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Abstract
Research over the past two decades has made substantial inroads into our understanding of somatic mutations.
Recently, these studies have focused on understanding their presence in homeostatic tissue. In parallel, agent-based
mechanistic models have emerged as an important tool for understanding somatic mutation in tissue; yet no com-
monmethodology currently exists to provide base-pair resolution data for these models. Here, we present Gattaca as
the first method for introducing and tracking somatic mutations at the base-pair resolution within agent-based
models that typically lack nuclei. With nuclei that incorporate human reference genomes, mutational context,
and sequence coverage/error information, Gattaca is able to realistically evolve sequence data, facilitating compar-
isons between in silico cell tissue modeling with experimental human somatic mutation data. This user-friendly
method, incorporated into each in silico cell, allows us to fully capture somatic mutation spectra and evolution.
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Introduction
Recent studies examining histologically normal human
and murine tissue have shown that a surprising admix-
ture of somatic mutations can exist and even expand
to a significant clonal area (Martincorena et al. 2015;
Simons 2016a; Martincorena et al. 2018; Lee-Six et al.
2018; Colom et al. 2020). These studies have largely fo-
cused on mutation characterization and have had limited
tools to offer explanations for the dynamics driving ob-
served evolutionary trajectories, with only a few notable
exceptions. Fewer still have begun incorporating agent-
based models as a tool to explore somatic evolution in
spatially constrained tissue (Sottoriva et al. 2015; Murai
et al. 2018; Schenck et al. 2019; Colom et al. 2020).
Historically, genomes within agent-based models have
been represented as simple counters or as binary arrays.
These binary arrays serve only as a proxy to then relate
back to the genome of patients or animal models through
heterogeneity measures and simple counts. Most notably,
passenger/driver model genomes are simple counters that
increase and decrease based on a set mutation rate and
probability of driver acquisition. These are then tied to
some function defined in the model, sometimes in very ar-
bitrary ways. These studies have lacked the ability to com-
pare, at base-pair resolution the mutation spectra, or
utilize common tools designed for genotypical data
(such as dN/dS and subclonal reconstruction tools de-
signed for noisy biological data).

To date, there is not a tool that allows for somatic muta-
tion induction and tracking at a base-pair resolution for
mechanistic agent-based models. Previously, our under-
standing of mutational processes and sequencing technolo-
gies has not had the resolution or technical understanding
necessary to create such a tool, not to mention the com-
putational power needed for such a task. Due to substan-
tial advances, this has quickly become possible. First was
our improved understanding of mutational processes
(Lawrence et al. 2013). Then, we began to grasp the im-
portance of heterogeneity in tumors through multiregion
sequencing studies (Gerlinger et al. 2012). Now, we have
added to the wealth of research to understand mutation
in normal, homeostatic tissues (Martincorena et al. 2015).
Currently, there is an ongoing debate over neutral and non-
neutral dynamics in both tumors and normal tissue
(Martincorena et al. 2016; Simons 2016b; Williams et al.
2016; Balaparya and De 2018; Heide et al. 2018; McDonald
et al. 2018; Tarabichi et al. 2018; Werner et al. 2018;
Williams et al. 2018; Leroi et al. 2020). Lastly, only recently
mechanistic models have begun to really intersect with bio-
informatics (Sottoriva et al. 2015; Colom et al. 2020; West
et al. 2021). Together, these have facilitated the need for
new methodologies where realistic genetic information
can be incorporated into mechanistic models for future
researchers.

Gattaca is the first tool that provides a means of indu-
cing and tracking base-pair resolution single nucleotide
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variants within an agent-based modeling framework with
temporal, spatial, and genomic positional information.
The primary goal of Gattaca is to provide an users with a
means to perform “null” simulations that are capable of ex-
plicitly modeling neutral somatic mutation within spatial
contexts; however, beyond this, users can adapt this meth-
odology for non-neutral dynamics through careful
introduction of functional heterogeneity. This crucially
provides an ability to accurately capture mutation data
on a level comparable to sequencing experiments from
the clinic or research settings.

New Approaches
Gattaca is provided as an easily executed python script
consisting of three parts: initialization, execution, and ana-
lysis (fig. 1). After the initial set-up, Gattaca produces a java
file that allows for integration into an agent-based model
(ABM). The only pre-requisite for Gattaca is the installa-
tion of snpEff (Cingolani et al. 2012), which provides the
necessary base-pair resolution reference genome and the
tools to access it before Gattaca digests this information
for downstream uses.

Part 1: Initialization
The set-up resolves user inputs that includes mutation
rates, mutation context probabilities, a gene set, and ref-
erence genome choice. Once resolved Gattaca extracts
the gene locations from within the users’ reference gen-
ome; a Browser Extensible Data file is created that snpEff
uses to extract bases for each gene. Gattaca then reads the
provided mutational context file, in the event of none being
provided a uniform probability is used. This file represents
the probability of observing a given mutation from the
96 possible mutations within their trinucleotide contexts.
Lastly, the mutation rates are scaled to the desired
mean mutation rate. The mutation rates are adjusted
from the gene-specific mutation rates derived from a pan-
cancer study (Lawrence et al. 2013). This information is
then prepared to generate a Gattaca java class tailored
for execution within an ABM framework such as HAL
(Bravo et al. 2020).

The heart of Gattaca is its ability to track mutations
within simulations at a base-pair resolution. This re-
quires a series of steps during each cell division where a
user checks formutation. The expected number ofmutations
per division is given for each gene (gi) by the product of its
individual mutation rate mgi and its length Lgi . Within each
mutation check, during division a Poisson distribution is
used to determine the number of mutations accrued for
each gene (Xg), so that Xg � Poisson(mg ∗ Lg).

Determining the specific base that acquires amutation is
based on a multinomial of the 32 possible mutation posi-
tions based on trinucleotide contexts. This is drawn from
a multinomial distribution based on the 32 possible posi-
tions. Once the trinucleotide is determined, the base muta-
tion is determined using the mutation context probabilities
to determine the mutation type.

Part 2: Execution
Simulations utilizing Gattaca require the two files that are
output by the Gattaca initialization step. These files, a java
Gattaca class and a csv file with loci information, will be placed
within the scope of your executable HAL model (Bravo et al.
2020). Details on using HAL can be found at http://halloworld.
org. Once these are added to HAL, the Gattaca class will re-
quire initialization for a founding clone/population. Gattaca
ties conveniently into the HAL phylogeny tracker requiring
minimal additional computational overhead. Once Gattaca
is initialized, a function call to _RunPossibleMutation will be
required during each division that will trigger the possibility
ofmutation upon division as outlined above. A detailed tutor-
ial on integrating Gattaca and HAL can be found at https://
github.com/MathOnco/Gattaca.

Out of the box, Gattaca provides its users with the
necessary genetic underpinnings for a purely neutral
simulation, for example, mutations convey no functional
advantage to a cell with any particular mutation. Should
the user be interested in introducing functional hetero-
geneity based on mutations, the user would have to pre-
determine which mutation(s) will result in a functional
difference. If this is tied to a specific mutation, the user
must simply check the Gattaca genome during simula-
tions where the functional advantage would be conveyed
for that cell. However, due to the stochastic nature of
when and where in the genome the mutation will occur,
it may be valuable to induce the mutation manually at a
specific time to evaluate simulations with non-neutral dy-
namics. If a user wants to evaluate mutation number, say
for a Muller’s ratchet study (Muller 1932, 1964), they
would simply check the number of acquired mutations
for a cell and define its fitness advantage. However, muta-
tion annotation is not completed until the Analysis sec-
tion of Gattaca below, so any knowledge of mutation
type or effect would have to be known a priori. Further,
a user could tie a distribution of fitness effects using
Gattaca as the underlying genome in the same way as
the above two non-neutral examples. All these genome
queries/changes can be completed for any cell and/or
genome during the simulation by accessing the genome
class, details on mid-simulation genome access are pro-
vided in the documentation.

Part 3: Analysis
Once simulations are complete, Gattaca introduces the
appropriate noise for each mutation type, one of two
ways (adapted fromWilliams et al. 2016). The true variant
allele frequency (assuming heterozygosity), VAFt , is given
from VAFt = Ni/2Ne, where Ni is the number of cells with
a given mutation and Ne is the population size. The user
can provide a list of depths for mutations within an ex-
perimental cohort or define a single value sequencing
depth. If the user sets a single value for depth (d), the
number of reads calculated for the depth of a variant,
Di, is drawn from a Poisson distribution, which yields
Di � Poisson(d). If a user provides a distribution of
depths from an experimental cohort Gattaca determines
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the shape parameters (kc and pc) defining a gamma distri-
bution to obtain Di so that Di = Gamma(k = kc, p = pc).
The number of reads for a given variant (fi) is finally de-
termined by fi = B0(n = Di, p = VAFt). By taking the se-
quenced VAF (VAFs = fi/Di) and applying a threshold
(typically 0.005–0.1 depending on sequencing depth)
Gattaca yields mutations that are comparable to what
may be observed from sequencing of tissue. Gattaca assumes
that mutations are heterozygous and does not explicitly
track copy number alterations (CNAs); however, the outputs
of the Gattaca analysis pipeline provides users with the ne-
cessary numbers to examine the assumption of heterozygos-
ity by post hoc analysis of mutation data.

Once the variants are called based on the corrected VAF,
variants are annotated with snpEFF and mutational position
information is obtained. The user can output this informa-
tion as a mutational table for every desired timepoint and
every replicate simulation. As an additional output option
users can also export variants from their simulations as a vari-
ant call format (VCF) file. This option allows for easy use in
several bioinformatics downstream tools. Lastly, the execu-
tion of the analysis component of Gattaca provides several
summary statistics for evolutionary dynamics, such as 1/f
(Williams et al. 2016), first incomplete moment (Butler and
McDonald 1989; Simons 2016a), a Muller plot [using the
EvoFreq (Gatenbee et al. 2019) package], and a crude
dN/dS measurement. We note that a true dN/dS would
be expected to be the same across all simulations unless
the user implements functional heterogeneity within
their simulations based on a single, or collection of,
point mutations.

Case Study 1: Dimensionality
Gattaca allows us to track base-pair resolution genomes
across any agent-based modeling dimension. Recent inter-
est by ourselves and others in understanding how spatial

architecture may affect clonal dynamics and measurements
of neutrality motivates our case study (Martincorena et al.
2015; Simons 2016a; Noble et al. 2019; Schenck et al. 2019;
West et al. 2021).

Here, we have constructed two simple agent-based
models (ABM) of cell turnover in three different dimen-
sions, zero- (0D), two- (2D), and three-dimension (3D) to
showcase and compare the mutational profiles and clonal
dynamics that Gattaca allows its users to evaluate. In add-
ition, we perform the simulations for these three dimen-
sions and two model types for three different total final
population sizes to demonstrate the functionalities and
outputs of Gattaca (fig. 2). The two model types differ
only in the number of cells that are present at initialization.
The fully seeded model initializes by placing an agent
with its unique genome at every lattice point or until
the carrying capacity is reached in the 0D case. The se-
cond simple ABM is initialized only with a single cell at
a random position within the simulated domain, or sim-
ply a population size of one for the 0D case (fig. 2). These
two simple model types can be conceptualized as a naive
tissue type of model to compare with a stem cell growth
model similar to the idea that cancer originates from a
single transformed clone. Here, we introduce no func-
tional heterogeneity across the different genomes that
emerge through mutation at each timepoint governed
by the conditions set in Gattaca.

Within the two models, we use the same parameters so
as to be able to more accurately compare across the differ-
ent dimensions. Each model across all dimensions uses the
same birth/death function. The birth rate (l, l = 0.4) is
scaled by the carrying capacity (k) and population size
(NT) at every time point of either the domain (e.g. number
of lattice points) or as a set parameter in the 0D case. The
equation governing this scaled birth rate (lT) is given by
lT = l((k− NT)/k). If a random number ([0, 1]) is less
than the death parameter (r) plus lT , a death or birth

FIG. 1. Gattaca is a three-part workflow for simulating base-pair resolution mutations within the human genome for somatic evolution in silico
studies. Gattaca consists of three parts: (i) user defines options (initialize), (ii) generate a java executable class for in silico simulations with base-
pair resolution mutation tracking (execution), and (iii) analyze the output of these simulations for downstream analysis (analyze).
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may happen for a given cell. The probability of a birth
event given an empty lattice position (2D and 3D only)
is given by P(Birth) = r+ lT . If a random number
([0, 1]) is less than this birth event value a cell will die,
if not the cell is able to divide.

When initializing Gattaca for these simulations, an over-
all mutation rate of 3.2× 10−9 was used and the mutation
spectrum defined was given from a randomly sampled co-
hort of diffuse large B-cell lymphoma whole exome se-
quences from TCGA (this is available in the gattaca
example code). When we analyze these mutation spec-
trums, post simulation we observe similar distributions
of mutation types across all dimensions and model types

consistent with mutation processes expected, based on
the Gattaca initialization (fig. 2 mutation spectrums).
This cohort was chosen at random from the collection
of TCGA sample types, but because of the way Gattaca
uses this information to initialize distributions it is highly
generalizable and any mutation spectra can be used. The
differences that are observed largely depend on the dimen-
sionality of the model chosen and the tissue type modeled.
In the cases where the domain (or carrying capacity for 0D)
is fully seeded, we see that the 1/f distributions of variant
allele frequencies is similar in the 3D and 2D cases (fig. 2).
Contrasting this with the single-cell seeding case we see
that the 0D and 3D cases are the most similar while 2D
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appears to reveal a different distribution (fig. 2). These re-
sults suggest that the modeling dimension is an important
consideration for the research question. As expected most
of the clones that are observed are below the detection
limits of common methodologies, but can be captured
here. The clonal dynamics, as demonstrated by the
EvoFreq plots (Gatenbee et al. 2019), illustrates that spa-
tially constrained clones competing with one another are
rarely able to expand beyond 10% VAF in the fully seeded
cases while several clones reach this size during simula-
tions with single-cell seeding.

Case Study 2: Wounding
Within the first case study, we utilized Gattaca across two
different types of models and three different dimensions.
Next, we wanted to evaluate if wounding within these
models would alter the observed clonal dynamics as the
spatial constraints for certain clones is relaxed when cells
are removed in a wounding event (fig. 3a). In all simula-
tions, each ABM is seeded by a single cell. Wounding be-
gins once the thousandth timestep is reached (fig. 3b).
After this, wounding occurs at time steps where the popu-
lation is greater than or equal to 85% of the total possible
population (as dictated by the domain size). For the 2D
and 3D simulations, cells are killed by wounding within a
circular and spherical manner, respectively. The number
of cells killed through each wounding event is kept similar
by adjusting the radius between 2D and 3D simulations,
while in the 0D case, the number of cells killed is an equiva-
lent number of cells. The same birth/death dynamics and
equations used in case study one are used here, because
the probability of birth is modulated by the number of
cells (i.e. the probability of birth is reduced as the carrying
capacity of the system is reached) a wounding event acts
to increase cell divisions where empty sites are present
and thus allows clones to expand into the wounded areas.

When we examine the differences between the wound-
ing and non-wounding simulation’s cumulative and unique
genomes over time, we see a clear signal at the time wound-
ing occurs. At this point, space is open and rapid cell pro-
liferation refills the areas where the wound occurred (in 0D

this results in rapid proliferation back to carrying cap-
acity). As cells divide and mutate, a large number of un-
ique genomes appear over time (fig. 3b). We see that
the number of unique genomes in the 0D case increases
drastically faster than those in the 2D and 3D cases, this
is due to the mechanism where clones in the 0D case
are chosen at random to be killed while whole or near
whole subclonal populations are removed in the 2D and
3D simulations. Interestingly, when we compare the 1/f
distributions through their R-squared values, from linear
regression analysis, we see that in the 2D wounding
case, the relaxation of spatial constraints appears to drive
a signal of non-neutral dynamics in a system that is func-
tionally homogeneous where slight fitness advantages are
conferred through room to expand (fig. 3c).

Conclusions
Here we have presented Gattaca, the first base-pair reso-
lution mutation induction and tracking in silico tool to
model genomes within agent-based models. Gattaca
provides a powerful tool to induce and track mutations
through time and space to compare with patient and
murine samples. Gattaca provides the necessary genom-
ic underpinnings to evaluate “null” simulations that are
capable of explicitly modeling neutral somatic mutation
within spatial contexts that the user defines. We have de-
monstrated this by comparing the genomes and clonal
dynamics that Gattaca provides across different model-
ing dimensions and model choices. We then show
through a second use case that wounding can show evi-
dence of selection, but only in the 2D wounding case.
This sets an important precedent that modeling choices
around dimensionality can significantly impact the mea-
sures of neutrality.

Gattaca at its heart is a simple tool built around users’ de-
fined parameters that assumes mutations incurred are het-
erozygous, impart no fitness advantages to the cell, and can
be easily deployed within most HAL simulations. This simpli-
city also allows for flexibility, in that users can evaluate CNAs
post hoc with relative ease and introduce fitness advan-
tages through careful consideration. Genotype–phenotype
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mapping is highly specific to an individual research question.
If users decide to use Gattaca to introduce a genotype–
phenotype mapping, great care should be taken to under-
stand Gattaca’s limitations and the complexities/assumptions
involved with introducing functional heterogeneity.
Although Gattaca was built for and tested using the HAL
agent-based modeling framework, with some effort, one
could write a set of wrapper functions so that Gattaca
could be used across different modeling frameworks.

Gattaca provides a highly customizable framework that
is easily implemented into users’ agent-based simulations
for evaluating somatic evolution in normal or disease tis-
sue. Through the incorporation of common bioinformatics
and genotypic outputs (variant call format files) used fre-
quently in clinical and experimental approaches, users can
quickly analyze and compare mutation spectra, burden,
heterogeneity, and selection between their samples and
in silico models.

Acknowledgments
R.O.S. is supported by the Wellcome Trust (grant no.
108861/7/15/7) and the Wellcome Centre for Human
Genetics (grant no. 203141/7/16/7). R.O.S. and A.R.A.A. are
supported by the Cancer Systems Biology Consortium grant
from the National Cancer Institute (grant no. U01CA23238)
and theMoffitt Cancer Center of Excellence for Evolutionary
Therapy. S.L. is supported by the Wellcome Trust (grant no.
206314/Z/17/Z). D.S. is supported by the Cancer Systems
Biology Consortium grant from the National Cancer
Institute (grant no. U54CA217376 and grant no. P01
CA196569). The mutation spectrum used for case study 2
is based upon data generated by the TCGA Research
Network: https://www.cancer.gov/tcga.

Author Contributions
R.S., D.S., S.L., and A.R.A.A. conceived the idea of Gattaca
for ABM. Case study 1 was done by R.S. Case study 2
was done by R.S. and G.B. J.W. assisted with equations
used within both case studies. The manuscript was written
by R.S. and A.R.A.A. All authors reviewed the manuscript.

Code Availability
Gattaca is available through GitHub (https://github.com/
MathOnco/Gattaca). There is a read me available within
the GitHub repository with further instructions on how
to utilize Gattaca.

Data Availability
No new data has been generated here. Simulation outputs
can be obtained through the examples in the code
repository.

References
Balaparya A, De S. 2018. Revisiting signatures of neutral tumor evo-

lution in the light of complexity of cancer genomic data. Nat
Genet. 50:1626–1628.

Bravo RR, Baratchart E, West J, Schenck RO, Miller AK, Gallaher J,
Gatenbee CD, Basanta D, Robertson-Tessi M, Anderson ARA.
2020. Hybrid automata library: A flexible platform for hybrid mod-
eling with real-time visualization. PLoS Comput Biol. 16:1–28.

Butler RJ, McDonald JB. 1989. Using incomplete moments to meas-
ure inequality. J Econom. 42:109–119.

Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ,
Lu X, Ruden DM. 2012. A program for annotating and predicting
the effects of single nucleotide polymorphisms, SnpEff: SNPs in
the genome of Drosophila melanogaster strain w1118; iso-2;
iso-3. Fly. 6:80–92.

Colom B, Alcolea MP, Piedrafita G, Hall MWJ, Wabik A, Dentro SC,
Fowler JC, Herms A, King C, Ong SH, et al. 2020. Spatial compe-
tition shapes the dynamic mutational landscape of normal
esophageal epithelium. Nat Genet. 52:604–614.

Gatenbee CD, Schenck RO, Bravo RR, Anderson AR. 2019. Evofreq:
visualization of the evolutionary frequencies of sequence and
model data. BMC Bioinform. 20:1–4.

Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos
E, Martinez P, Matthews N, Stewart A, Tarpey P, et al. 2012.
Intratumor heterogeneity and branched evolution revealed by
multiregion sequencing. N Engl J Med. 366:883–892.

Heide T, Zapata L, Williams MJ, Werner B, Caravagna G, Barnes CP,
Graham TA, Sottoriva A. 2018. Reply to “Neutral tumor evolu-
tion?” Nat Genet. 50:1633–1637.

Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K,
Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts SA,
et al. 2013. Mutational heterogeneity in cancer and the search
for new cancer-associated genes. Nature. 499:214–218.

Lee-Six H, Øbro NF, Shepherd MS, Grossmann S, Dawson K,
Belmonte M, Osborne RJ, Huntly BJP, Martincorena I,
Anderson E, et al. 2018. Population dynamics of normal human
blood inferred from somatic mutations. Nature. 561:473–478.

Leroi AM, Lambert B, Rosindell J, Zhang X, Kokkoris GD. 2020.
Neutral syndrome. Nat Hum Behav. 4:780–790.

Martincorena I, Fowler JC, Wabik A, Lawson ARJ, Abascal F, Hall
MWJ, Cagan A, Murai K, Mahbubani K, Stratton MR, et al.
2018. Somatic mutant clones colonize the human esophagus
with age. Science. 362:911–917.

Martincorena I, Jones PH, Campbell PJ. 2016. Constrained positive se-
lection on cancer mutations in normal skin. Proc Natl Acad Sci U
S A. 113:E1128–E1129.

Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P, McLaren S,
Wedge DC, Fullam A, Alexandrov LB, Tubio JM, et al. 2015. High
burden and pervasive positive selection of somatic mutations in
normal human skin. Science. 348:880–886.

McDonald TO, Chakrabarti S, Michor F. 2018. Currently available
bulk sequencing data do not necessarily support a model of neu-
tral tumor evolution. Nat Genet. 50:1620–1623.

Muller HJ. 1932. Some genetic aspects of sex. Am Nat. 66:118–138.
Muller HJ. 1964. The relation of recombination to mutational ad-

vance. Mutat Res - Fundam Mol Mech Mutagen. 1:2–9.
Murai K, Skrupskelyte G, Piedrafita G, Hall M, Kostiou V, Ong SH,

Nagy T, Cagan A, Goulding D, Klein AM, et al. 2018. Epidermal
tissue adapts to restrain progenitors carrying clonal p53 muta-
tions. Cell Stem Cell. 23:687–699.

Noble R, Burri D, Kather JN, Beerenwinkel N. 2019. Spatial structure
governs the mode of tumour evolution. bioRxiv 586735.

Schenck RO, Eunjung K, Bravo RR, West J, Leedham S, Shibata D,
Anderson ARA. 2019. How homeostasis limits keratinocyte evo-
lution. bioRxiv.

Simons BD. 2016a. Deep sequencing as a probe of normal stem cell
fate and preneoplasia in human epidermis. Proc Natl Acad Sci U S
A. 113:128–133.

Schenck et al. · https://doi.org/10.1093/molbev/msac058 MBE

6

https://www.cancer.gov/tcga
https://github.com/MathOnco/Gattaca
https://github.com/MathOnco/Gattaca
https://doi.org/10.1093/molbev/msac058


Simons BD. 2016b. Reply to Martincorena et al.: Evidence for con-
strained positive selection of cancer mutations in normal skin
is lacking. Proc Natl Acad Sci U S A. 113:E1130–E1131.

Sottoriva A, Kang H, Ma Z, Graham TA, Salomon MP, Zhao J,
Marjoram P, Siegmund K, Press MF, Shibata D, et al. 2015. A
big bang model of human colorectal tumor growth. Nat Genet.
47:209–216.

Tarabichi M, Martincorena I, Gerstung M, Leroi AM, Markowetz F,
Spellman PT, Morris QD, Lingjærde OC, Wedge DC, Van Loo P.
2018. Neutral tumor evolution? Nat Genet. 50:1630–1633.

Werner B, Williams MJ, Barnes CP, Graham TA, Sottoriva A. 2018.
Reply to “Currently available bulk sequencing data do not

necessarily support a model of neutral tumor evolution”. Nat
Genet. 50:1624–1626.

West J, Schenck RO, Gatenbee C, Robertson-Tessi M, Anderson AR.
2021. Normal tissue architecture determines the evolutionary
course of cancer. Nat Commun. 12:1–9.

Williams MJ, Werner B, Barnes CP, Graham TA, Sottoriva A. 2016.
Identification of neutral tumor evolution across cancer types.
Nat Genet. 48:238–244.

Williams MJ, Werner B, Heide T, Barnes CP, Graham TA, Sottoriva A.
2018. Reply to “Revisiting signatures of neutral tumor evolution
in the light of complexity of cancer genomic data”. Nat Genet. 50:
1628–1630.

Gattaca: Base-Pair Resolution Mutation Tracking · https://doi.org/10.1093/molbev/msac058 MBE

7

https://doi.org/10.1093/molbev/msac058

	Gattaca: Base-Pair Resolution Mutation Tracking for Somatic Evolution Studies using Agent-based Models
	Introduction
	New Approaches
	Part 1: Initialization
	Part 2: Execution
	Part 3: Analysis

	Case Study 1: Dimensionality
	Case Study 2: Wounding
	Conclusions
	Acknowledgments
	Author Contributions
	Code Availability
	Data Availability
	References


