-
put stream is used to stimulate a higher dimensional
dynamical system, which can be mapped to a target
output stream by adaptive linear or sigmoidal readout
units. Even with random fixed reservoirs, ESNs make
up a successful reservoir computing framework with
applications in several engineering and nonlinear mod-
eling tasks (Jaeger 2003; Jaeger and Eck 2006; Jaeger
and Haas 2004).

2.1 Dynamics

The ESN dynamics is described as

xn+1 = f
(
Win un+1 + W xn)

yn = f out (Wout [
un; xn]) ,

where,

W N × N internal reservoir weight matrix,
Win N × K input weight matrix,
Wout L × (N + K) output weight matrix,
xn N × 1 state vector for time step n,
un K × 1 input vector for time step n,
yn L × 1 output vector for time step n,
’;’ vertical vector concatenation.

Note that ESNs can have feedback projections from
the readout module to the reservoir (Jaeger 2001).
Throughout this note, however, we employ ESN archi-
tectures without such feedback projections. We choose
f (x) = tanh(x) = exp(x)−exp(−x)

exp(x)+exp(−x)
, which allows for exis-

tence of echo states.

2.2 ESN with leaky integrators

Fading memory in the reservoir is due to recurrent
connectivity if the individual neurons are memoryless.
Using leaky integrator neurons results in a reservoir
made from a network of low pass filters, which can be
referred to as Leaky Integrator Echo State Networks
(LI-ESN). LI-ESNs have been shown to work well on
noisy systems with slowly changing dynamics (Jaeger
et al. 2007). The leakage time constant is another aspect
of fading memory. For instance, even a purely feed-
forward reservoir will have a fading memory due the
memory of the individual neurons. We describe the
LI-ESN dynamics with

xn+1 =
(

1 − 1
τ

)
xn + 1

τ
f
(
Win un+1 + W xn) , τ ≥ 1.



J Comput Neurosci (2010) 29:279–299 283

yn = f out (Wout [
un; xn]) ,

where τ is a global parameter for all reservoir neurons.

2.3 Feed-Forward Echo State Networks

Acyclic random neural networks with leaky integrator
neurons can be used as reservoirs, as they also have
fading memory. We refer an ESN with such a reservoir
as a Feed-Forward Echo State Network (FF-ESN).
Naturally, it can be asked whether FF-ESNs can have
the same expressive power as the recurrent ESNs. In-
tuitively, it can be expected that a recurrent ESN with
the same number of neurons discriminates between
more input patterns than a FF-ESN, i.e. the recurrent
ESN has a much more powerful separation property. In
case of adaptive reservoirs, however, it is worthwhile
to test whether the reservoir adaptation algorithm
works especially better on feed-forward reservoirs than
on recurrent ones. Here, we also propose the use of
FF-ESNs for functional identification of biological
neural networks. A recurrent reservoir can easily be
made acyclic by inverting the connections that cause
recurrence (Fig. 4).

2.4 ESN learning

Learning in Echo State Networks will typically include
learning readout parameters by linear regression, e.g.
using the pseudo inverse matrix

W̃out = Y [X; U]+,

where L×T matrix Y is the collection of target vectors
y for T time steps, X , U are the same collection for

reservoir states and input vectors. + is pseudo inverse
operation. Much more efficient is the use of the Wiener-
Hopf equation for ESN readout learning (Jaeger
2001). Steil (2004) proposed the backpropagation-
decorrelation algorithm, which seeks a trade-off be-
tween error minimization and decorrelation of the
reservoir activity.

Although ESN learning is restricted to readout
learning in many cases, there have recently been sev-
eral approaches to adapt reservoirs, among which
a significant improvement over untrained reservoirs
was reported by Steil (2007). Adopting the intrinsic
plasticity rule from real biological systems improved
the performance of the backpropagation-decorrelation
algorithm.

In the current approach, we adapt the reservoir con-
nectivity and individual neuronal time constants with
a one-step propagation of the log-likelihood into the
reservoir. This is basically a gradient descent approach,
where the log-likelihood of a point process is used as
an optimization criterion. We elaborate our approach
in Section 4.

3 Point process modeling of spike data

Signals that are comprised of point-like events in
time, e.g. trains of action potentials generated by neu-
rons, can be characterized in terms of stochastic point
processes (Brown et al. 2001; Chornoboy et al. 1988;
Okatan et al. 2005; Rajaram et al. 2005). A spiking
process, modeled as a point process, is in turn fully
characterized by its conditional intensity function (Cox
and Isham 1980; Daley and Vere-Jones 2003).
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Fig. 4 A recurrent sparse random reservoir (left) and a feed-
forward sparse random reservoir (right). Numbers denote the
neuron indices. A reservoir is guaranteed to be acyclic if con-
nections are allowed only from neurons with lower indices to

neurons with higher indices. A recurrent reservoir (left) can be
converted into a feed-forward one by inverting the connections
that are from higher indexed neurons to lower indexed ones
(dashed lines, right)
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The instantaneous firing rate is defined as a condi-
tional intensity function

λi(t|It, Ht) = lim
�→0

P
(
Ni(t + �) − Ni(t) = 1|It, Ht

)

�
,

where Ni(t) is the cumulative spike count of unit i.
λi(t|It, Ht) represents the conditional probability den-
sity that a spiking event occurs at unit i. It and Ht stand
for input history and spike history, respectively. For
small �, the probability of a spike can be computed
by Bernoulli approximation to the point process (Daley
and Vere-Jones 2003; Brown et al. 2003)

P
(
δNi(t) = 1|It, Ht

) ≈ λi
(
t|It, Ht

)
�,

where δNi(t) = Ni(t + �) − Ni(t). If λ is a function of It,
Ht and parameter set θ , the log-likelihood L of a sample
count path for a node (electrode) i is expressed as
in Chornoboy et al. (1988):

Li(θ |Ni) = log p(Ni|θ)

=
∫ T

0
log λi (t|It, Ht, θ) dNi(t)

−
∫ T

0
λi(t|It, Ht, θ) dt,

where p(Ni|θ) is the conditional probability density
for the count path. The instantaneous log-likelihood
(Brown et al. 2001) of a point process trajectory (spike
train) is defined as

�i(t, θ) = log λi(t|It, Ht, θ)
dNi(t)

dt
− λi(t|It, Ht, θ) (1)

Note that

Li(θ |Ni) =
∫ T

0
�i(t, θ) dt.

With a conversion to discrete time, i.e. t → n, � → 1,
instantaneous log-likelihood becomes,

�n
i = log λn

i δn
Ni

− λn
i , (2)

where n is the discrete time step index. Any parameter
θ j of the model is then learned then by the standard
gradient descent learning.

θn+1
j ← θn

j + η
∂�n

i

∂θ j

∣∣
∣
∣
θ j=θn

j

,

where η is the learning rate. For the sake of readability,
we will leave the calculation points of partial derivatives
out and simply use the notation θn+1

j ← θn
j + η

∂�n
i

∂θ j
.

The quality of point process modeling strongly de-
pends on the expressive power of function λ(t|It, Ht, θ).
Linear or log-linear models might be preferable for suc-
cessful adaptation by gradient descent, whereas non-
linear functions allow for more expressive models. In
the current work, we model this function by an Echo
State Network, which inherently incorporates input and
network history into the instantaneous network states.

4 Point process modeling with ESN and log
likelihood propagation

We relate input and reservoir state to the conditional
intensity function in discrete time as

λ(t|It, Ht, θ) ≈ λn = f out (Wout [
un; xn]) , (3)

where λn is an L-dimensional vector of conditional
intensity estimations for time step n. We use an expo-
nential f out

f out(ξ) = exp(A ξ), (4)

where 0 ≤ A ≤ 1 is a constant. Exponential functions
were already applied in point process modeling and
shown to have desirable properties such as avoiding
local minima in Generalized Linear Models (GLM)
(Paninski 2004).

ESN readout learning can be trivially adapted to
point process data, where the output of the ESN esti-
mates the conditional intensity function in batch mode

Wout
ij ← Wout

ij + η
∂Li

∂Wout
ij

, (5)

and also in online mode

Wout
ij ← Wout

ij + ηout
∂�n

i

∂Wout
ij

. (6)

We are going to provide the expansion of the above
learning rule and its extension to reservoir adaptation
assuming an online mode. Combining Eqs. (2), (3),
and (4) yields

∂�n
i

∂Wout
ij

= A xn
j δNn

i
− A xn

j f out (ξn)

= A xn
j δNn

i
− A xn

j λn
i , (7)

where ξn = Wout [un; xn].



J Comput Neurosci (2010) 29:279–299 285

4.1 Reservoir adaptation

One interesting question is whether it is sufficient to
learn the output weights or whether one needs to adapt
the reservoir using the point process log-likelihood as
the fitness criterion. In the current work, we adapt
recurrent and feed-forward reservoirs with one step
propagation of the point process log-likelihood into
the reservoir and compare the results to non-adaptive
reservoirs.

Any connectivity weight Wkl within the reservoir can
also be adapted with the gradient descent rule,

Wn
kl ← Wn−1

kl + ηres
∂�n

∂Wkl
. (8)

As we assume the output channels are mutually in-
dependent given the parameters,

∂�n

∂Wkl
=

L∑

i=1

∂�n
i

∂Wkl
. (9)

Obviously, �n
i has a long term dependency on Wkl

due to reservoir memory, i.e. �n
i not only depends on

Wn−1
kl but also on Wn−h

kl , where h > 1. However, for the
sake of computational efficiency, and in view of the
fact that long term partial derivatives tend to vanish
exponentially with respect to time (Bengio et al. 1994),
we utilize a one-step propagation of the instantaneous
log-likelihood into the reservoir.

∂�n
i

∂Wkl
≈ ∂�n

i

∂Wn−1
kl

. (10)

Note that if neuron ψ projects to the readouts, any
connection to ψ is updated with one-step propagation.
As every reservoir neuron is projecting to the readout
units, every reservoir connection is updated with the
learning rule.

xn =
(

1 − 1
τ

)
xn−1 + 1

τ
f
(
Win un + Wn−1 xn−1) , (11)

Wn−1
kl contributes to �n

i for all i, k and l through xn
k.

We can now utilize the chain rule,

∂�n
i

∂Wn−1
kl

= ∂�n
i

∂xn
k

∂xn
k

∂Wn−1
kl

. (12)

Partial derivatives with respect to state variables can
be computed by combining Eqs. (2), (3), and (4).

∂�n
i

∂xn
k

= A Wout
ik δn

Ni
− A Wout

ik λn
i . (13)

Again following Eq. (11),

∂xn
k

∂Wn−1
kl

= αk
∂ fk

(
an

k

)

∂an
k

xn−1
l , (14)

where an
k is the k − th element of the vector Winp un +

Wn−1 xn−1 and fk(an
k) is the k-th element of the resulting

state vector. We define αk as the inverse of the time
constant for reservoir unit k, 0 < αk = 1/τk < 1. With
Eqs. (9), (10), (12), (13) and (14), the update rule in
Eq. (8) is completed.

4.1.1 Adapting neuronal time constants

Gradient descent is also used for adapting the time
constants of the reservoir neurons. Note that in this case
time constant is not a global parameter anymore. Let
αn

j = 1/τ n
j = g(α′n

j ) = 1/(1 + exp(α′n
j )), to have a conti-

nuity over all αn
j and to keep them in the desired range.

∂�n
i

∂α′n−1
j

= ∂�n
i

∂xn
j

∂xn
j

∂α′n−1
j

(15)

∂xn
j

∂α′n−1
j

=
{
−xn−1

j + f j
(
Winp un+W xn−1)

} dg
(
α′n−1

j

)

dα′n−1
j

(16)

α′n
j ← α′n−1

j + ηα

∂�n

∂α′n−1
j

, (17)

The complexity of the readout-only learning is
O(L N) for each time step, where L is the number of
readout units. Running the trained ESN on the test
input stream has also a complexity of O(L N) for sparse
reservoirs, where the number of connections linearly
scales with the number of reservoir units. All the reser-
voirs we use belong to this sparse type. In this case, the
complexity of the one-step log-likelihood propagation
is also O(L N).

4.2 Existence of local maxima and confidence
intervals

Due to deep architecture and reservoir transfer func-
tion, we cannot guarantee that gradient descent in the
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reservoir parameters yields uniquely true, i.e. globally
optimal, parameters. Point process log-likelihood is not
concave with respect to the whole set of parameters.
Reservoir adaptation, as a result, is not a tool for finding
a globally optimal equivalent of a given BNN. The
quality of reservoir adaptation is evaluated based on
its improvement on the predictive performance over
fixed reservoirs. For a fixed reservoir, on the other
hand, learning reduces to redout-only learning, and
hence, to adapting the parameters of a Generalized
Linear Model (Mccullagh and Nelder 1989; Paninski
2004), which maps reservoir states and input to the
conditional intensity. In this case, point-process log-
likelihood is a concave function of readout parameters
(see Appendix 2) and does not have non-global local
maxima with respect to them (Paninski 2004). This
shows that gradient descent in the readout parameters
will asymptotically result in a global maximum. The
absence of local minima holds for readout parameters
under a fixed reservoir or if an adaptive reservoir is
fixed after some epochs of training. Note that we take
an online (stochastic) gradient descent approach in
this work. Although online gradient descent takes a
stochastic path in the parameter space for maximization
of the log-likelihood, empirical evidence suggests that
the average behavior of gradient descent is not affected
by online updates (Bottou 2004).

Upon training, the observed Fisher Information Ma-
trix can be used to approximate the covariance matrix
and confidence intervals on the readout parameters,


−1
out = −∇2

WoutL
(
Wout|N)

,

where 
out is the estimation of the covariance matrix
and ∇2

WoutL(Wout|N) is the Hessian of the log-
likelihood. The Hessian matrix is computed at the final
point estimates of the readout parameters. Confidence
intervals are computed using the standard deviations
obtained from the diagonal of the covariance matrix.
It should be noted that we do not perform a full proba-
bilistic learning of the parameters. We approximate the
distribution on the readout parameters by the asymp-
totic normal distribution of the maximum likelihood
estimator (Davison 2003; Pawitan 2001).

5 Evaluation of the learned models

We compared our results with feed-forward and recur-
rent architectures to the baseline method where only
the readout weights were adapted. For different ESN
types and architectures, we comparatively evaluated

their capabilities on modeling BNN stimulus-response
relations by testing the predictive power of the ESN on
the observed spike trains. The continuous ESN output
signal was tested for compatibility with the actual ob-
served spikes.

Receiver Operating Characteristic (ROC) curve
analysis was employed to test the quality of prediction.
ROC curves are extensively used in signal detection
theory and machine learning to evaluate prediction per-
formance on binary variables. In a binary classification
problem (here spike or no spike), a ROC curve is a plot
of true positive rate vs. false positive rate. True positive
rate is defined as

T PR = # True Positives
# All Positives

.

Similarly, false positive rate is defined as

F PR = # False Positives
# All Negatives

.

As the ESN output is continuous, true positive rate
and false positive rate will vary with respect to a moving
threshold. An example ROC curve is shown in Fig. 6
(bottom). In contrast to classification accuracy, the area
under a ROC curve (AUC) is more robust with respect
to prior class probabilities (Bradley 1997). An AUC
around 0.5 indicates a random prediction whereas an
AUC for a perfect prediction will equal 1.0.

6 Experimental results

We employed Echo State Networks with different types
and sizes of reservoirs on spike prediction tasks, where
the spikes were recorded from simulations of random
cortical networks and from cultured networks of cor-
tical neurons. We investigated whether ESNs success-
fully predict output spikes of BNNs when they are
presented with the same input streams.

6.1 Simulations of random cortical networks

We simulated 10 surrogate cortical neural networks
of 1000 neurons each with 0.1 random connectivity.
We used the Izhikevich neuron model and included
spike-timing dependent plasticity (STDP) in our sim-
ulations (Izhikevich 2006). At each 5 ms, one of the 100
input channels was randomly selected from a uniform
distribution and a pulse of 5 ms width was sent to the
network. Each input channel had excitatory projections
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Table 1 Areas under ROC curves (in %) for the prediction of activity in 10 simulated biological neural networks with fixed recurrent
(R-fxd), feed-forward adaptive (FF-adp) and recurrent adaptive (R-adp) reservoirs

Res. size: 100 500 1000

Res. type: R-fxd FF-adp R-adp R-fxd FF-adp R-adp R-fxd FF-adp R-adp

BNN1 74.0 78.3 76.8 81.3 81.4 80.6 81.7 82.3 82.1
BNN2 76.7 80.6 78.1 84.1 84.8 84.1 84.7 85.5 85.3
BNN3 69.4 73.5 70.7 77.0 77.6 77.3 77.4 78.1 78.6
BNN4 76.6 78.9 78.0 81.4 81.6 81.2 82.3 82.9 82.6
BNN5 74.9 78.0 77.4 81.5 81.4 81.2 81.7 82.2 82.2
BNN6 79.0 82.0 81.3 84.8 84.9 84.7 84.9 85.3 85.5
BNN7 72.0 74.4 74.1 78.2 79.0 78.7 79.2 79.5 79.9
BNN8 71.7 73.0 72.3 76.8 77.5 76.5 78.1 78.1 78.5
BNN9 72.3 74.9 74.6 78.5 78.4 78.4 78.8 79.2 79.1
BNN10 79.0 80.7 79.0 83.8 83.9 83.4 83.9 84.5 84.3
mean 74.6 77.4 • ∗ 76.2• 80.7 81.1 • ∗ 80.6 81.3 81.8• 81.8•
• denotes statistical significance for having outperformed the non-adaptive recurrent reservoir of the same size. ∗ denotes a statistical
significance for having outperformed the other two reservoir types of the same size (signed-rank test, p < 0.05)

to 10 % of the neurons in the network. The networks
were simulated for 2 h in real time with STDP and
0.5 h in real time with frozen synapses thereafter. In
each network, the spikes from a randomly selected
excitatory neuron were recorded with 5 ms discretiza-
tion. We then trained ESNs to estimate the conditional

intensity of the selected neuron’s spiking process from
the history of the input pulses.

LI-ESNs with three different reservoir types of var-
ious sizes were used for this task, namely recurrent
fixed recurrent reservoirs (R-fxd), recurrent adaptive
reservoirs (R-adp) and feed-forward adaptive (FF-adp)
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Fig. 5 Confidence intervals on the readout parameters of 3 reser-
voir types of size 100 for a selected biological neural network. The
learned readout weights and 99% confidence intervals (±2.576σ )
are shown. Confidence intervals are computed by assuming a
multivariate normal distribution and an infinite prior covariance
matrix. Hence, inverse of the observed Fisher information matrix

is used to compute confidence intervals. The weights indexed
from 1 to 100 are reservoir-to-output parameters, whereas the
weights indexed from 101 to 200 are direct input-to-output para-
meters. Greater uncertainty for input-to-output parameters are
noticeable, which results from low density of the input pulses per
channel
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reservoirs. Reservoir connectivity and each individual
time constant were adapted using the method described
in Section 4. For each of the 10 surrogate biological
neural networks, we used reservoirs of sizes 100, 500
and 1000. A separate random sparse reservoir for each
size and for each surrogate biological network was
generated, where each reservoir unit was connected
to 10 other units. For each random reservoir, a feed-
forward reservoir was generated by inverting the edges
that cause recurrence as described in Fig. 4. Note that
the same sized feed-forward and the recurrent reser-
voirs for the same biological neural network had the
same topology apart from edge directions. This yielded
60 different reservoirs for the whole experiment.

From each of the 10 BNN simulations we recorded
data for 30 min in real time. Using a discretization time
bin of 5 ms, the simulation yielded time series data for
360,000 time steps, of which 328,000 time steps for were

used for training and 30,000 time steps were used for
testing in each sub-experiment. For the adaptive reser-
voirs, the training phase included 20 full adaptation
iterations of the reservoirs and 60 readout adaptation
iterations. One iteration covered one forward traversal
of the training data in time. No learning was performed
on the test data.

Results of the ROC curve analysis show that the
ESN approach performs well in conditional intensity
estimation (Table 1). For all the experiments on 10
different BNNs, the estimated conditional intensity
predicts output firing far better than random prediction.
For BNN2, point estimates and uncertainty measures
of readout parameters after readout-only-training were
also presented. (Fig. 5, see Section 4.2 for computation
of uncertainty measures).

We further investigated whether the predictive
power of ESNs with feed-forward adaptive reservoirs

Fig. 6 Changes of the
training log-likelihood with
the number of iterations for
reservoirs with different
number of neurons (N) and
reservoir types (color coded).
The performance of the
reservoirs is shown for fixed
recurrent (blue, dashed),
adaptive recurrent (black,
continuous) and adaptive
feed-forward types (red, ∗)
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of leaky integrator neurons is comparable to that of
recurrent reservoirs. Adaptive reservoirs are in gen-
eral better than non-adaptive reservoirs. This differ-
ence, however, vanishes with increasing reservoir size
(Table 1). In these experiments, feed-forward adaptive
reservoirs significantly outperformed the non-adaptive
recurrent reservoirs of all sizes. Furthermore, they sig-
nificantly outperformed recurrent adaptive reservoirs
for sizes of 100 and 500. Although adaptation brought
significant improvement also to recurrent reservoirs
for sizes 100 and 1000, feed-forward adaptation per-
formed in general better than recurrent adaptation in
estimating the conditional intensity. Small reservoirs
(i.e. for N = 100) of the feed-forward architecture were
drastically superior to the recurrent reservoirs.

One can gain some insight on the comparative per-
formances of different reservoirs by looking at the de-
velopment of the log-likelihood during training (Fig. 6).
Note that we adapted the reservoir connectivity and
the time constants only in the first 20 iterations. The
remaining 60 iterations included only learning of read-
out parameters. This allowed for observing the effects
of two learning phases separately. The log-likelihood
clearly increases with fewer iterations in adaptive reser-
voirs. A sudden drop of training log-likelihood is re-
markable at the transition from the full training phase
to the readout training phase. Although this transition

significantly reduces the fitness and might make the
adaptive reservoirs worse than non-adaptive ones, pre-
vious full reservoir training pays out in the upcoming
iterations.

Note that Table 1 refers only to the prediction of out-
put spikes from input pulse trains. If the spike history
of the output neuron is also taken into account, the
prediction performance increases considerably. In this
case, the output spike history is also fed into the ESN
through an additional input channel. For BNN2, we
visualize the conditional intensity estimation that takes
also the output spike history into account (Fig. 7). Note
the increased area under the ROC curve when com-
pared to the second row in Table 1. Cross-correlation
coefficients around 0 time lag between the conditional
intensity estimation and the target spike train also im-
prove when the output spike history is used (Fig. 8),
indicating an increased similarity of estimations and
observations. Cross-correlation coefficients are com-
puted as

csλ(m) = 1
T − 1

∑
n

[
s(n + m) − s̃

] [
λ(n) − λ̃

]

σsσλ

,

where m is the time lag, s is the binary valued discrete-
time signal for the target spike train and λ(n) is the

Fig. 7 Estimated conditional
intensity for a selected
biological neural network
(BNN2) using input history
and the output spike history
together. Conditional
intensity estimations λ for all
time steps in the testing
period are shown in
decreasing order (top). A bar
is shown if there was indeed a
spike observed in the
corresponding time step
(top). Distributions of
conditional intensity, λ, for
time steps with observed
spikes and without spikes
(middle). By a varying
threshold on λ, true positive
rates vs. false positive rates
can be calculated (bottom)
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Fig. 8 Cross-correlation coefficients between the conditional in-
tensity estimation and the observed spike patterns for the output
neuron of a selected biological neural network (BNN2) with feed-
forward ESN adaptation for a reservoir of 1000 neurons. Using
only the input stream, AUC = 85.5% (top). Using the input
stream and the spike history of the output neurons, AUC =
91.6% (bottom). Each bar shows the correlation coefficient for
1 time step of the ESN (5 ms). Around 0 time lag, the conditional
intensity that uses the spike history has a higher correlation with
the observed spikes. Note that there is negative correlation for
some negative time lags (−90 < timelag < 0). This results from
the fact that conditional intensity estimation is very low after
an observed spike since the algorithm learns the negative auto-
correlation of the output spikes for this time lag interval. In other
words, the learned model is reflecting the inter-spike interval in
its output

conditional intensity estimation at time step n. s̃ and
λ̃ stand for mean values, whereas σs and σλ denote
standard deviations. T is the data length in time steps.

As for ROC curve areas, the peak around zero lag in-
dicates the similarity between the conditional intensity
estimation and the reference spike train.

6.1.1 Approximating gradient vectors with one-step
propagation

In order to investigate the consequences of one-step
approximation to gradient descent, we compared the
gradient vectors obtained by full gradient computa-
tion and those obtained by one-step approximation.
Full gradient computation would replace Eqs. (14)
and (16) as

∂xn
j

∂Wkl
= (

1 − α j
) ∂xn−1

j

∂Wkl

+ α j

∂ f j

(
an

j

)

∂an
j

[

δ jk xn−1
l +

∑

m

Wjm
∂xn−1

m

∂Wkl

]

and

∂xn
j

∂αk
= (

1 − α j
) ∂xn−1

j

∂αk

+
⎡

⎣α j

∂ f j

(
an

j

)

∂an
j

∑

m

Wjm
∂xn−1

m

∂αk

⎤

⎦

+ δ jk

[
−xn−1

j + f j

(
an

j

)]
,

respectively. The resulting learning rule would be
an adaptation of the Real Time Recurrent Learning
(Williams and Zipser 1989) for point processes, which
is computationally very expensive for our data and
reservoir sizes. It is, however, still viable to compare the
gradients obtained by one-step propagation to those
obtained by full gradient computation for a limited

Fig. 9 Distributions of the
correlations (left) and cosines
(right) between fully
recursive and one-step
computations of gradients
vectors, ∇�n and ∇n−1�n,
respectively. Results are
shown for a selected sparse
recurrent reservoir of size 100
and its feed-forward version
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Fig. 10 Correlation of reservoir activity with the observed spike
activity for a selected recurrent reservoir with 100 neurons and
its feed-forward version. Canonical correlation analysis (CCA)
results also indicate that output spikes are encoded in reservoir
activity. Point process readout learning proves more efficient in
relating the reservoir activity to output spikes than CCA

number of time steps. Here, we compared gradient
vectors of the log likelihood with respect to all reservoir
parameters for 19,000 time steps. We computed the

correlation and the cosine between full and one-step
gradients for each time step separately,

cn = 1
R − 1

∑
r

(
∂�n

∂Wn−1
r

− μn
one

)(
∂�n

∂Wr
− μn

f ull

)

σ n
oneσ

n
f ull

cos
(
�n) = < ∇n−1�n, ∇�n >

|∇n−1�n| |∇�n| ,

where ∇n−1�n and ∇�n are the gradient vectors at time
step n obtained by one-step propagation and by full gra-
dient computation, respectively; ∂�n

∂Wn−1
r

and ∂�n

∂Wr
are their

r-th components; μn
one/ f ull and σ n

one/ f ull are the mean
values and the standard deviations for the components
of the gradient vector; cn and �n are the correlation and
the angle between the full and one-step gradient vectors
at time step n, respectively.

The distribution of the correlations and cosines pro-
vides insight to the consequences of one-step approxi-
mation in feed-forward and recurrent reservoirs. Over
19,000 time steps, the correlations between the one-step

Fig. 11 Normalized input
triggered averages (see
Eq. (18)) for 20 different
input pulses on 40 different
reservoir neurons
(background, gray).
Randomly selected 30
combinations, are highlighted
(darker, red) for three
different reservoir types.
Adaptive reservoirs display
more diffused memory traces,
i.e. their time lags for the
peaks vary more
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Fig. 12 Areas under ROC
curves (AUC) for the event
prediction task at the active
output electrodes (left) and
aggregated AUC for different
ratios of training data (right)
using fixed recurrent (R-fxd),
feed-forward adaptive
(FF-adp) and recurrent
adaptive (R-adp) reservoirs,
all with 500 neurons
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and full gradient vectors in a selected random reservoir
are distributed around a mean value of 0.61 with a
standard deviation of 0.034. The mean and standard
values are 0.77 and 0.022 for the corresponding feed-
forward reservoir (Fig. 9). Cosines constitute a very
similar distribution, as the gradient vector components
for each time step have approximately a mean value
of 0. Strong correlations between the full and one-step
gradients deliver additional explanation for the better
performance adaptive reservoirs. The fact that the log-
likelihood propagates to every reservoir parameter in
one-step (due to full reservoir-to-output connectivity)
and that one-step gradient is the dominant component
of the full gradient information are possible reasons
for the detected similarity. Stronger correlations for
feed-forward reservoirs are in agreement with the rel-

ative better performance of the feed-forward reservoir
adaptation.

6.1.2 Information encoded in reservoir activity

A canonical correlation analysis of the reservoir activity
and the output spiking activity also revealed that output
spikes are encoded in the reservoir activity. Prior to
readout-only learning, we recorded the reservoir states
for one traversal of the training data and performed
a canonical correlation analysis (CCA) (Chatfield and
Collins 2000) with the observed training spikes. We
then used parameters obtained by CCA for relating
reservoir states to output spikes in the test data and
detected maximum correlations for all of the 10 exper-
iments in Table 1. Although not as good as in readout

Fig. 13 ROC curve analysis
of the event timing prediction
for active output electrode 1
using a recurrent adaptive
reservoir with 500 neurons
without using the spike
history. Conditional intensity
estimations λ for all time
steps in the testing period are
shown in decreasing order
(top). A bar for each
observed spike in the
corresponding time step
(top). Distributions of of
conditional intensity, λ, for
time steps with and without
observed spikes (middle). By
a varying threshold on λ, true
positive rates vs. false positive
rates can be calculated
(bottom)
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Table 2 Areas under ROC curves for the event timing prediction task aggregated over active output electrodes

Res. size 10 30 50 100 300 500 1000

Without history
R-fxd 59.9 57.9 74.3 78.9 78.3 82.7 83.2
FF-adp 59.3 64.1 72.5 76.3 83.8 82.3 83.9
R-adp 63.9 68.9 69.2 76.2 82.3 85.8 84.2

With history
R-fxd 57.2 62.4 69.9 76.7 79.8 82.5 82.1
FF-adp 57.3 66.4 69.6 76.6 80.1 82.1 83.4
R-adp 59.8 68.1 74.3 79.7 79.4 85.1 83.6

Rate based prediction
Kernel(ms): 3 5 10 20 30 50 70 100 150 250
AUC: 60.7 64.0 69.3 75.4 73.9 71.3 69.9 66.5 61.2 54.6

learning, CCA also reveals the correlation of the reser-
voir activity with output spikes (Fig. 10), indicating the
spike encoding in the reservoir activity.

In addition to CCA of reservoir states and output
spikes, we further visualized the memory traces of the
input pulses in reservoir states. We compared how past
inputs are reflected in the reservoir activity for different
reservoir types by considering input triggered averages
(ITA). We define the input triggered average for an
input-neuron pair as

ITAhj(m) =
∑T

n=1 un
h xn+m

j
∑T

n=1 un
h

,

where m is the time lag, un
h is the input pulse from

channel h at time step n (1 or 0), xn+m
j is the state of the

j-th neuron at time step n + m. The normalized ITA
is then

ÎTAhj(m) = ITAhj(m) − x̄ j

σx j

, (18)

where x̄ j and σx j are the mean value and the standard
deviation for x j, respectively. Figure 11 depicts the
ÎTAhj curves for 800 input neuron pairs in 3 different
reservoir types for a selected biological neural network.
Memory traces for adaptive reservoirs, especially for

Fig. 14 Cross-correlation
coefficients between the
conditional intensity
estimation and the observed
output events for a selected
(1) active output electrode
without using the output
spike history (res. size of
500). Coefficients are shown
for fixed recurrent (a),
feed-forward adaptive (b),
and recurrent adaptive
reservoirs (c). Each bar shows
the correlation coefficient for
5 time steps of the ESN
(5 ms). As a baseline a
prediction based on event
rate (without an ESN,
conditional intensity
proportional to event rate) is
also shown (d). The recurrent
adaptive reservoir performs
better here, considering the
height of the peak and the
width of the
cross-correlogram
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Table 3 Mean AUC (%) in the event timing prediction task in 3 different cultures

Channel Culture 1 Culture 2 Culture 3

R-fxd FF-adp R-adp R-fxd FF-adp R-adp R-fxd FF-adp R-adp

All 81.6 83.1 83.6 82.7 82.6 82.2 66.7 66.4 67.1
Best 84.2 87.0 89.3 92.3 91.9 92.2 83.8 84.7 82.2
Worst 78.8 77.8 76.6 75.6 73.9 74.2 50.4 48.3 53.8

Results are aggregated over 10 random reservoirs with size 500 for all active output electrodes, for the best active electrode and for the
worst active electrode

recurrent adaptive reservoirs, are more scattered over
time. This increased heterogeneity in the responses is
very likely a reflection of time constants in adaptive
reservoirs.

6.2 Prediction of spontaneous events
in neuronal cultures

To test our approach on living neural networks, we
aimed at predicting spontaneous events in neuronal
cultures. We defined an event as a group of spikes
recorded by the same MEA electrode, whose maximum
inter spike interval is less than 60 ms. The time of the
first spike in the group is regarded as the event time. It
should be noted again that the activity in neuronal cul-
tures is typically a sequence of network bursts. If there
were at least 100 ms between two successive events, we
regarded them as parts of different bursts. These crite-
ria mostly excluded isolated spikes from network bursts
and clustered fast repetitive firings at an electrode, e.g.
a cellular burst, into a single event. We recorded spikes
from a neuronal cell culture for 30 min, detecting bursts
and events according to the above definition. We used
the data for training except for the last 200 s, which
were reserved for testing. We selected approximately
3/4th of the 60 MEA electrodes and treated their events
as the input stream; and the remaining electrodes as
output. This selection was based on spatial order of the
electrodes, i.e. input and output electrodes occupied

two distinct areas in the culture. If an electrode had
never recorded spikes in the training event train, it
was regarded as inactive and was excluded from the
learning and testing processes. The evaluation task
was to estimate the conditional intensity of the output
events for each output electrode at time step n using
the total input event stream until time step n (1 ms bin
size). Note that only very few events occur outside the
bursts. Therefore, the algorithm performs learning and
prediction only during bursts.

Based on estimates for all time steps during network
bursts in the last 200 s, we evaluated the predictive per-
formance of the learned ESN models using ROC curve
analysis on the target events and estimated conditional
intensity. We selected the electrodes that recorded at
least 15 events within the evaluation window of 200 s.

Figure 12 (left) shows the AUC for each electrode
using reservoirs of different types all with 500 neurons.
Note that the prediction results in Fig. 12 is based only
on input event streams, i.e. the event history of the out-
put electrodes is excluded. Except for output electrode
3, all AUC measures are far above the random level.
This supports the notion that most output neurons in
the culture do not fire randomly but they rather follow
patterns (Shahaf et al. 2008). Even electrode 3 is above
the chance level but it has low predictability compared
to other electrodes. Aggregated test data AUC over
active electrodes (except electrode 3) for different ra-
tios of training data is shown in Fig. 12 (right). As
expected, AUC improved with more training data. The

Table 4 Pairwise comparison of the reservoir types and methods in the event timing prediction task in 3 different cultures using 10
random reservoirs all with size 500

Culture 1 Culture 2 Culture 3

# output el.: 6 # output el.: 10 # output el.: 9

R-fxd FF-adp R-adp R-fxd FF-adp R-adp R-fxd FF-adp R-adp

R-fxd 0 0 1 0 1 3 0 2 1
FF-adp 2 0 0 1 0 2 1 0 2
R-adp 3 2 0 1 0 0 2 3 0

Each entry in the table denotes the number of electrodes, for which the method in the row significantly outperforms the method in the
column (signed-rank test, p < 0.05)
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Table 5 AUC (%) for the next-event prediction task aggregated over all active output electrodes in a selected neuronal culture (1)

Res. size 10 30 50 100 300 500 1000

R-fxd 66.2 71.6 73.7 79.4 82.1 82.9 83.3
FF-adp 71.3 77.9 79.8 81.5 82.5 83.3 83.1
R-adp 71.8 72.7 79.4 81.2 82.3 82.4 82.3

improvement, however, was not dramatic. For a se-
lected output electrode the details of the ROC analysis
is illustrated in Fig. 13.

Table 2 shows aggregated areas under ROC curves
over all active electrodes except electrode 3 for a
selected culture (Culture 1), without (top) and with
(middle) using the output event history. Each entry in
the table was obtained with a single reservoir of the
corresponding size. As expected, the prediction perfor-
mance usually increased with the reservoir size. Using
the event history of the output electrodes did not im-
prove the prediction performance, thus, no additional
information could be found in the output event history.
Note that utilizing the event history results in an ap-
proximately 25% increase in the input dimensionality.
Possible redundancy of the event history with the al-
ready existing input might have caused a suboptimal
performance of the learning algorithm, decreasing the
prediction accuracy in several reservoirs. Feed-forward
adaptive and recurrent adaptive reservoirs performed
better than the fixed reservoirs for most reservoir sizes.

As a baseline for comparison purposes, we used the
input event rate (regardless of the spatial information,
i.e. without using the electrode number) for the condi-
tional intensity estimation (Table 2, below). Although
this method proved to have some predictive power
especially for a rate kernel of 20 ms, it is obviously not
as good as ESN predictors. Cross-correlation analysis
reveals further information about comparative perfor-
mances of different methods (Fig. 14). The higher peak
and the smaller width of the cross-correlogram is an
indicator for the better performance of recurrent adap-
tive reservoirs. To further compare different reservoir
types, we experimented with 3 different cultures and
employed 10 randomly generated reservoirs of size
500. We used the acyclic forms of the same reservoirs
for feed-forward adaptation. In 2 of these 3 cultures
(1 and 3), the recurrent adaptive reservoirs had the
best average predictive power (Table 3). In the same 2
cultures, the prediction of the recurrent adaptive reser-
voirs significantly outperformed the others for several
output electrodes (Table 4).

Fig. 15 Estimated
conditional intensity for a
selected output electrode (5)
of the neuronal culture in the
next-event-prediction task
using a feed-forward adaptive
reservoir with 500 neurons.
Conditional intensity
estimations λ for all time
steps in the testing period are
shown in decreasing order
(top). A bar is shown if there
was indeed a spike observed
in the corresponding time
step (top). Distributions of of
conditional intensity, λ, for
time steps where there was an
observed spike and where
there was no spike (middle).
By a varying threshold on λ,
true positive rates vs. false
positive rates can be
calculated (bottom)
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Table 6 Mean AUC (%) in the next-event prediction task in 3 different cultures

Channel Culture 1 Culture 2 Culture 3

R-fxd FF-adp R-adp R-fxd FF-adp R-adp R-fxd FF-adp R-adp

All 81.9 82.6 82.2 75.2 75.7 75.4 72.7 73.1 72.8
Best 93.1 93.4 93.2 88 89.1 88.5 82 82.3 81.8
Worst 54.7 56.3 55.2 62.4 60.4 62.5 50.5 54.3 54.2

Results are aggregated over 10 random reservoirs with size 300 for all active output electrodes, for the best active electrode and for the
worst active electrode

6.3 Next-event prediction in neuronal cultures

Recent findings indicate that the temporal order of the
events in neuronal cultures carries significant informa-
tion about the type of stimuli (Shahaf et al. 2008). In
this experimental setting, we investigated whether the
ESNs can model the structure in the temporal order of
the events. We deleted timing information of the events
from the previous setting and, as a result, we obtained
data of temporally ordered events. More precisely, we
used operational time steps for ESN analysis, i.e. each
event appeared only in 1 time step and each time step
contained only 1 event.

In this setting, we treated every electrode as output
and used the whole event history for prediction. The
task was again to estimate the conditional intensity of
the output events for each electrode at time step n
using the total event stream until time step n. Note that
point process modeling is not necessarily the optimal
tool for this data, where each abstract time step can
contain only 1 event. The general framework taken in
the current work, however, can still be employed for
predictive modeling of temporal event orders. Again,
ROC curve analysis indicates a good average prediction
quality with larger reservoirs, feed-forward adaptive
reservoirs outperforming the recurrent reservoirs up to
sizes of 500 (Table 5, Fig. 15).

To further compare different reservoir types,
10 random reservoirs of 300 neurons together with
their acyclic forms were tested on 3 different cultures
(Table 6). The predictability varied with respect to the

electrode that recorded the event, with AUC ranging
from 50.5% to 93.4%. In pairwise comparison of the 3
reservoir types, FF-adp reservoirs significantly (signed-
rank test, p < 0.05) outperformed other methods for
many electrodes (Table 7). Conversely, the number
of electrodes, for which the other methods performed
better, was much smaller.

7 Conclusion

The implications of our results are manifold. Firstly, our
results indicate that reservoir computing is a potential
candidate for modeling neural activity including neural
encoding and decoding. With their expressive power
for different activity measures (e.g. spike rates, corre-
lations etc.), reservoir computing tools might help for
analysis of neural data. In our experiments, ESNs of
leaky integrator neurons proved successful for model-
ing response-dynamics (e.g. stimulus-response relations
and spatio-temporal dynamics) of simulated and cul-
tured biological neural neural networks.

On the methodological side, we showed that ESN
learning algorithms can be adapted for event data, such
as spikes or spike groups, using a point process frame-
work. We proposed a reservoir adaptation method for
event data, which can be used to adapt connectivity
and time constants of the reservoir neurons. The ex-
perimental results indicate that reservoir adaptation
can significantly improve the ESN performance over
readout-only training.

Table 7 Pairwise comparison of the reservoir types and methods in the next-event prediction task in 3 different cultures using 10
random reservoirs all with size 300

Culture 1 Culture 2 Culture 3

# output el.: 26 # output el.: 34 # output el.: 38

R-fxd FF-adp R-adp R-fxd FF-adp R-adp R-fxd FF-adp R-adp

R-fxd 0 5 5 0 6 5 0 6 11
FF-adp 11 0 8 22 0 20 12 0 17
R-adp 7 1 0 6 1 0 7 0 0

Each entry in the table denotes the number of electrodes, for which the method in the row significantly outperforms the method in the
column (signed-rank test, p < 0.05)
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We utilized feed-forward networks with leaky-
integrator neurons as reservoirs with a comparable
predictive power to recurrent reservoirs when trained
with log-likelihood propagation. In modeling stimulus-
response relations of simulated BNNs, feed-forward
reservoir adaptation outperformed other methods up
to 500 neurons. This outperformance was statistically
significant. For the event timing prediction task in neu-
ronal cultures, adaptive recurrent reservoir adaptation
outperformed the other methods (in 2 of 3 cultures),
whereas feed-forward adaptation were better in the
next-event type prediction task in all 3 cultures. This
might indicate that the type of encoding in neural
systems (order or timing) favors different architectures
for decoding. An analysis of the structure-coding rela-
tions, however, is beyond the scope of this note. Why
feed-forward reservoir adaptation can work better than
recurrent reservoir adaptation necessitates also more
theoretical analysis. We manually optimized global pa-
rameters (spectral radius, learning rates and A) for re-
current fixed reservoirs. Recurrent adaptive reservoirs
started from these values. Although we can think of
no obvious disadvantage for recurrent reservoirs, feed-
forward adaptation outperformed recurrent adaptation
in some tasks. We experimentally showed that one-step
propagation approximates the gradients better in feed-
forward reservoirs than in recurrent ones. In our opin-
ion, better structuring of the reservoir parameters, i.e.
separation of the memory parameters from the reser-
voir connectivity, might further underlie the relative
better performance of feed-forward adaptation. For
instance, a small connectivity change in the recurrent
adaptation might have a more dramatic effect on the
reservoir memory than in case of feed-forward adap-
tation. Our findings on feed-forward networks are also
in accordance with the recent work by Ganguli et al.
(2008), Goldman (2009), Murphy and Miller (2009),
who show that stable fading memory can be realized
by feed-forward or functionally feed-forward networks
and that feed-forward networks have desirable proper-
ties in terms of trade-off between noise amplification
and memory capacity.
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Appendix 1: Implementation details

For all the experimental settings, we generated re-
current sparse random reservoirs. Regardless of the
reservoir size, each reservoir unit was connected to
10 other units. The initial connection strengths were
drawn from a uniform distribution over the interval
[−0.5 0.5]. The entries of the input weight matrix Win

were drawn from a uniform distribution over [−1 1].
We normalized the connectivity so that the maximum
absolute eigenvalue, i.e. the spectral radius, was 1, with
which the ESNs were experimentally detected to work
well on all experiments. We additionally generated the
feed-forward form of the each recurrent reservoir as de-
scribed in Fig. 4. After changing from recurrent to feed-
forward architecture, we did not manually modify the
connectivity parameters. The leakage time constants,
τ j = 1/α j, were initialized according to

α j = 1/
(

1 + exp
(
α′

j

))
,

where α′
j were uniformly drawn from [−1.5 1.5].

Note that the initial value of the spectral radius
and the initial range for time constants were manually
arranged to work well with recurrent fixed reservoirs.
Adaptive reservoirs used this fixed settings as starting
parameters.

For fixed reservoirs, we used 80 epochs of readout-
only training. Initially, we set ηout = 0.7 and gradually
decreased the output learning rate with

ηout ← ηout

E + 1
,

where E was the epoch number. This was done for fast
learning and convergence of the algorithm.

For adaptive reservoirs, we used 20 epochs for reser-
voir and readout training and 60 epochs for readout-
only training. The readout-only learning employed the
same time dependent ηout as the fixed reservoirs. For
reservoir training, we set the initial values ηout = ηres =
ηα = η = 0.2 and decreased it with

η ← 0.5 η,

when the increase in the training log-likelihood drop-
ped below 0.0003 per output channel and time step.

The parameter A in f out(ξ) = exp(A ξ) was set to
0.2, which was manually found to work well for the
selected learning rates.

The ESN learning algorithm described in this note
was implemented in MATLAB and C++ languages.
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The results reported here were produced by the C++
implementation. The source code is available un-
der http://www.informatik.uni-freiburg.de/∼guerel/PP_
ESN.zip (currently only MATLAB).

Appendix 2: Concavity of the log-likelihood
with respect to readout parameters

The second order partial derivative of the instanta-
neous log-likelihood with respect to output parameters
is computed as

∂2�n
i

∂Wout
ij ∂Wout

ik

= −A2 xn
j xn

k λn
i ,

resulting in a Hessian,

H�n
i
= −A2 λn

i

[
xn; un] [

xn; un]T
,

where [xn; un]T is the transpose of the column vector
[xn; un]. H�n

i
is obviously a non-positive definite matrix,

since for any non-zero row vector b

b H�n
i

b T = − (
A2 λn

i

)
b

[
xn; un] [

xn; un]T
b T

= −(A2 λn
i )

(
b

[
xn; un])2

≤ 0.

Consequently, the Hessian of the total log-likelihood
is also non-positive definite as HL=∑

i

∑
n H�n

i
. There-

fore, we conclude that under fixed reservoir para-
meters, the log-likelihood is a concave function with
respect to output parameters. This indicates that output
parameters will not get stuck in the local maxima for a
fixed reservoir. For adaptive reservoirs, the concavity
holds for the readout-only learning phase of the train-
ing. An overview of the concavity of the point process
log-likelihood for generalized linear models and its
extension to different conditional intensity functions is
given in Paninski (2004).
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