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Early feeding strategies in lambs
a�ect rumen development and
growth performance, with
advantages persisting for two
weeks after the transition to
fattening diets

Ting Liu1, Fadi Li2, Weimin Wang1,2, Xiaojuan Wang1,

Zhiyuan Ma2, Chong Li1, Xiuxiu Weng2 and Chen Zheng1*

1College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China, 2State

Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and

Technology, Lanzhou University, Lanzhou, China

This study aimed to explore the e�ects of early feeding strategies on the

growth and rumen development of lambs from pre-weaning to the transition

to fattening diets. Ninety-six newborn, male lambs with similar body weights

were randomly assigned to three treatments: fed starter at 42 days old +

weaned at 56 days old (Ctrl, n = 36), fed starter at 7 days old + weaned

at 56 days old (ES, n = 36), and fed starter at 7 days old + weaned at 28

days old (ES + EW, n = 24). The fattening diets of all lambs were gradually

replaced from 60 to 70 days of age. Six randomly selected lambs from each

treatment were slaughtered at 14, 28, 42, 56, 70, and 84 days of age. The

results showed that the richness and diversity of rumen microbiota of lambs

in the Ctrl group were distinct from those of lambs in the other groups at 42

days of age. Moreover, transcriptome analysis revealed 407, 219, and 1,211

unique di�erentially expressed genes (DEGs) in the rumen tissue of ES vs. Ctrl,

ES vs. ES + EW, and ES + EW vs. Ctrl groups, respectively, at 42 days of age.

Di�erent early feeding strategies resulted in di�erences in ruminal anatomy,

morphology, and fermentation in lambs from 42 to 84 days of age (P < 0.05).

Lambs in the ES+ EW group had a higher average starter diet intake than those

in the other groups (P < 0.05) from 28 to 56 days of age, which a�ected their

growth performance. After 42 days of age, the body and carcass weights of

lambs in the ES and ES + EW groups were higher than those in the Ctrl group

(P < 0.05). These findings demonstrate that feeding lambs with a starter diet

at 7 days of age and weaning them at 28 days of age can promote rumen

development and improve growth performance, and this advantage persists

for up to 2 weeks after transition to the fattening diet.
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Introduction

Rumen development is the most critical physiological

challenge in young ruminants. The ruminant forestomach has

a unique structure and function that not only differentiates

it from the stomach of monogastric animals morphologically

but also in terms of digestion and metabolism (1). Lambs

are born with a physically and metabolically underdeveloped

rumen similar to that of a monogastric animal, whereby the

milk enters the abomasum through the esophageal groove to be

digested and is then absorbed in the small intestine to maintain

and meet the nutrient requirements for growth (2, 3). After

lambs start consuming solid feeds, the rumen’s colonization

by microorganisms, establishment of fermentation, initiation of

transport and absorption, volume enlargement, and growth of

papillae are all necessary as lambs shift from dependence onmilk

to solid feeds (4, 5). Numerous studies have confirmed that even

subtle changes in early feeding styles and nutrient composition

are able to substantially influence ruminal development (6–9).

The weaning age of lambs is generally determined by

the production goal in the commercial lamb industry. Early

weaning can shorten the breeding cycle of ewes and be a strong

stressor for lambs, as separation from the dams increases lamb

morbidity and mortality (10). Lactation time is an important

factor in ewe-lamb contact intensity and early weaning stress

(11). Furthermore, early weaning success is limited by rumen

volume, the rate of functional development (12, 13), and the

establishment of a functional rumen microbiome (14, 15).

Studies related to the early weaning of lambs have mainly

focused on growth performance (16, 17), rumen development

(9), and rumen microbiota (18, 19). Therefore, no uniform

standard for the early weaning of lambs has been established so

far and a weaning strategy that minimizes the negative impact of

early weaning while maintaining economic benefits is required.

Early supplementation has been shown to improve rumen

development and function during the transition from milk to

solid feeds (20, 21), preventing several issues related to weaning.

Previous studies have confirmed a positive correlation between

starter diet intake and rumen development (9, 22), as well

as diet fermentability (23) and feed additives (24). Similarly,

the levels and physicochemical characteristics of the available

substrates affect rumen microbial diversity and fermentation

patterns after lambs begin to consume solid feeds (25, 26).

For example, feeding lambs readily fermentable carbohydrates,

including starch and sugar, increases volatile fatty acids (VFAs),

especially butyrate, which is responsible for ruminal epithelial

development (27). Additionally, feeding forage-containing

starter diets stimulates rumen muscularization and rumination,

enhances rumen volume and motility, and maintains rumen

wall integrity and health (28). Thus, decades of research has

focused on feeding strategies to facilitate early weaning and

the transition from liquid to solid feeds in lambs (29–32).

Abecia et al. (33) showed that nutritional intervention in young

goats during the pre-weaning period can influence the rumen

microbial composition, with the effects lasting for 3months after

weaning. However, there are no published studies characterizing

the long-term effects of pre-weaning feeding strategies on lambs.

We hypothesized that feeding strategies during the pre-weaning

period of lambs would influence rumen development, affecting

the ruminal microbiota and ruminal epithelium to change the

ruminal fermentation pattern and function. This would occur

via changes in protein and gene expression, and the ruminal

microbiota, with the effects persisting after weaning. Therefore,

the present study aimed to investigate the effects of lambs’ early

feeding strategies on rumen development and performance from

pre-weaning to transition to fattening diets.

Materials and methods

Animal management and diets

Ninety-six newborn male lambs (3.58 ± 0.66 kg) from

Hu ewes with double male lambing were obtained from a

commercial sheep farm in Gansu Province, China. The ewes

and lambs were housed in well-ventilated sheep pens (6m ×

8m) with eight lambs and their dams per pen. All ewes were

fed three times daily according to the feeding management of

the sheep farm and had ad libitum access to water. The ewes

were fed a total mixed feed of 23.90% corn silage, 15.41% oat

hay, 12.84% alfalfa hay, 10.35% barley straw, 6.34% oilseed rape

straw, 16.10% soybean meal, 11.30% corn, and 3.75% soybean

meal. When the ewes were fed, lambs were separated from their

dams and housed in individual pens (2.5m ×1.5m); however,

the lambs and their dams could see each other. Throughout

the experimental period, the lambs were unable to feed on the

ewes’ diet.

As described in Figure 1, when the lambs were 7 days old,

36 lambs (birth weight, BW = 4.94 ± 0.80 kg) were randomly

selected as the control group (Ctrl); these lambs were raised

with ewes, fed on starter diet at 42 days old, and weaned at

56 days old. Other lambs (n = 60; 7 days old; BW = 4.91 ±

0.81 kg) were offered a pelleted starter diet ad libitum during

the time they were separated from their dams (the starter was

offered each morning and the residue was collected the next

morning). Twenty-four of these lambs (28 days old; BW = 7.58

± 1.62 kg) were weaned at 28 days of age and categorized as

the early weaning group (EW + ES). The remaining lambs (n

= 30; 28 days old; BW = 8.38 ± 0.96 kg) served as the early

supplementary group (ES). The lambs in the Ctrl and ES groups

were weaned at 56 days of age. After weaning, the lambs were

housed in pens (6m × 8m) where they could not see the dams.

The fattening diets of all lambs were gradually replaced from

60 to 70 days of age. The lambs had ad libitum access to the
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FIGURE 1

Experimental design. Study design showing the time frame of the experiment and the treatment groups. The ewes of control group were fed

according to the sheep farm procedure. At 42, 56, 70, and 84 days of age, six lambs were randomly selected from each treatment group,

weighed, and slaughtered.

experimental diets and water during the experimental period.

Six lambs were selected from each group and slaughtered on

days 14, 28, 42, 56, 70, and 84.

The experimental diets were formulated and calculated

according to the Nutrient Requirements of Small Ruminants

(34). The experimental diets were provided as 2.5mm

pellets. Table 1 shows the experimental diets, including

their formulation and chemical composition. The feedstuffs

were analyzed for dry matter (DM, method 930.15), crude

protein (CP, method 984.13), calcium (method 975.03), and

phosphorous (method 965.17) according to the Association

of Official Agricultural Chemists (AOAC) methods (35),

while starch content was determined according to the method

described by MacRae et al. (36). The determination of neutral

detergent fiber (NDF) and acid detergent fiber (ADF) were

based on the method of Van Soest et al. (37). All analyses

were performed in triplicate. The digestive energy (DE) was

computed according to the National Research Council (NRC)

methodology (34) using sheep tabular values.

Sample collection

Samples were collected as described in Liu et al. (26). In

brief, the body weight of each lamb was determined weekly from

7 to 84 days of age. The starter and fattening dietary intakes

were measured daily for each pen. For each lamb, diarrhea was

monitored and recorded daily to calculate the diarrhea rate.

At 42, 56, 70, and 84 days of age, six lambs were randomly

selected from each treatment group, weighed, and slaughtered

in the abattoir. Immediately after slaughter, both carcass and

organ weight were measured. The entire rumen content was

collected, homogenized, and a subsample was transferred into

a plastic bottle, snap-frozen in liquid nitrogen, and stored at

−80◦C for bacterial analysis. Ruminal tissues from the ventral

sac region were sampled and stored at−80◦C for transcriptomic

analysis or washed in normal saline and stored in 10% buffered

formalin solution for morphological analysis. Ruminal fluid was

collected and stored at −20◦C for the determination of volatile

fatty acids (VFAs), ammonia nitrogen (NH3-N), and microbial

crude protein (MCP) concentrations.

Measurement of physiological
parameters

Immediately after slaughter, rumen pH was determined

using a pH meter (Orion Star A121 portable pH meter; Thermo

Fisher Scientific, Waltham, MA, USA). The concentrations of

VFAs, NH3-N, and MCP in the ruminal fluid were analyzed

as described previously (26, 38, 39). In brief, VFAs were

measured in an Agilent 6890N gas chromatograph (Agilent
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TABLE 1 Ingredients and chemical composition of experimental diet

(%, DM basis).

Item Starter diet Fattening diet

Ingredients

Alfalfa hay 5.0 25.0

Corn 55.9 44.5

Soybean meal 11.0 9.0

Whey powder 1.5 –

Expended soybean 7.0 –

Dried barley malt rootlets 17.0 18.0

Limestone 1.2 0.7

Premixa 1.0 1.0

NaCl 0.3 0.4

Feed attractant 0.1 –

NaHCO3 – 1.4

Nutrient composition, % of dry matterb

DM, air dry basis 87.5 87.6

DE (MJ/kg) 13.5 12.1

CP 18.2 14.6

NDF 18.0 22.0

Starch 38.8 28.9

Calcium 0.7 0.7

Phosphorus 0.3 0.4

aPremix provides the following minerals and vitamins per kg diet: S, 2 g/kg; Fe, 38 mg/kg;

Zn, 23 mg/kg; Cu, 8.7 mg/kg; I, 0.77 mg/kg; Mn, 20 mg/kg; Se, 0.14 mg/kg; Co, 0.16

mg/kg; vitamin A, 1,566 IU/kg; vitamin D 220 IU/kg; vitamin E 21 IU/kg.
bDM, CP, Starch, NDF, Calcium, and Phosphorus were measured values, while the others

were calculated values.

Technologies Inc., Santa Clara, CA, USA) with a 30m (0.32mm

internal diameter) fused silica column (HP-19091N-213; Agilent

Technologies Inc.), as described by Liu et al. (26). The NH3-

N content was measured using a SP-723 spectrophotometer

(Spectrum Instruments, Ltd., Shanghai, China) according to

the Berthelot reaction (phenol-hypochlorite), as described by

Broderick and Kang (38). The MCP content was measured

using the Folin phenol method, as described by Makkar

et al. (39). Ruminal morphometric analyses were performed

using hematoxylin-eosin staining, as described by Lesmeister

et al. (40).

DNA extraction, 16S rRNA amplicon
sequencing, and bacterial composition
analysis

For microbial DNA extraction, rumen contents were

collected from six lambs in each group at 42 days of age.

Total DNA was extracted from rumen contents using a

QIAamp DNA Stool Mini Kit (QIAGEN, Hilden, Germany),

according to the manufacturer’s instructions. To assess

the rumen microbial profiles, the V3–V4 region of the

bacterial 16S rRNA gene was amplified using the universal

primers 341F (5
′

-CCTAYGGGRBGCASCAG-3
′

) and 806R

(5
′

-GGACTACNNGGGTATCTAAT-3
′

) (41) with barcode

sequences. The obtained amplicons libraries for all samples

were sequenced on the Illumina MiSeq platform (Illumina

Inc., San Diego, CA, USA) and 2 × 250 bp paired-end reads

were generated.

The raw sequence data were processed using QIIME

(www.qiime.org). Sequences with ≥97% similarity were

assigned to the same operational taxonomic unit (OTU). All

the reads were identified and classified using the UCHIME

algorithm (42), compared against the reference database. To

calculate the α-diversity of rumen microbiota, the following

metrics were calculated: number of observed species, Chao1

index, and Shannon index (43). Principal coordinate analysis

(PCoA) of weightedUniFrac distances, as described by Fomenky

et al. (44), was used to visualize microbiota association patterns,

i.e., β-diversity. Taxonomical annotation was performed using

Mothur v 1.41.1 (43) and by referring to Silva.nr.132 (45). The

number of shared genera was visualized in Venn diagrams.

The linear discriminant analysis effect size (LEfSe) was used to

analyze the bacterial differences at the genus level among the

three treatment groups.

RNA extraction and transcriptome, gene
expression, and functional analyses

Total RNA was isolated from nine rumen tissue samples

of lambs at 42 days of age, using TRIzol (TransGen Biotech,

Beijing, China), according to the manufacturer’s instructions.

The concentration and quality of total RNA were examined

in a NanoDrop spectrophotometer (NanoDrop Technologies,

Wilmington, DE, USA) and Bioanalyzer 2100 system (Agilent

Technologies Inc.), respectively. After screening for RNA

quality, a total of 1.5 µg RNA per sample was used to construct

a cDNA sequencing library using the TruSeq Stranded mRNA

Sample Prep Kit (Illumina Inc.), following the manufacturer’s

instructions (46). After library construction, all libraries were

sequenced using the Illumina HiSeq 4000 platform (Illumina

Inc.) at Shanghai Personalbio Science and Technology Co., Ltd.

(Shanghai, China).

Low-quality reads and adapter sequences were removed

using Trimmomatic (47). Subsequently, the high-quality reads

were aligned to the sheep reference genome (Ovis aries v3.1)

using TopHat2 (v2.0.13) and Bowtie2 (v2.3.3.1), as described

previously (48, 49). Gene transcripts were assembled using

String-Tie (v1.3.1) based on the reference genome model (50).

Gene expression values were normalized to fragments per

kilobase of transcript per million mapped (FPKM).
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Differentially expressed genes (DEGs) in pair-wise

comparisons (ES vs. Ctrl, ES vs. ES+ EW, and ES+ EW vs. Ctrl

group) were identified using the DESeq R package (1.10.1) in

R software (v3.5.1) (51). Adjusted P < 0.05 and absolute value

of [log2 (fold change)] > 1.5 were both used as filter factors for

identifying DEGs. KOBAS (v3.0) was used to identify DEGs

in the Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways (52).

Quantitative real-time polymerase chain
reaction

Four genes (transforming growth factor, TGF; and insulin

like growth factor binding proteins 3, 5, and 6, IGBP3, IGBP5,

and IGBP6) associated with the phosphatidylinositol 3 kinase-

protein kinase B (PI3K-Akt) and TGF-β signaling pathways

were employed to assess the relationship between ruminal

morphology and gene expression. Another five genes (sodium-

hydrogen exchangers 2 and 3, NHE2 and NHE3; DR alpha,

DRA; 3-hydroxy-3-methylglutaryl-CoA lyase; HMGCL, and

monocarboxylate transporter 1;MCT1) associated with mineral

absorption and carbohydrate metabolism were selected for

correlation analysis with ruminal pH and total VFAs (TVFA).

Total RNAwas extracted from the rumen tissues of 18 lambs

at 42 days of age using TRIzol (TransGen Biotech). Absorbance

at 260 and 280 nm was measured using a NanoDropr ND-1000

spectrophotometer (Thermo Fisher Scientific) to assess RNA

purity and yield, and reverse-transcribed into cDNA, following

themanufacturer’s instructions. The primers used (Table 2) were

designed in Primer Premier 5.0 software (PREMIER Biosoft

International, Palo Alto, CA, USA). The quantitative real-time

PCR (qRT-PCR) was performed on an ABI3700 Real-Time PCR

system (Applied Biosystems Inc., Foster City, CA, USA) under

the following conditions: denaturation at 94 ◦C for 3min; then,

40 cycles at 94 ◦C for 30 s, annealing (different temperature for

each gene, Table 2) for 30 s, extension at 72 ◦C for 30 s; final

extension at 72 ◦C for 10min. Each 20 µL qRT-PCR reaction

contained 50 ng cDNA, 10 µL of SYBR Green (TransGen

Biotech), 0.4 µL of each primer, and 8.2 µL ddH2O. Beta actin

was used as the internal control gene. The 2−11CT method was

used to analyze the data (52).

Statistical analysis

Statistical analyses of growth performance, ruminal

anatomy, morphology, and fermentation were performed in R

(v3.5.1; Free Software Foundation, Boston, MA, USA), using the

linear model:

Yijk = µ + Ti + Aj + (T :A)ij + µk + BWk + DRk + εijk,

where Yijk is the value measured in treatment i at age j of

lamb k; µ is the overall mean; Ti is the fixed effect of the three

treatments (Ctrl, ES, and ES+ EW; i= 1, 2, and 3), Aj is the fixed

effect of age over the seven periods (days 7, 14, 28, 42, 56, 70, and

84; j = 1, 2,. . . ,7); (T :A)ij is the fixed effect of the interaction

between treatment and age; µk is the random effect of different

early rearing in lambs (k = 1, 2, 3,. . . 18); BWk and DRk are the

covariates “birth weight” and “diarrhea rate,” respectively; εijk is

the random residual error. A significant effect of the treatment

was established at P < 0.05.

Bacterial abundance and gene expression data were analyzed

using one-way analysis of variance (ANOVA) in SPSS Statistics

23.0 (IBM Co. Ltd., Chicago, IL, USA). The model was

the following:

Yij = µ + Ti + εij

where Yij is the dependent variable (j = 1, 2. . . ,6); µ is the

overall mean; Ti is the fixed effect of the three treatments (Ctrl,

ES, and ES + EW; i = 1, 2, and 3); εij is the random effect. A

significant effect of the treatment was established at P < 0.05.

Spearman’s rank correlation was employed to assess the

relationship between rumen fermentation parameters, ruminal

morphology, gene expression, and relative bacterial abundance

using R (v3.5.1; Free Software Foundation). A significant

effect of the treatment was established at P < 0.05. All data

were analyzed visually using GraphPad Prism 8.0.1 (GraphPad

Software, Inc., SanDiego, CA, USA) andOrigin software (Origin

Lab Corp., Northampton, MA, USA).

Results

Growth performance

The average starter diet intake of lambs was significantly

affected by age, rearing, and their interaction (P = 0.022;

Figure 2A). Lambs in the ES and ES + EW group were

supplemented with starter diets until the end of the experiment

(from 42 to 84 days of age), and their average starter diet intake

was higher than that of lambs in the Ctrl group (P < 0.05). There

was no significant interactive effect of rearing and age on the

body and carcass weights of lambs (P > 0.05). After 42 days of

age, the body weight of lambs in the ES+ EW group was higher

than that of lambs in the Ctrl group (P < 0.05; Figure 2B). The

body weight of lambs in the ES group was higher than that of

the lambs in the Ctrl group (P < 0.05) from 77 to 84 days of age

(Figure 2B). The carcass weight of lambs in the ES and ES+ EW

groups was higher than that of the lambs in the Ctrl group after

56 days of age (P < 0.05, Figure 2C), except for lambs in the ES

+ EW group at 70 days of age (P > 0.05). Notably, the carcass

weight of lambs in the Ctrl group was higher than that of lambs

in the ES group (P < 0.05) at 28 days of age.
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TABLE 2 QPCR Primers used in the validation of DEGs of rumen tissue between Hu lambs with di�erent early feeding strategies.

Gene Gene Name GenBank accession no. Primer Sequences (5’−3’) Location on template Amplicon Length (bp) Temperature (◦C)

TGFβ1 Transforming Growth Factor Beta 1 NM_001009400.2 F: TGACCCACAGAGAGGAAATAGA 14:53732833-53732851 94 57

R: AACCCGTTGATGTCCACTTGAA 14:53736067-53736089

IGFBP3 Insulin Like Growth Factor Binding Protein 3 NM_001159276.1 F: TCAGCCTTGCGGCGTCTA 4:83695529-83695546 275 60

R: TGTGGGCGAGGTGGGATT 4:83698731-83698748

IGFBP5 Insulin Like Growth Factor Binding Protein 5 NM_001129733.1 F: GCTGAAGGCTGAGGCTGTGAA 2:233468360-233468380 308 57

R: TCCCATACTTGTCCACGCACC 2:233466022-233466043

IGFBP6 Insulin Like Growth Factor Binding Protein 6 NM_001134308.1 F: AGAGTAAGCCCCAAGCAG 3:142894866-142894883 159 59

R: CACGGAGTCCAGATGTTT 3:142894568-142894589

NHE2 Solute Carrier Family 9 Member A2 XM_604493.9 F: GACATCACTTTGCTCCAGAATC 3:105570477-105570498 153 57

R: CACTGTCACGGCGTCATTCA 3:105570345-105570365

NHE3 Solute Carrier Family 9 Member A3 XM_042233997.1 F: TGTTCGGCAGCCTGATTG 16:78114481-78114499 225 59

R: CACCACGAAGAAGGACACTA 16:78116667-78116685

DRA Solute Carrier Family 26 Member 3 NM_001184899.1 F: TACAGGAATCGTGGGCTAT 20:27397471-27397490 280 57

R: TCTGGAGGAACATTGGTG 20:27398452-27398470

HMGCL 3-Hydroxy-3-Methylglutaryl-CoA Lyase XM_004005125.4 F: GCTCCACGAGACGGACTACAA 2:258630811-258630831 282 60

R: CTCAGAGGCGGCTCCAAAGAT 2:258635813-258635833

MCT1 Solute Carrier Family 16 Member 1 NM_003051.2 F: CTTGCCTTCAACTTAAATCCG 1:95078951-95078971 206 58

R: TGCTTACTCTTGCCATAA 1:95078466-95078483

β-Actin Beta-tubulin AF035420.1 F: TCCGTGACATCAAGGAGAAGC 24:39622009-39622029 186 58

R: CCGTGTTGGCGTAGAGGT 24:39622347-39622364
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FIGURE 2

Average starter diet intake (A), body weight (B), and carcass weight (C) of lambs in di�erent early feeding strategies. Columns with di�erent

letters at a single time point indicate means that di�ered based on the means separation (P < 0.05). Error bars indicate SEM for the treatment ×

age interaction.

Ruminal anatomy, morphology, and
fermentation

The weights of the reticulorumen, which were expressed as

a percentage of the body weight, whole gastrointestinal tract,

and whole stomach were significantly affected by age, rearing,

and their interaction (P < 0.001; Figure 3A). Moreover, the

reticulorumen weight of lambs in the ES + EW group was

higher (P < 0.05) than that of lambs in the other groups

from 56 to 84 days of age. Lambs fed with starter diets had

a higher reticulorumen weight, expressed as a percentage of

body weight (P = 0.034) and whole stomach weight (P =

0.027) at 28 days of age. Additionally, early weaning increased

the reticulorumen weight of lambs compared with lambs in

the ES (P = 0.007) and Ctrl (P < 0.001) groups at 42 days

of age.

Ruminal papillae length (P = 0.012; Figure 3Ba) and width

(P = 0.030; Figure 3Bb), and ruminal muscle layer thickness

(P < 0.001; Figure 3Bc) were all significantly affected by age,

rearing, and their interaction. Lambs in the ES group had longer

rumen papillae than lambs in the Ctrl group (P < 0.05) at 28, 42,

and 84 days of age. The rumen papillae of lambs in the ES+ EW

group were longer than that of lambs in the other groups from

42 to 84 days of age (P < 0.05). Furthermore, the rumen papillae

of lambs in the ES+ EW group were longer than that of lambs in

the Ctrl group at 28 and 42 days of age (P < 0.05). Additionally,

the rumen papillae of lambs in the ES + EW group were wider

than that of lambs in the Ctrl group at 42 and 56 days of age (P <

0.05). Similarly, lambs in the ES group had wider rumen papillae

than lambs in the Ctrl group at 14, 42, and 56 days of age (P <

0.05). At 84 days of age, the rumen papillae of lambs in the ES

group were wider than those of lambs in the other groups (P <

0.05). The rumen muscle layer of lambs in the ES and ES+EW

groups was thicker than that of lambs in the Ctrl group at 56

and 70 days of age (P < 0.05). The lambs in the ES and ES +

EW group had a thicker rumen muscle layer than that in the

Ctrl group at 56 and 70 days of age (P < 0.05). Additionally, the

rumen muscle layer of lambs in the ES+ EW group was thicker

than that of lambs in the Ctrl group at 42 days of age (P < 0.05).

Ruminal VFA concentrations (P < 0.001; Figure 3Ca), MCP

(P < 0.001; Figure 3Cg), molar proportions of acetate (P <

0.001; Figure 3Cc), propionate (P < 0.001; Figure 3Cd), and

butyrate (P< 0.001; Figure 3Ce) were all significantly affected by

age, rearing, and their interaction. Conversely, neither ruminal

pH (P = 0.282; Figure 3Ca) nor NH3-N (P = 0.464; Figure 3Cf)

were significantly affected by age and rearing. However, the

lambs in the ES and ES + EW groups had higher ruminal pH

than the lambs in the Ctrl group at 28, 42, 70, and 84 days of

age (P < 0.05) and the ruminal pH of lambs in the ES group was

higher than that of lambs in the other groups at 56 days of age (P

= 0.046). Conversely, the ruminal pH of lambs in the ES + EW

group was higher than that in other groups at 84 days of age (P

= 0.017). As for NH3-N concentration, lambs in the ES and ES

+ EW groups showed lower values than lambs in the Ctrl group

from 42 to 84 days of age (P < 0.05).

Lambs in the ES group had higher ruminal VFA

concentrations than lambs in the Ctrl group at 28 and 84

days of age (P < 0.05). At 42 days of age, lambs in the ES and ES

+ EW groups had higher ruminal VFA concentrations than that

in the Ctrl group (P = 0.014). Lambs in the ES and ES + EW

groups showed higher molar proportion of acetate than lambs

in the Ctrl group at 28, 56, and 70 days of age (P < 0.05). At 42

days of age, the molar proportion of acetate in lambs in the ES

+ EW group was higher than that of lambs in the other groups

(P = 0.027). The lambs in the ES and ES + EW groups showed

higher molar proportions of propionate than the lambs in the

Ctrl group at 28, 42, and 84 days of age (P < 0.05). At 70 and

84 days of age, lambs in the ES and ES + EW groups had lower

molar proportions of butyrate than lambs in the Ctrl group (P

< 0.05). The molar proportion of butyrate in lambs in the ES +
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FIGURE 3

The development of lamb ruminal anatomy (A), morphology (B), and fermentation (C) in di�erent early feeding strategies. Boxes with di�erent

letters at a single time point indicate means that di�ered based on the means separation (P < 0.05). Error bars indicate SEM for the treatment ×

age interaction.
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EW group was higher than that of lambs in the Ctrl group (P =

0.043). Additionally, lambs in the ES + EW group had higher

molar proportions of butyrate than lambs in the ES group at

56 days of age (P = 0.038). The lambs in the ES and ES + EW

groups had higher MCP than the lambs in the Ctrl group from

14 to 42 days of age (P < 0.05).

Ruminal microbiota diversity and
community structure

A total of 810,363 high-quality sequences were obtained

from the 18 samples of rumen contents, with an average of

45,020 sequences per sample, and 4,420 OTUs were defined

based on 97% similarity. At 42 days of age, the number of

observed species (P= 0.006; Figure 4Aa) and the value of Chao1

(P = 0.006; Figure 4Ac) in the Ctrl group were lower than that

in the other groups. Conversely, the value of Shannon (P =

0.001; Figure 4Ab) was higher in the Ctrl group than in the other

groups. However, no difference in α-diversity was observed

between the ES and ES+ EW groups (P > 0.05).

The results of the β-diversity analysis using weighted

UniFrac distances revealed a clear diversification of the bacterial

community between the Ctrl group and the other two groups

(Figure 4B). The ANOSIM revealed differences in bacterial

community composition between the Ctrl and ES groups (R =

0.572, P = 0.029) and the Ctrl and ES+ EW groups (R= 0.681,

P= 0.017). No significant differences were observed between the

ES and ES+ EW groups (R= 0.021, P = 0.641).

We identified the top ten most abundant phyla (Figure 4Ca)

and the phyla with abundance > 1.00% of total sequences in

at least one group. The main phylum, with the highest relative

abundance across all samples, was Bacteroidetes, accounting

for 58.19–66.06% of the total sequences. In the ES and ES +

EW groups, it was followed by Firmicutes (23.65 and 20.45%,

respectively), Spirochaetes (10.35 and 8.61%, respectively), and

Proteobacteria (3.32 and 2.52%, respectively), while in the

Ctrl group, it was followed by Verrucomicrobia (10.66%),

Proteobacteria (8.84%), and Firmicutes (7.36%). The relative

abundances of Proteobacteria (P = 0.007), Verrucomicrobia (P

= 0.002), and Lentisphaerae (P = 0.014) were higher, whereas

that of Firmicutes (P = 0.003) was lower in the Ctrl group

than in the other groups. Bacterial genera with abundance >

0.10% are presented in Figure 4Cb. The lambs in the ES +

EW group had a higher relative abundance of Acidaminococcus

(P < 0.001), Dechloromonas (P = 0.021), high-throughput

culture collection (HTCC) isolates (P = 0.002), Mitsuokella (P

= 0.018), and Roseburia (P = 0.005) than in the other groups.

Bacteroidales_unidentified (P = 0.002) and CF231 (P = 0.007)

showed the highest relative abundance in the Ctrl group. The

relative abundance of Butyrivibrio (P = 0.011) in the ES + EW

group was higher than that in the Ctrl group. Lambs in the ES

group had a higher relative abundance of Succiniclasticum (P =

0.020) than those in the Ctrl group.

To identify the differentiated bacterial taxa among the

three rearing methods, LEfSe analysis was performed at the

genus level. When the Ctrl and ES groups were compared

(Figure 4Da), V6, Dechloromonas, CF231, Anaeroplasma,

HTCC, and RFN20 were significantly enriched in the Ctrl

group, whereas the biomarkers for the ES group were Prevotella,

Succiniclasticum, Butyrivibrio, and Bulleidia. When the Ctrl

and ES + EW groups were compared (Figure 4Db), V17,

Dechloromonas, CF231, Anaeroplasma, HTCC, and RFN20

were enriched in the Ctrl group, whereas Mitsuokella, Sharpea,

YRC22, Butyrivibrio, Pyramidobacter, Acidaminococcus,

Bulleidia, and Dialister were biomarkers for the ES + EW

group (Figure 4Db). Additionally, the rumen microbiota in

lambs of the ES group had a higher relative abundance of

Treponema than that of lambs in the other groups, whereas

Acidaminococcus and Mitsuokella were over-represented in the

EW+ ES group (Figure 4Dc).

Bacterial abundance and phenotypic
variables relationship

Correlation analysis showed that ruminal muscle layer

thickness (R = −0.596, P = 0.025) and papillae length (R

= −0.726, P = 0.003), and width (R = −0.618, P = 0.018)

were negatively correlated with the relative abundance of

Campylobacter (Figure 4E; n = 6). Ruminal pH was negatively

correlated with the relative abundances of Mitsuokella (R =

−0.485, P = 0.041) and Succinivibrio (R = −0.546, P = 0.019).

TVFA was positively correlated with the relative abundances of

Acidaminococcus (R = 0.562, P = 0.024), Bulleidia (R = 0.593,

P = 0.015), Dialister (R = 0.596, P = 0.015), Mitsuokella (R =

0.554, P = 0.026), and Prevotella (R = 0.585, P = 0.017) but

negatively correlated with that of Anaeroplasma (R = −0.647, P

= 0.007), CF231(R = −0.603, P = 0.013), Dechloromonas (R =

−0.620, P= 0.010), Fibrobacter (R=−0.647, P= 0.007), HTCC

(R = −0.786, P < 0.001), and Ruminobacter (R = −0.510, P =

0.043). Themolar proportion of acetate was positively correlated

with the relative abundances of Ruminobacter (R = 0.684, P =

0.003) and Treponema (R = 0.524, P = 0.037) but negatively

correlated with that of Bacteroides (R = −0.539, P = 0.031),

Bulleidia (R = −0.595, P = 0.015), and Dialister (R = −0.601,

P = 0.014). The molar proportion of propionate was positively

correlated with the relative abundances ofAcidaminococcus (R=

0.527, P = 0.036), Bacteroides (R = 0.578, P = 0.019), Bulleidia

(R = 0.616, P = 0.011), and Desulfobulbus (R = 0.735, P =

0.001) but negatively correlated with that of Ruminobacter (R

= −0.536, P = 0.032). The molar proportion of butyrate was

negatively correlated with the relative abundances of Prevotella

(R = −0.526, P = 0.036), Succiniclasticum (R = −0.503, P =
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FIGURE 4

Ruminal microbiota diversity and community structure of lambs in di�erent early feeding strategies at 42 days of age. (A) The alpha diversity in

the rumen microbial community based on the observed species (a), Shannon index (b) and Chao1 index (c). (B) The principal coordinate analysis

(Continued)
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FIGURE 4

(PCoA) based on the unweighted Unifrac distances. (C) The composition of rumen microbiome at phylum and genus level: the composition of

rumen microbiome at phylum level (a), the composition of major rumen genera (b). (D) LEfSe identified significantly di�erent bacteria at the

genus level as di�erentiating the two groups, including Ctrl vs. ES (a), Ctrl vs. ES+EW (b), and ES vs. ES+EW (c). Genera in this graph were

statistically significant (P < 0.05) and had an LDA Score > 2.5, which was considered a significant e�ect size; (E) Heat maps showing the

correlations between animal phenotypical variables and relative abundance of bacterial genera. The depth of the color indicates the correlation

between species and environmental factors. “*” and “**” indicate the di�erent levels at 0.05 and 0.01, respectively.

0.047), and Succinivibrio (R = −0.531, P = 0.034). The molar

proportion of isobutyrate was positively correlated with the

relative abundance of YRC (R = 0.625, P = 0.010) while the

molar proportion of valerate was negatively correlated with the

relative abundance of Succinivibrio (R = −0.599, P = 0.014).

The molar proportion of isovalerate was positively correlated

with the relative abundances of Bulleidia (R = 0.624, P =

0.010) and Dialister (R = 0.542, P = 0.030), but negatively

correlated with that of Ruminobacter (R = −0.716, P = 0.002)

and Treponema (R = −0.565, P = 0.023). The ratio of acetate

to propionate was positively correlated with Campylobacter (R

= 0.505, P = 0.046), HTCC (R = 0.559, P = 0.024), and

Ruminobacter (R = 0.635, P = 0.008) relative abundances but

negatively correlated with Acidaminococcus (R = −0.550, P =

0.027), Bacteroides (R = −0.626, P = 0.009), Bulleidia (R =

−0.684, P = 0.003), and Dialister (R = −0.760, P = 0.001)

relative abundances. Ruminal NH3-N was positively correlated

with the relative abundances of Anaeroplasma (R = 0.561, P

= 0.019), HTCC (R = 0.559, P = 0.020), Ruminobacter (R =

0.526, P = 0.019), and Treponema (R = 0.545, P = 0.024) but

negatively correlated with that ofAcidaminococcus (R=−0.564,

P = 0.018), Bacteroides (R = −0.704, P = 0.002), Bulleidia

(R = −0.559, P = 0.020), Dialister (R = −0.744, P = 0.001),

Prevotella (R=−0.549, P = 0.022), Ruminobacter (R=−0.562,

P = 0.019), Sharpea (R = −0.555, P = 0.021), Succiniclasticum

(R = −0.640, P = 0.006), and Succinivibrio (R = −0.600, P =

0.011). Ruminal MCP concentration was positively correlated

with the relative abundances of Acidaminococcus (R = 0.745, P

< 0.001), Bulleidia (R = 0.715, P = 0.003), Butyrivibrio (R =

0.666, P= 0.003), Dialister (R= 0.561, P= 0.015),Megasphaera

(R = 0.660, P = 0.003), Ruminococcus (R = 0.516, P = 0.029),

Selenomonas (R = 0.502, P = 0.034), and Succinivibrio (R

= 0.514, P = 0.029) but negatively correlated with that of

Anaeroplasma (R = −0.756, P < 0.001), CF231 (R = −0.715, P

= 0.001), Dechloromonas (R = −0.686, P = 0.002), Fibrobacter

(R = −0.619, P = 0.006), HTCC (R = −0.504, P = 0.033),

Roseburia (R = −0.754, P < 0.001), and Ruminobacter (R =

−0.507, P = 0.032).

Characterization of the transcriptome in
the rumen tissue

A total of 467.71 million (51.97 ± 1.77 million reads per

sample) high-quality, paired reads were obtained from nine

rumen tissue samples using RNA sequencing, and the alignment

rate to theOvis aries reference genomewas 89.01% (from 92.19%

to 86.08%). Principal component analysis (PCA) of total gene

expression demonstrated marked clustering among the three

groups (Figures 5A,C). When compared with the Ctrl group,

there were 466 genes that were differentially expressed in the

ES group, including 287 upregulated and 179 downregulated

genes (Figure 5B). Compared with the ES group, there were

264 DEGs in the ES + EW group, including 238 upregulated

and 26 downregulated genes (Figure 5B). Additionally, there

were 1,476 DEGs in the ES + EW group compared with the

ES group, including 1,161 upregulated and 315 downregulated

genes (Figure 5B).

Functional analysis of DEGs

Compared with the Ctrl group, 407 unique DEGs were

observed in the rumen tissue of the ES group (Figure 5D).

The results of the KEGG pathway analysis showed that 16

pathways were significantly enriched (Figure 5Ea, P < 0.05).

Most of these pathways were associated with nutrient transport

and lipid metabolism, including arachidonic acid metabolism

(including genes PTGES, CBR1, ALOX12B, PLA2G, SPLA2,

and AKR1C3), fatty acid elongation (including genes HADH,

ELOVL7, HSD17B12, KAR, and IFA38), fatty acid degradation

(including genes ACADS, ACSBG, HADH, ACSL, fadD, and

ADH1_7), and mineral absorption (including genes SLC26A3,

DRA, and CLCN2).

Compared with the ES + EW group, 219 unique DEGs

were observed in the rumen tissue of the ES group (Figure 5D).

The KEGG pathway analysis revealed 25 significantly enriched

pathways (Figure 5Eb, P < 0.05), most of which associated

with cell proliferation, apoptosis, and differentiation, such as

the PI3K-Akt (including genes PTK2, FAK, PPP2R5, ITGB1,

PPP2R1, and ITGB7), MAPK signaling (including genes

RPS6KA, RSK2, PPM1B, PP2CB, and MAPK1_3), and TGF-β

(including genes TFDP1 andMAPK1_3) pathways.

Additionally, compared with the Ctrl group, 1211 unique

DEGs were observed in the rumen tissue of the ES + EW

group (Figure 5D). The KEGG pathway analysis showed that

21 pathways were significantly enriched (Figure 5Ec, P < 0.05),

including the T-cell receptor signaling pathway (including

genes PPP3R, CNB, NFKB1, FOS, JUN, MAPK1_3, DLG1, and

RHOA), the intestinal immune network for immunoglobulin
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FIGURE 5

The PCA analysis of gene expressions, number of DEGs, KEGG pathways, and main DEGs in the rumen tissue of lambs in di�erent early feeding

strategies at 42 days of age. (A) The PCA analysis of gene expressions in the rumen tissue among three groups. (B) The number of DEGs at each

(Continued)
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FIGURE 5

comparison in the di�erent early feeding strategies. (C) Clustering heat-map of the DEGs, including Ctrl vs. ES (a), ES vs. ES+EW (b), and Ctrl vs.

ES+EW (c); (D) The Venn diagram of all the comparisons and the numbers of DEGs at di�erent early feeding strategies. (E) The KEGG pathways

significantly enriched in the unique DEGs identified in the rumen tissue between Ctrl vs. ES (a), ES vs. ES+EW (b), and Ctrl vs. ES+EW (c), and

DEGs in main KEGG pathways. The significance of identified KEGG pathways was determined by P < 0.05. (F,G) The relationship between DGEs

expression and phenotypic variables, including gene expression related to the development of rumen epithelial morphology of lambs in three

groups, n = 6 (Fa). Correlation heatmap showing the correlation of rumen epithelial morphology and DGEs, n = 6 (Fb). Gene expression related

to rumen fermentation of lambs in three groups, n = 6 (Ga); Correlation heatmap showing rumen fermentation correlated with DGEs, n = 6

(Gb). The qRT-PCR measurements of the expression of DGEs were analyzed using 2−11CT method.

A (IgA) production (including genes CXCR4, TNFRSF3, and

LTBR), toll-like receptor signaling pathway (including genes

MAPK1_3, JUN, FOS, MAP2K3, MKK3), methane metabolism

(including genes ACSS, PGAM, and gpmA), and galactose

metabolism (including genes UGP2, galU, galF, and GAA).

These pathways are also associated with immune functions and

carbohydrate metabolism.

Relationship between DEGs and
phenotypic variables

Figure 5F shows the relationship between rumen

morphology and DEGs (n = 6). Rumen muscle layer thickness

(R = 0.831, P = 0.002; R = 0.694, P = 0.035; R = −0.920, P

= 0.001; R = −0.705, P = 0.021), and papillae length (R =

0.895, P < 0.001; R = 0.826, P = 0.002; R = −0.966, P < 0.001;

R = −0.673, P = 0.032) and width (R = 0.757, P = 0.001; R

= 0.967, P < 0.001; R = −0.907, P = 0.001) were positively

correlated with TGF and IGFBP5 expression, but negatively

correlated with IGFBP3 and IGFBP6 expression. Spearman’s

rank correlation analysis was used to explore the relationship

between rumen fermentation and DEGs (Figure 5G, n = 6).

The expression of NHE3 (R = −0.920, P < 0.001; R = 0.905,

P = 0.001), DRA (R = −0.573, P = 0.046; R = 0.812, P =

0.017) and MCT1 (R = −0.844, P = 0.004; R = 0.862, P =

0.003) was negatively correlated with ruminal pH but positively

correlated with rumen TVFA concentration. Conversely, NHE2

(R = 0.767, P = 0.009; R = −0.826, P = 0.002) expression was

positively correlated with ruminal pH but negatively correlated

with rumen TVFA concentration.

Discussion

Growth performance

Rumen development in pre-weaning young ruminants

influences their adaptation from liquid to solid diets and post-

weaning growth performance (53). The present study showed

that the average starter diet intake of lambs in the ES + EW

group (weaned at 28 days of age) was higher than that in other

groups from 28 to 56 days of age. Furthermore, as the lambs were

provided with a starter diet at 7 days of age, there was no rapid

reduction in the average starter diet intake and body weight

(from 28 to 35 days of age) of lambs weaned at 28 days of age.

The separation of lambs from their dams while the latter were

fed (and the lambs were supplemented) might thus have helped

the lambs to successfully adapt to the abrupt separation from

their dams at 28 days of age. Such conditions might have favored

a smooth transition from milk to solid diets and enabled the

lambs to be completely dependent on a solid diet as their source

of protein and carbohydrates. However, these results contradict

those reported by Carballo et al. (54) and Wang et al. (10). This

discrepancy might be explained by the difference in the time at

which starter diets were provided to lambs, weaning age, and

the composition and nutritional levels of starter diets. A sharp

increase in the average starter diet intake was observed from 56

to 70 days of age in lambs in the ES group (weaned at 56 days

of age). After changing the diet, lambs in the ES group had a

short-term (from 70 to 84 days of age) higher average starter

diet intake, body weight, and carcass weight than lambs in the

other groups. These results suggest that early life stress may have

a long-lasting effect on the performance of lambs (55). It is worth

noting that the carcass weight of lambs in the Ctrl group was

higher than that of lambs in the other groups at 28 days of age.

This might be explained by young ruminants relying solely on

the nutrients obtained from milk during the first four weeks of

life (53).

Ruminal anatomy, morphology, and
fermentation

The anatomical and physiological development of the rumen

is one of the most important events during the weaning

transition of a young ruminant (56). Previous studies by Baldwin

et al. (29) and Diao et al. (9) on rumen development in the

pre- and post-weaning stages have shown that at birth, 8 weeks,

and 12–16 weeks of age the reticulorumen accounts for 38%,

61.23%, and 67% of the entire stomach weight, respectively.

These observations are consistent with those of the present

study. Furthermore, early weaning and provision of starter

diets to lambs promoted rumen development, which is in

accordance with the results of previous studies showing that

providing solid feed as early as possible is beneficial to the

rapid development of the rumen (20). The physical development
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of the rumen can be divided into two aspects: an increase in

muscle mass and the growth of the papillae. Steele et al. (57)

andAschenbach et al. (58) suggested that the ruminal epithelium

plays an important role in ruminal development, including

absorption, transport, short-chain fatty acid metabolism, and

protection. Similarly, Lesmeister et al. (40) found that ruminal

epithelium length was the most important factor for evaluating

rumen development, followed by ruminal epithelium width and

muscle layer thickness. In the present study, feeding lambs with

starter diets stimulated ruminal morphological development,

and this effect was more effectively promoted by early weaning.

Stimulation of ruminal physical development is determined by

the nutritional composition and physical structure of the starter

diets fed to lambs (17). In particular, the ruminal epithelium of

lambs in the Ctrl group was shorter than that of lambs in the

other groups after diet transition (from 70 to 84 days of age),

further supporting that early nutritional regulation may have

long-term effects on the performance of lambs.

Rumen pH is essential for rumen development, rumen

environment, and even lamb health. The ruminal pH of lambs

has been reported to be lower than that of adult sheep (59),

which is similar to our present results. The lambs in the present

study showed no signs of metabolic disorders, suggesting that

lambs at this age tolerate pH levels that would be detrimental to

the health of adult sheep. In addition, as lambs consumed more

of the starter diet, rumen digesta pH decreased, whereas VFA

concentrations gradually increased. Liquid diets limit metabolic

activity and VFA absorption in the rumen epithelium (60),

retarding development. It is noteworthy that early weaning

contributes to rapid rumen development, the positive effect of

which was maintained for up to 2 weeks after diet transition.

Our study found higher molar proportions of acetate in the

rumen of lambs fed with starter diets, especially in the EW +

ES group. This result was similar to that reported by Terré et al.

(61), and might be due to the higher starter diet intake in the

EW + ES group, which promoted rumen development. The

present study also showed that NH3 concentrations decreased

with the increasing age of lambs, which concurs with the results

of previous studies (62, 63). The lambs in the ES and EW + ES

groups had higher ruminal NH3-N concentrations than lambs

in the Ctrl group from 42 to 84 days of age. The subsequent

decrease in rumen NH3-N concentration is possibly due to

better utilization of NH3 by rumen microorganisms and to

the dilution effect arising from a greater rumen volume (64).

Microbial proteins play an important role in supplying protein

to ruminants and provide most of the amino acids needed for

the growth, maintenance, and production of the host animal

(65). In the present study, lambs in the Ctrl group had lower

MCP levels than lambs in the other groups, confirming that

feed intake affects the rate of microbial protein synthesis (66).

In summary, starter fermentability and intake play an important

role in rumen development.

Rumen bacterial diversity and community
structure

The α- and β-diversity of the bacterial community structure

of lambs in the Ctrl group were distinct from those of lambs in

the other groups. In the present study, early supplementation

and weaning caused a decrease in microbial diversity, which

is consistent with the results of a previous study (18). Solid

diets are themain factor influencing rumen bacterial community

structure. The important turning point inmicrobial colonization

is the introduction of a solid diet to young ruminants (67). Kim

et al. (22) reported that feeding Holstein calves starter diets with

forage was conducive to an increase in microbial richness. As so,

the results of the present study are mostly consistent with those

of previous studies (18, 68, 69), with slight differences. These

differences may be related to the different feeding strategies.

In the present study, the rumen microbiota was dominated

by Bacteroidetes, Firmicutes, and Proteobacteria, similar to the

observations of previous studies (18, 70). The relative abundance

of Proteobacteria in the Ctrl group was higher than that in

the other groups. Yáñez-Ruiz et al. (71) concluded that the

establishment of ruminal bacterial communities in lambs from

birth to weaning is rapid, with Proteobacteria being gradually

replaced by Bacteroidetes as the main phylum. In ruminants,

Firmicutes play an important role in degrading fiber (22), while

the main function of Bacteroidetes is to degrade carbohydrates

and proteins, which can encourage the functional development

of gastrointestinal immunity (72). In the present study, lambs

in the Ctrl group had a lower abundance of Bacteroidetes than

lambs in the other groups. Malmuthuge et al. (73) reported

that providing a starter diet could propel rumen microbiota

development to a more mature status. The abundance of

Verrucomicrobia was second only to Bacteroidetes in the Ctrl

group and was substantially higher than that in the other groups.

The present results are also consistent with those of a previous

study (74). Verrucomicrobia have been suggested to coevolve

with the mammalian gut, as this phylum plays an important

role in maintaining gut homeostasis. Shen et al. (75) reported

that Verrucomicrobia modulate the expression of pathways

related to the immune tolerance of the rumen epithelium.

At the genus level, the abundance of Acidaminococcus was

higher in the ES + EW group than in the other groups.

Acidaminococcus is a genus in the phylum Firmicutes, and its

members are anaerobic diplococci that can use amino acids

as their sole energy source for growth. Acidaminococcus may

be responsible for the increased metabolism of amino acids,

carbohydrates, and lipids (76). According to the dietary intake

analysis of the three groups, the higher intake of starter diets

containing high levels of carbohydrates and amino acids after

early weaning probably provided more nutrients for metabolism

and growth of Acidaminococcus. Additionally, lambs in the ES

+ EW group had higher Mitsuokella abundance than lambs
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in the other groups. Zhang et al. (77) found that Mitsuokella

abundance was positively correlated with dry matter intake

in calves, similar to the present results. Lambs fed with solid

diets before weaning had a greater abundance of Prevotella.

McLoughlin et al. (78) indicate that Prevotella is driven by

dietary composition and independent of weaning. Our results

support previous observations showing that the inclusion of

starter concentrate in the diet of pre-weaning lambs promotes

rumen colonization by Succiniclasticum (79). In short, feeding

pre-weaning lambs with starter diets can change the structure of

the rumen bacterial community and contribute to convergence

toward the microbiota profile of adult animals. Early weaning

increases the starter intake of lambs, thereby stimulating rumen

microbial colonization.

Molecular mechanism of early weaning
and e�ect of early supplementation on
ruminal morphology and functional
development based on transcriptome
analysis

Compared with the Ctrl group, 407 unique genes were

differentially expressed in the ES group. The enriched KEGG

pathways were mainly related to nutrient transport and

metabolism in rumen tissue. Fatty acids are essential for cell

proliferation in the cellular membranes (80). According to

our findings, the upregulated genes HADH, HSD17B12, KAR,

IFA38, ACADS, ACSL, fadD, and ADH1_7 were enriched in

the fatty acid elongation and degradation pathway, which is

beneficial to the proliferation and turnover of rumen epithelial

cells. Previous studies have identified that these genes are

associated with fatty acid synthesis and deposition (81–83).

This may have contributed to the higher carcass weight of

lambs in the ES group than in the Ctrl group from 56 to

84 days of age. Moreover, arachidonic acid metabolism is a

significantly enriched signaling pathway in ruminal tissue of

lambs fed with solid diets (84), which is consistent with our

results. It is well established that arachidonic acid regulates

cellular inflammation, oxidative stress, proliferation, and

membrane permeability (85), which may affect rumen immune

function. In the present study, the expression of SLC26A3

and DRA was increased in the ES group, and enriched in

ion and mineral absorption pathways, which has been shown

to be conducive to ruminal absorption of VFA (27). Taken

together, these results suggest that early supplementation

may enhance nutrient metabolism and transport in

pre-weaned lambs.

Functional analysis of the 219 unique DEGs in the ES

+ EW vs. ES groups showed that early weaning affected

cell proliferation, apoptosis, and differentiation. Compared

with lambs in the ES group, 13 upregulated genes (PTK2,

FAK, PPP2R5, ITGB1, PPP2R1, RPS6KA, RSK2, PPM1B,

PP2CB, CALM, CTNNB1, TFDP1 and MAPK1_3) and one

downregulated gene (ITGB7) were enriched in the PI3K-

Akt, MAPK, Rap1, Ras, and TGF-β signaling pathways of

ES + EW lambs. All of these genes contribute to the

establishment of the rumen epithelial function and barrier

(86, 87). Notably, we also identified many signaling pathways

involved in amino acid metabolism. Previous studies have

suggested that a comparatively low number of amino acids

and peptides may be absorbed and metabolized by the rumen

tissue (88). However, the development of the rumen epithelium

requires increased cell and protein turnover (25, 89). In the

present study, many upregulated DEGs in the ES + EW

group were annotated in pathways related to amino acid

metabolism, including biosynthesis of amino acids, cysteine

and methionine metabolism, arginine and proline metabolism,

valine, leucine, and isoleucine degradation; glycine, serine, and

threonine metabolism; and lysine degradation. In summary,

we hypothesize that MCP synthesis might promote protein

turnover and oxidation in the rumen. These metabolites are

substrates for the citric acid cycle, generate energy-containing

compounds, are responsible for the activation of some biological

processes, and might further promote rumen epithelium

development (84). Therefore, early weaning increases the intake

of solids in lambs, promoting nutrient transport, degradation

(especially of nitrogenous substances), and absorption in the

rumen epithelium.

Compared to the Ctrl group, 1,121 unique genes were

differentially expressed in the ES + EW group. These genes

were mainly enriched in the biological processes of immune

function and nutrient metabolism, which play important roles

in rumen development. Naeem et al. (80) suggested that the

peroxisome proliferator-activated receptor (PPAR) signaling

pathway could be important in promoting rumen metabolism

and development. The PPAR signaling pathway was the most

significantly altered pathway induced by the interaction between

early supplementation and early weaning. Toll-like receptors

(TLRs) play a critical role in suppressing inflammation in

the gastrointestinal epithelium by reducing the production

of inflammatory cytokines. Shen et al. (75) found that the

carbohydrates in the starter diet induced the expansion of

the rumen microbiota and promoted epithelium tolerance by

enhancing the intensity of toll-like signaling, and the newly

established equilibrium benefited the transport of ruminal

Frontiers in Veterinary Science 15 frontiersin.org

https://doi.org/10.3389/fvets.2022.925649
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Liu et al. 10.3389/fvets.2022.925649

energy substances into the blood. Similarly, during the analysis

of shared DEGs in the toll-like signaling pathway, the expression

of toll-like signaling pathway genes in the ES + EW group was

lower than that in the Ctrl group. Taking these results together,

we hypothesize that there is better resistance to inflammation

and a greater ability to transport energy substances within the

rumen tissue of ES+ EW lambs.

Hayashi et al. (90) indicated that insulin-like growth

factor 1 (IGF1) can stimulate epithelial cell proliferation and

differentiation to enhance ruminal papillae development. IGF1

induces a cellular response by regulating IGFBPs. When IGFBP5

is upregulated, it potentiates IGF1 effects, stimulating the

proliferation of rumen epithelium, whereas IGFBP3 regulates

this process in the opposite direction (91). In the present

study, early supplementation increased IGFBP5 expression and

decreased IGFBP3 expression, which should promote rumen

epithelial cell proliferation to facilitate the development of

ruminal morphology. NHEs are apical membrane sodium

ion (Na+)-hydrogen ion (H+) anti-porters involved in the

regulation of intracellular pH. The expression of NHEs is

upregulated by butyrate; however, the long-term regulation of

NHEs is primarily accomplished by changes in transcription

(92). In the present study, the mRNA expression of NHE2

was higher in the Ctrl group than in the other groups, while

NHE3 expression was lower in the Ctrl group than in the

other groups. NHE3 imports Na+ to the cell and exports

H+ to the rumen, while NHE2 imports H+ to the cell

and exports Na+ to the extracellular space (27). Therefore,

the lower NHE2 expression and higher NHE3 expression

may demonstrate decreased H+ recycling into the lumen

and a greater net H+ uptake by the rumen epithelium to

maintain a stable rumen environment. Schurmann et al. (93)

proposed that DRA is responsible for neutralizing acid in

the rumen by exporting bicarbonate ions from epithelial cells

and importing dissociated VFAs. MCT1, which is localized

in the basolateral membrane, is involved in the basolateral

export of ketone bodies arising from butyrate metabolism

and lactate arising from propionate metabolism (94). The

expressions of DRA and MCT1 in the Ctrl group were lower

than that in the other groups, which concurs with the results

of Laarman et al. (95). These results may explain why early

supplementation leads to an increase in VFA concentration

within the rumen.

Conclusion

In summary, feeding starter diets to lambs is a turning

point in rumen development, and it accelerates rumen

development with increased feed intake after weaning. The

present study indicated that feeding lambs with starter

diets at 7 days of age and weaning them at 28 days

of age can stimulate rumen morphological development,

promote rumen microbial colonization, and improve rumen

epithelial anti-inflammatory and nutrient transport capacities.

The positive effects of this early feeding strategy on lamb

development persisted for up to 2 weeks after the lambs

changed to fattening diets. However, our study has only

examined the short-term effects of early rearing practices

after changing to fattening diets, and more work is necessary

for understanding the long-term influence of early rearing

on lambs.
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