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Analysis on the characteristics 
of spatio‑temporal evolution 
and aggregation trend of early 
COVID‑19 in mainland China
Shengxian Bi1,2, Siyu Bie1,2, Xijian Hu1* & Huiguo Zhang1

To analyze the spatio-temporal aggregation of COVID-19 in mainland China within 20 days after the 
closure of Wuhan city, and provide a theoretical basis for formulating scientific prevention measures in 
similar major public health events in the future. Draw a distribution map of the cumulative number of 
COVID-19 by inverse distance weighted interpolation; analyze the spatio-temporal characteristics of 
the daily number of COVID-19 in mainland China by spatio-temporal autocorrelation analysis; use the 
spatio-temporal scanning statistics to detect the spatio-temporal clustering area of the daily number 
of new diagnosed cases. The cumulative number of diagnosed cases obeyed the characteristics of 
geographical proximity and network proximity to Hubei. Hubei and its neighboring provinces were 
most affected, and the impact in the eastern China was more dramatic than the impact in the western; 
the global spatio-temporal Moran’s I index showed an overall downward trend. Since the 10th day 
of the closure of Wuhan, the epidemic in China had been under effective control, and more provinces 
had shifted into low-incidence areas. The number of new diagnosed cases had gradually decreased, 
showing a random distribution in time and space (P< 0.1), and no clusters were formed. Conclusion: 
the spread of COVID-19 had obvious spatial-temporal aggregation. China’s experience shows that 
isolation city strategy can greatly contain the spread of the COVID-19 epidemic.

COVID-19 is an infectious disease whose main symptoms were breathing, coughing and sneezing. The median 
incubation period is 3 days and the longest can be up to 24 days1. The COVID-19 had spread to the world 
from the beginning of 2020. By December 29, 2021, the cumulative number of diagnosed cases worldwide has 
exceeded 280 million, and the cumulative number of deaths has exceeded 5 million2. It took only 2 or 3 months 
from the outbreak of COVID-19 to containment in mainland China. The arduous path of epidemic prevention 
in mainland China has provided valuable experience for all countries in the world.

Various work3–9 has analyzed the pathological and epidemiological characteristics of COVID-19. Literature10,11 
have used infectious disease dynamic models (SEIR, LES) to predict the spread of COVID-19, which show that 
COVID-19 infection is spatially dependent and can spread to nearby areas. Literature12,13 have paid attention 
to the risk of COVID-19 spreading in urban and rural areas, and find that COVID-19 epidemic is composed of 
sub-epidemics with different temporal dynamics and spatial patterns. Some scholars have studied the regional 
transmission mechanism of COVID-19 through models such as GWR and metric geometry14,15, and find that the 
pattern of spatial differentiation of COVID-19 is a transitional pattern of parallel bands from east to west, and 
also an epitaxial radiation pattern centered in the Wuhan 1 + 8 urban circle. Some scholars also use geographic 
information systems and spatial autocorrelation analysis to uncover the geographic distribution characteristics 
of COVID-19. For example: Su16 uses spatial autocorrelation analysis at multiple time points to study the spatial 
aggregation of the cumulative number of confirmed cases in various regions of China. Liu17 assesses the spread 
of the epidemic in Henan province through spatial autocorrelation analysis and relative risk coefficients. Jian18 
describes the spatial pattern and distribution characteristics of the epidemic situation in Henan province from 
the perspective of planning. These studies have achieved important results, explaining the epidemic mechanism 
of COVID-19 in time and space.

COVID-19 was detected and spread in Wuhan, Hubei province in January 2020. Because of the huge popula-
tion of Wuhan and the proximity of the Chinese Lunar New Year, COVID-19 quickly spread to all provinces in 
mainland China. Among them, Hubei province and its surrounding provinces are the most affected. The closure 
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strategy adopted by Wuhan has significantly contained the risk of epidemics caused by COVID-19. This study 
focuses on the spatio-temporal distribution of COVID-19 in mainland China when the epidemic just broke 
out. At present, there are relatively few studies on the correlation of the epidemic in the two dimensions of time 
and space during this time period in mainland China. This study uses spatio-temporal autocorrelation analysis 
and spatio-temporal scanning statistical methods to detect the spatio-temporal aggregation of COVID-19 and 
provide a theoretical basis for scientifically formulating epidemic prevention measures.

Results
Analysis of inverse distance weighted interpolation.  The spatial distribution characteristics of the 
cumulative number of diagnosed cases with COVID-19 in mainland China on January 23 and February 11 are 
analyzed by inverse distance weighted interpolation, and the distribution map is drawn. The results are shown in 
Fig. 1. The spatial distribution map showed that the epidemic situation had basically spread to the whole country 
on January 23. Compared with February 11, most of the high incidence areas (hot spots) and low incidence areas 
(cold spots) of the epidemic were the same, and there was no larger-scale spread, indicating that the epidemic 
has been better controlled during this period. On the whole, the effect to Tibet, Yunnan, Northwest China, 
and Northeast China were less dramatic than Hubei and its neighboring regions. The cumulative number of 
diagnosed cases obeyed the characteristics of Hubei’s geographic proximity and network proximity, which was 
consistent with relevant research conclusions17.

Spatio‑temporal autocorrelation analysis.  Global spatio‑temporal autocorrelation analysis.  The 
global spatio-temporal Moran’s I index can be used to describe the degree of spatio-temporal autocorrelation at 
two different moments in the study area. In Table 1 and Fig. 2, we display the global spatio-temporal autocor-
relation analysis of the number of new diagnosed cases from January 23 to February 11, computed in (2), with 
the lag order k=1. From January 23 to January 31, the daily global spatio-temporal Moran’s I index was almost 
positive with the p-value less than 0.1, and showed a downward trend, with the most obvious decline in the first 
5 days. It showed that with the onset of the incubation period cases with a history of contact in Hubei, the epi-
demic was increasing rapidly during this period, and there was a spatio-temporal aggregation, but it was quickly 
under control. From February 1 to February 4, the daily global spatio-temporal Moran’s I index was negative, 
and the value was small and close to 0. The significance test indicated that the daily number of new diagnosed 
cases passed the peak and began to show a weak downward trend, and there was still spatio-temporal aggrega-
tion. From February 5 to February 11, the global spatio-temporal Moran’s I index continued to be negative, with 
a relatively large value. It failed the significance test, indicating that the epidemic began to get under control, and 
the daily number of new diagnosed cases showed a significant downward trend, which was randomly distributed 
in time and space.

Local spatio‑temporal autocorrelation analysis.  Local spatio-temporal autocorrelation analysis is used to iden-
tify the correlation patterns of different spatio-temporal locations, and local spatio-temporal non-stationarity 
can be observed. In Fig. 3, we display the local spatio-temporal autocorrelation analysis, computed in (4), with 
the lag order k=1. Figure 3 shows the local spatio-temporal aggregation of new diagnosed cases at three different 
time points after the city was closed, and all of them passed the significance test.

High-high clustering pattern means that the neighboring areas of the area with a large number of new diag-
nosed cases at the current moment will have more new diagnosed cases at the next moment. Low-low clustering 
pattern means that the neighboring areas of the area with few new diagnosed cases at the current moment will 
also have fewer new diagnosed cases at the next moment. High-low clustering pattern means that the neighboring 

Figure 1.   Time-series diagram of spatio-temporal Moran’s I index changes. Maps constructed using ArcGIS 
10.2 (https://​s2.​loli.​net/​2022/​01/​11/​MwZ28​1HAeB​bN3uP.​png).

https://s2.loli.net/2022/01/11/MwZ281HAeBbN3uP.png
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Table 1.   Results of spatio-temporal autocorrelation analysis of the new diagnosed cases of COVID-19 in 
Mainland China.

T-K time T time Moran’s I index Z-value P-value Status

January 23 January 24 0.077 2.03 0.040 Clustering

January 24 January 25 0.077 2.61 0.008 Clustering

January 25 January 26 0.039 1.95 0.040 Clustering

January 26 January 27 0.010 1.68 0.030 Clustering

January 27 January 28 − 0.001 1.28 0.090 Clustering

January 28 January 29 0.009 1.37 0.090 Clustering

January 29 January 30 0.011 1.41 0.080 Clustering

January 30 January 31 0.006 1.43 0.080 Clustering

January 31 February 1 − 0.003 1.37 0.070 Clustering

February 1 February 2 − 0.007 1.36 0.070 Clustering

February 2 February 3 − 0.005 1.45 0.060 Clustering

February 3 February 4 − 0.007 1.39 0.060 Clustering

February 4 February 5 − 0.020 1.04 0.120 Random distribution

February 5 February 6 − 0.014 1.00 0.140 Random distribution

February 6 February 7 − 0.015 1.04 0.130 Random distribution

February 7 February 8 − 0.017 1.03 0.140 Random distribution

February 8 February 9 − 0.017 0.97 0.140 Random distribution

February 9 February 10 − 0.020 0.81 0.200 Random distribution

February 10 February 11 − 0.019 0.88 0.170 Random distribution

Figure 2.   Time-series diagram of spatio-temporal Moran’s I index changes.

Figure 3.   The spatio-temporal aggregation of the new diagnosed cases of COVID-19. Maps constructed using 
GeoDa 1.12.1 (https://​s2.​loli.​net/​2022/​01/​11/​5CZKu​TaztY​eD8wN.​png).

https://s2.loli.net/2022/01/11/5CZKuTaztYeD8wN.png
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areas of the area with a large number of new diagnosed cases at the current moment will have fewer new diag-
nosed cases at the next moment. Low-high clustering pattern means that the number of new diagnosed cases will 
increase in the neighbouring areas of the area with few new diagnosed cases at the current moment24.

The high-high clustering pattern was mainly concentrated in Hubei and Hunan in the early epidemic, and 
their neighboring provinces such as Anhui and Jiangxi were more affected. With the deepening of national epi-
demic prevention work, the number of new diagnosed cases in Hubei began to decrease and transformed into a 
high-low cluster mode on February 1. The daily number of new diagnosed cases in Hunan, Chongqing, Anhui, 
Jiangxi and other regions began to decline gradually, which was consistent with the results of global spatio-
temporal autocorrelation analysis. The low-low clustering pattern mainly focused on regions from Xinjiang, Inner 
Mongolia, Gansu, and Ningxia in the early epidemic, and successively joining some provinces such as Sichuan and 
Hainan, suggesting that the fundamentals of the national epidemic have gradually improved during this period.

Spatio‑temporal scanning statistics analysis.  The results of the spatio-temporal scanning statistics 
analysis are shown in Table 2 and Fig. 4, computed by Eq. (5). The results show that there are three spatio-
temporal clusters for the number of new diagnosed cases in the country from January 23 to February 11. If the 
relative risk index (RR) is more than 1, the cluster is a high-clustering area, otherwise, the cluster is a low-clus-
tering area. The p-values of the significance test results are all less than 0.001, which are statistically significant. 
The high-clustering area was Hubei, the clustering time was from February 1 to February 10, and the relative 
risk index was 76.84. There were two low-clustering areas. The first cluster included Xinjiang, Qinghai, Ningxia, 
Gansu, Shaanxi, Tibet, Sichuan, Guizhou, Chongqing, Yunnan, Beijing, Shanxi, Hebei and Inner Mongolia, with 
a relative risk index of 0.095. The second cluster included Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, 
Shandong and Henan, with a relative risk index of 0.42, and the clustering time was from January 23 to Febru-
ary 1. The results of the spatio-temporal scanning show that the effect to neighboring provinces of Hubei and 
developed coastal areas were more dramatic than the northwest China, southwest China and northern China 
in the first 10 days of early epidemic. From the 10th day to the 20th day, the number of new diagnosed cases in 
other regions of the country except Hubei was randomly distributed, and there was no clustering area in time 
and space.

Discussion
Based on the spatio-temporal analysis of the cumulative number of COVID-19 confirmed cases and the number 
of new diagnosed cases in various regions of China from January 23 to February 11, this article introduces a 
time dimension on the basis of traditional spatial statistics, and systematically reflects the trend of the spread 
of COVID-19 and spatio-temporal clustering area. Results show that various regions of China were affected 
by the epidemic on January 23, but it was quickly prevented and controlled, and it did not spread to a larger 

Table 2.   The spatio-temporal scanning aggregation results of the new diagnosed cases of COVID-19, January 
23–February 11.

Clustering Pattern Clustering Area Clustering Time RR LLR p-value

high-clustering Hubei February 1–February 10 76.84 71,476.71 < 0.001

first-level low-clustering Xinjiang, Qinghai, Ningxia, Gansu, Shaanxi, Tibet, Sichuan, Guizhou, Chongqing, Yun-
nan, Beijing, Shanxi, Hebei, Inner Mongolia January 23–February 1 0.095 7292.43 < 0.001

Second-level low-clustering Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong, Henan January 23–February 1 0.42 1191.71 < 0.001

Figure 4.   The spatio-temporal aggregation of the new diagnosed cases of COVID-19. Maps constructed using 
ArcGIS 10.2 (https://​s2.​loli.​net/​2022/​01/​11/​fA85D​xBvaU​EGbmK.​png).

https://s2.loli.net/2022/01/11/fA85DxBvaUEGbmK.png
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area. The effect to Hubei and its neighboring provinces was most dramatic, and the effect to the eastern region 
is less dramatic than the western region. Since the 10th day of Wuhan’s isolation, the epidemic in China had 
been effectively controlled, and more provinces had changed into low-incidence area, and the daily number of 
new diagnosed cases had gradually decreased. It appeared to be randomly distributed in time and space, and no 
clustering areas were formed. The conclusion shows that the active epidemic prevention measures adopted by 
China had effectively contained the further spread of the epidemic and minimized the possibility of the spread 
of the virus. In the future, we should act quickly and do our utmost to avoid the spread of the epidemic in similar 
major public health incidents. At the same time, we need to pay close attention to the spatio-temporal clustering 
characteristics of early epidemics and adopt regional epidemic prevention measures.

Methods
Data source.  The provincial geographic map data of mainland China is obtained from the China Basic Geo-
graphic Database (scale 1:1 million), provided by the National Geographic Information Catalog Service Center 
(http://​www.​webmap.​cn/). The data on the cumulative number of diagnosed cases of COVID-19 is obtained 
from National Health Commission and the websites of the provincial health commissions, which is obtained 
through crawler technology provided by python. For some provinces such as Xinjiang and Tibet which are 
difficult to obtain data on the websites of the health commission, the data is also acquired through web news. 
The number of new diagnosed cases per day is equal to the difference between the cumulative data of two 
consecutive days. Since February 12, the national diagnostic criteria for diagnosed cases changed, and “clinical 
diagnosis” was added to case diagnosis classification in Hubei, the most severely affected province19, resulting in 
inconsistent statistics data caliber. In addition, the onset of cases with a history of contact in Hubei was almost 
all within 20 days after leaving Hubei, so the research time range of this article is from January 23 to February 11.

Inverse distance weighted interpolation is implemented by arcgis 10.2, Spatio-temporal autocorrelation analy-
sis is done by GeoDa 1.12.1, Spatio-temporal scanning statistics is done by SaTScan 9.5, Time-series diagram of 
spatio-temporal Moran’s I index changes is drawn by excel 2013, other maps are drawn by arcgis 10.2.

Model.  Inverse distance weighted interpolation.  The spatial interpolation method is a statistical method that 
uses known sample data points to estimate unknown data, which can more comprehensively reflect the spatial 
distribution characteristics of the data. The inverse distance weighted interpolation is the most commonly used. 
It uses the inverse proportion of the spatial distance between the estimated point and the known data point as the 
weight for interpolation. The larger the distance, the smaller the weight. The calculation formula is20 :

In Eq. (1): Z is the value of the point to be estimated, which is unknown; Zi is the value of the i-th known 
sample point around Z; di is the distance between Z and Zi ; n is the number of known sample points around Z; 
m is the power value of the inverse distance. The greater the parameter m, the more the point to be estimated 
will be affected by nearest sample point, and the rougher the space will be. On the contrary, the more distant 
sample point will be affected and the space will be smoother. Generally, m=2 by default.

Spatio‑temporal autocorrelation analysis.  Spatio-temporal autocorrelation analysis is a special case of bivari-
ate spatial autocorrelation analysis21. Spatio-temporal autocorrelation analysis introduces the time dimension 
on the basis of traditional spatial autocorrelation analysis, which can systematically reflect the spatio-temporal 
change characteristics and aggregation trends of variables. The spatio-temporal Moran’s I index is a measure of 
spatio-temporal autocorrelation analysis22. The global spatio-temporal Moran’s I index represents the influence 
of the change of variable i at time t-k on the surrounding variables at time t (k is the lag order). The calculation 
formula is:

In Eq. (2): n is the number of regions; ωt−k,t is the time weight, which indicates the degree of influence at time 
t-k on time t, in our results, we always set k=1; ωij is the spatial weight; xi,t and xj,t and xi,t−k represent the number 
of new diagnosed cases in the region at that time, xt−k  and xt  represents the average number of new diagnosed 
cases in all regions at that moment. Due to the lack of epidemic data in Hong Kong, Macao and Taiwan, n=31 
in this article. The spatial weight matrix W uses the Queen adjacency type, and the neighboring area of Hainan 
province is set as Guangdong province. Queen matrix is a kind of spatial weight matrix, which expresses the 
neighbor relationship between spatial units. If there are n units, queen matrix W can be expressed as follows:
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The global spatio-temporal Moran’s I index range is − 1 ≤ STKi ≤ 1 . If it is greater than 0, there is a positive 
spatio-temporal relationship. If it is less than 0, there is a negative spatio-temporal relationship. If it is equal to 
0, there is no spatio-temporal correlation. Under the assumption of normal distribution, the significance test is 
performed on the null hypothesis that variables do not have spatio-temporal autocorrelation in time and space, 
that is, they are randomly distributed in time and space. The statistic is the standardized Z value:

The significance level is determined by the p-value calculated by the standardized statistic Z. At the signifi-
cance level of 0.1, if p < 0.1, it indicates that there is a spatio-temporal aggregation trend. If p > 0.1, it indicates 
that there is no spatio-temporal aggregation trend, and the variables are randomly distributed in time and space. 
The global spatio-temporal Moran’s I index is used to detect the overall spatio-temporal correlation. The local 
aggregation trend and non-stationary information are described by the local spatio-temporal Moran’s I index. 
The calculation formula is:

The local spatio-temporal Moran’s I index represents the influence of the number of new diagnosed cases in a 
local area at time t-k on the number of new diagnosed cases in the surrounding area at time t. Its variables, symbol 
definitions, value ranges and correlation explanations correspond to the global spatio-temporal Moran’s I index, 
and the hypothesis test method is also consistent with the global spatio-temporal Moran’s I index test method.

Spatio‑temporal scanning statistics.  The spatio-temporal scanning statistical method is uesd to analyze the data 
aggregation state based on the moving scanning window of a cylinder23. Its circular window is used to scan the 
spatial area, and the height reflects the time weight information. The cylindrical window moves on the spatio-
temporal coordinate system, scanning each spatio-temporal area, and reflecting the state of spatio-temporal 
aggregation through overlapping cylinders of different sizes and shapes in the spatio-temporal area. This article 
uses the poisson model’s spatio-temporal scanning statistics to detect the spatio-temporal aggregation area of 
the daily new diagnosed cases. The significance level p-value calculated according to the actual statistics is used 
to determine whether the area is a spatio-temporal clustering area. The log-likelihood ratio (LLR) is the grading 
basis, and the relative risk(RR) represents the risk of an epidemic in the clustering area relative to the surround-
ing areas. The calculation formula is:

In Eq. (5), C is the total number of cases in each region, and c is the number of cases in the scanning window. 
µ is the expected value of the number of cases in the scanning window. Hypothesis testing is performed on the 
LLR, and the p-value is calculated by the Monte Carlo method. When p < 0.05, it is considered that there is a 
significant difference in the RR inside and outside the scan window. The value of LLR corresponds to the pos-
sibility of spatio-temporal aggregation in the scanning window, and the scanning window with the largest LLR 
value corresponds to the most likely aggregation area.

Ethics declarations.  This study used public data from the official website of the National Health Commis-
sion of China, all experiments were performed in accordance with relevant guidelines and regulations, and all 
participants provided written informed consent.

Data availability
The COVID-19 monitoring data generated in the current research process can be obtained on the official web-
site of the National Health Commission of China (http://​www.​nhc.​gov.​cn/). In the early COVID-19, the public 
did not know much about the symptoms of this epidemic, some cases may be misdiagnosed as influenza, and 
some cases were not detected, so there may be some discrepancy between the number of reported cases and the 
actual number of cases. The software used in this article is ArcGIS 10.2 version (https://​devel​opers.​arcgis.​com/), 
GeoDa 1.12.1 version (https://​spati​al.​uchic​ago.​edu/), SaTScan 9.5 version (https://​www.​satsc​an.​org/) statistical 
computing language and environment.
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