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Investigating neural interactions is essential to understanding the neural basis of
behavior. Many statistical methods have been used for analyzing neural activity, but
estimating the direction of network interactions correctly and efficiently remains a
difficult problem. Here, we derive dynamical differential covariance (DDC), a method
based on dynamical network models that detects directional interactions with low bias
and high noise tolerance under nonstationarity conditions. Moreover, DDC scales well
with the number of recording sites and the computation required is comparable to
that needed for covariance. DDC was validated and compared favorably with other
methods on networks with false positive motifs and multiscale neural simulations where
the ground-truth connectivity was known. When applied to recordings of resting-state
functional magnetic resonance imaging (rs-fMRI), DDC consistently detected regional
interactions with strong structural connectivity in over 1,000 individual subjects ob-
tained by diffusion MRI (dMRI). DDC is a promising family of methods for estimating
connectivity that can be generalized to a wide range of dynamical models and recording
techniques and to other applications where system identification is needed.

neural dynamics | functional connectivity | resting-state fMRI | dynamical differential covariance |
Human Connectome Project

Long-range communication pathways between brain areas carry signals that underlie
a wide range of behaviors. Network neuroscience methods have been developed for
estimating brain connectivity (1, 2). These methods are generally divided into structural,
functional, and effective connectivity. Structural connectivity, assessed directly by tracing
circuits with connectomics (3–5), provides anatomical ground truth, but the resulting
static connection matrix does not by itself reveal the dynamical aspects of neural communi-
cation. This has motivated statistical methods (6–8) for estimating dynamical connectivity
from recordings of neurons and brain imaging.

Dynamical connectivity can be inferred indirectly from time-series data and methods
for doing so fall into two broad categories, depending on the inference assumptions:
functional connectivity (FC) or effective connectivity (EC). EC is based on an underlying
generative model of directed connectivity and searches for the best model to account for
the data. FC does not assume a model and is based only on statistical analysis of data from
brain activity. The distinction between FC and EC is not strict since they both aim to infer
the communication pathways in the brain and others have advocated a broader definition
of FC to include both (9).

Conventional FC is often evaluated by estimating pairwise covariance, a symmetric
measure that cannot detect directional coupling or disambiguate two unconnected nodes
confounded with high correlation due to a common input (6, 10). Covariance estimates
can be improved by using a suitably regularized partial covariance matrix, which is a global
method that can “explain away” some of the ambiguities, but this matrix is symmetric and
does not solve the problem of finding the direction of coupling. Another assumption that
covariance methods make is that conditions are stationary so that sample covariance can be
obtained by averaging across time, but this assumption is violated by changes in the level
of brain arousal or tasks when switches occur between internal brain states. Despite these
limitations, covariance methods have served as intuitive measures of brain coordination
and remain the predominant way that most researchers estimate FC.

More sophisticated causal inference methods have been developed to estimate directed
connections (11). In some prevailing methods, statistical causality is based on the degree
to which one time series can predict another one. These methods include variants of
Granger causality (12), cross-convergent mapping (CCM) (13), and cross-dynamical delay
differential analysis (cd-DDA) (14). For example, for Granger causality, time series A is
causally related to time series B if the removal of A reduces the accuracy of predicting
the future of B. As evident from the definition, selecting a best-fit model for prediction
is essential. Other methods, rooted in information theory, such as conditional mutual
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information (15) and transfer entropy (16, 17), have also been
used to infer directed connectivity. This class of methods can in
principle improve inference accuracy, but these methods require
much more computation or a bigger sample size than covariance
methods and do not scale well.

EC models such as dynamic causal modeling (DCM) (8) and
Bayes net models (11, 18–20) search the feasible graph space and
fit the entire dataset to every hypothesis. Bayes net methods fit
multivariate time recordings through static probability distribu-
tions without time dependency while DCM models the observa-
tions explicitly through the dynamical process that generates the
recorded signals and has been the mainstream method to infer EC.
In fact, linear dynamic differential covariance (DDC) shares the
same assumption as the linearized DCM (7). The graph searching
process requires even more computation, severely limiting the size
of the network that can be analyzed.

We previously introduced differential covariance (dCov) (21,
22), a directed FC estimation method, and highlighted the per-
formance of two matrices, Δc, which is the correlation between
the derivative signal and the signal itself, and Δp, which is the
partial covariance between them. In simulated test cases, dCov
detected network connections with higher sensitivity than many
of the methods reviewed in Smith et al. (6). In this paper, we derive
a direct link between dCov and dynamical models of network
activity. This leads to a class of estimators called DDC based on an
interaction matrix that appears in the equations for a dynamical
system. DDC provides a simple and efficient estimate of directed
connectivity by combining a model-based approach from EC with
computationally efficient methods from FC. DDC is based on an
implicit generative model that approximates brain dynamics and
entails causality in the context of control theory.

In the following sections, we first analytically show that DDC
provides unbiased estimates regardless of the noise structure, with-
out assuming that the data are stationary. These favorable statisti-
cal properties were numerically confirmed in networks with both
linear and nonlinear dynamics. We then show that DDC can infer
the ground-truth connections and their direction in multiscale
neural network simulations. The inference accuracy and efficiency
were benchmarked against most estimators mentioned above
(Table 1). Finally, we apply DDC to resting-state functional
magnetic resonance imaging (rs-fMRI) recordings from over
1,000 subjects and show that the extracted connectivity closely
matches the structural connectivity measured by diffusion MRI.

2. Results

A. DDC. Models of neural dynamics span a wide range of scales.
At the microscopic level, the voltage trace, calcium dynamics, and
firing rate of a single neuron are highly nonlinear. These dynamics

Table 1. Summary of estimators

Estimator Notation
Cov Covariance matrix
P Partial covariance matrix
L1-reg L1-regularized partial covariance matrix
L2-reg L2-regularized partial covariance matrix
Partial-MI Partial mutual information
c-Granger Conditional Granger causality
Cspk Spike-train cross-correlogram–based connectivity
Δc Differential covariance matrix
Δp Partial differential covariance matrix
ΔL Linear DDC
ΔR General nonlinear DDC
ΔReLU Nonlinear DDC with ReLU nonlinearity

are often modeled using biophysical models based on voltage-
gated ion channels. In contrast, at the macroscopic level the collec-
tive activity of a population of neurons and interactions between
brain regions can be approximated by linear dynamics because of
ensemble averaging (7, 23–25). For example, Nozari et al. (25)
showed that compared to other sophisticated nonlinear families of
models, the simple linear autoregressive model performed best on
modeling fMRI and intracranial electroencephalography (iEEG)
recordings from hundreds of human subjects.

We first propose a linear dynamical model in Eq. 1 for global
recordings and a nonlinear dynamical model in Eq. 2 for local
neural recordings:

dx

dt
=Wx [1]

dx

dt
=WR(x), [2]

where the column vector x is the neural activity, such as the
membrane voltage or fMRI signal; W is the square connectivity
matrix; and R(x) is a nonlinear response function. Taking the
outer product of Eqs. 1 and 2 with x and time averaging 〈, 〉 yields

〈dx
dt

,x〉=W〈x,x〉

ΔL := 〈dx
dt

,x〉〈x,x〉−1

[3]

〈dx
dt

,x〉=W〈R(x),x〉

ΔR := 〈dx
dt

,x〉〈R(x),x〉−1,

[4]

where ΔL and ΔR are DDC estimators for W. DDC is the
least-squares error estimator (LSE) of W under the assumed
system equations (Materials and Methods, 1.G.1). Potentially, the
extensive statistical literature about LSE (26) can be applied to
refine DDC estimation. For example, the pseudoinverse could be
used if the covariance matrix is rank deficient. More details are
provided in Discussion.

The origin of the linear DDC estimator ΔL from a dynamical
model provides an intuition for its effectiveness in estimating
W as the product of two matrices: The first term is differential
covariance, which carries information about sources and sinks. In
a neuron the sink is the inward current from synaptic inputs in
the receiving area and in brain imaging it is related to changes
in surrogates for local brain activity, whereas the source is the
activity level in the sending area. In the second term, an entry
in the partial covariance matrix is zero if and only if the residual
correlation between xi and xj is zero, which cancels the influence
of common sources. Robust estimation of directional interactions
becomes possible by combining signals from sources and sinks
and canceling signals from common sources. The multiplicative
combination of the two terms yields better estimates than either
one alone.

A family of estimators arises from the DDC estimator ΔR for
nonlinear dynamical systems for differentR(x). Estimators can be
adapted to the filtering effects from different recording techniques,
such as the slow kinetics of calcium signals, by choosing the
nonlinear function R(x) appropriately. Here, we use the rectified
linear unit (ReLU), parameterized by a threshold, θ, that is often
used in artificial neural networks (27), yielding ΔReLU as the
corresponding nonlinear DDC estimator. The threshold can be set
to optimize performance. Intuitively, the ReLU function rectifies
low-magnitude “noise” and retains larger signals.
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B. DDC Provides Unbiased Estimation for Nonstationary Data.
DDC estimators have several favorable statistical properties. First,
given the correct neural model for the generative process, DDC
provides an unbiased estimation of the connectivity matrix. In
Material and Methods, 1.G.2, we show analytically that in systems
governed by stochastic differential equations, DDC gives unbiased
estimates of connectivity W in the sense that the DDC estimation
converges to the ground truth given a sufficient number of trials.
In addition, the estimation remains unbiased regardless of the
noise structure (D in Eq. 13)—whether or not the added noise
is correlated. To numerically confirm this result, we simulated
a confounder network governed by linear dynamics (Fig. 1A)
and estimated the connectivity from simulated time traces
(Fig. 1B).

It appears that ΔL was able to recover the ground-truth net-
work structure, within a margin of error. To further investigate
the origin of error, we orthogonally decomposed the total er-
ror (Materials and Methods) across trials into bias and variance
(Fig. 1D). The bias part is due to the intrinsic property of the
estimation method while the variance part drops as the number
of estimation trials increases. Across 50 simulations, ΔL achieved
the smallest estimation error, and more importantly, its bias over
variance ratio (θb) was also the lowest (Fig. 1D). Thus, both
analytical and numerical results confirmed that DDC estimation
is unbiased.

We also quantified the variance and bias over a range of data size
and observational noise. DDC consistently had the least estima-
tion error regardless of the size of the dataset (Fig. 1C ). In contrast,
inference bias for covariance (Cov), partial covariance (P), differ-
ential covariance (Δc), and partial differential covariance (Δp)
diverged as data volume increased, introducing a systematic error.
Regarding noise tolerance (Fig. 1C ), the performance of dCov
matrices (Δc and Δp) rapidly deteriorated with increasing noise,
probably due to the inaccuracies in the computation of derivative.
However, DDC remained robust despite these inaccuracies.

Second, we also prove in Materials and Methods that DDC can
be used to analyze nonstationary data whose higher-order statistics
vary with time. In practical neural data processing, stationarity
is often assumed when estimating the covariance matrix through
sampling over time. However, this may not be a valid assumption
because neural recordings can be quite nonstationary due to
fluctuating brain states owing to neuromodulation and varying
sensory inputs. There is a need for methods that can analyze
nonstationary data. In the derivation of DDC, stationarity was not
required because relationships imposed by the system equation
hold at every time step, regardless of the probability distribution
of the process. To verify that DDC does not depend on station-
arity, we simulated a two-state dynamical system (Materials and
Methods) whose connectivity (shown in Fig. 1A) remained time
invariant while the noise structure was switched between states.

A B Cov

1 2 3

1

2

3 -2

0

2

 L

1 2 3

1

2

3
-0.

0

0.5
GT

1 2 3

1

2

3
-0.5

0

0.5
2 3

1

(2,1) (3
,1

)

(3,2)

-0.1

0

0.1

-0.2

0

0.2

-0.5

0

0.5

-0.4

-0.2

0

0.2

0.4

-0.5

0

0.5

-0.5

0

0.5

-0.5

0

0.5

LL

-0.1

0

0.1

-0.05

0

0.05

-0.2

0

0.2

-0.2

0

0.2

-0.4

-0.2

0

0.2

0.4

Cov

Time

State 1 State 2State 2State 1E

F

10 3 10 4 10 5

Data points

0

0.2

0.4

0.6

0.8

T
o
ta

l e
rr

o
r

C

Cov P c p L ReLu

10 -2 10 0

SNR(dB)

0

0.2

0.4

0.6

0.8

0 0.05 0.1

Variance

0

0.1

0.2

0.3

B
ia

s

Cov
P

c
p
L

D

Fig. 1. DDC provides unbiased estimation for
nonstationary data. (A) Ground-truth (GT) net-
work structure. Black solid lines are directed
physical connections and red dashed line is
false positive connections commonly inferred
by covariance estimation. Time series were sim-
ulated using linear dynamics. (B) GT in matrix
form, sample covariance (Cov), and ΔL esti-
mation. (C) Left: Influence of simulation length
on the estimation error, quantified as normal-
ized Euclidean distance between the ground
truth and estimation. Right: Influence of obser-
vational noise, imposed as additive Gaussian
random noise. ΔL exhibited low error across
all tested data sizes and is robust to noise
corruption. (D) Orthogonal decomposition of
estimation errors into variance and bias com-
puted based on sufficient data from 50 random
trials (corresponding to the red arrow in C).
Bias measures the estimation accuracy while
variance measures the precision. ΔL exhibited
lower bias, variance, and bias-to-variance ratio.
(E and F) Simulation of the static confounder
motif governed by a two-state dynamical sys-
tem (Materials and Methods, 2.A). (E) Analytical
solution of the steady-state covariance matrix
(Materials and Methods, 1.G.3) in state 1 (Left)
and state 2 (Right). (F) Bottom: Timeline for sam-
ple time series with five nonoverlapping sam-
pling windows. The simulated time series was
in state 1 during windows I and II and in state
2 during windows IV and V. Window III included
data from both states. Sample covariance es-
timation (Top row) shifted between states; in
contrast, ΔL estimation (Bottom row) consis-
tently reported the static true connectivity. For
a clear illustration, we removed the diagonal
values from estimated matrices. Cov, sample
covariance estimation; Δc, differential covari-
ance matrix; Δp, partial differential covariance
matrix; P, partial covariance estimation; SNR,
signal-to-noise ratio.
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The analytical solution of the covariance structure is given by
Eq. 21, as plotted in Fig. 1E. Using nonoverlapping sliding
windows, we obtained the sample covariance and ΔL estimation
of the connectivity matrix (Fig. 1F ). The time-varying covariance
matrix confirmed that the time trace is not stationary and thus
sample covariance estimation fails to capture the true connectivity
profile. On the other hand, ΔL consistently and accurately esti-
mated the true connectivity matrix, even in window III (Fig. 1F )
where state switching occurred.

C. DDC Inferred the Existence and Direction of Multiple Net-
work Structures and Dynamics. We applied DDC to a number
of dynamical systems, including stochastic nonlinear systems and
deterministic chaotic systems. The objective was to show the
extent to which the connection strengths and directions can be
estimated by DDC in a wide class of dynamical systems, especially
by the linear model.

As a proof of principle, we applied DDC to three-node net-
works with varying dynamics and network structures (Fig. 2). The
chain motif (Fig. 2 A and B) and confounder motif (Fig. 2C )
were chosen because they both have a node pair (red dashed
line) that is highly correlated but with no physical connection,
which is an ideal test of whether DDC can “explain away”
spurious correlations. We simulated both linear- and sigmoid-
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x2 of the Rössler system governed by system equations shown above. Right:
estimated ΔL and ΔReLU. (E and F) Estimation error, quantified as normalized
Euclidean distance between the ground truth and estimation, over 50 trials
for both linear and nonlinear models benchmarked with state-of-the-art
network inference algorithms. c-Granger, conditional Granger causality; Cov,
sample covariance estimation; Δc, differential covariance matrix; Δp, partial
differential covariance matrix; L1/L2-reg, L1/L2-regularized partial covariance
matrix; P, partial covariance estimation; partial-MI, partial mutual information;
std, SD (standard deviation).

0 0.5 1

False positive rate

0

0.2

0.4

0.6

0.8

1

T
ru

e 
po

si
tv

e 
ra

te

Cov
P

c
p
L
ReLU

BA

E

C D

Cov P

L1
-re

g

L2
-re

g
C sp

k

c-
Gra

ng
er  c  p  L

 R
eL

U
10 -2

10 0

10 2

10 4

10 6

C
om

pu
ta

tio
n 

tim
e 

(s
ec

) ~ 60hr

∆L: Full

-0.2 -0.4 -0.6 -0.8

4

8

10

0.5

0.55

0.6

0.65

0.7

0.75

0.8

∆L: Active

-0.2 -0.4 -0.6 -0.8

4

8

10

0.5

0.55

0.6

0.65

0.7

0.75

0.8

∆L: Quiet

-0.2 -0.4 -0.6 -0.8

4

8

10

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Connection strength

S
pa

rs
ity

(%
)

Cov P

L1
-re

g

L2
-re

g
C sp

k

c-
Gra

ng
er  c  p  L

 R
eL

U

0.5

0.6

0.7

0.8

A
U

C
 (

m
ea

n
st

d) Observed
Control

*
*

* * *

0          0.25          0.5         0.75            1

Time (sec)

-80

-40

0

40

V
ol

ta
ge

 (
m

V
)

Neuron 9 Neuron 10 Neuron 11

Fig. 3. Estimation of performance for spiking networks. (A) Selected mem-
brane potential traces simulated using 200 LIF neurons with a sparse Erdös–
Rényi random connectivity. (B) ROCs quantifying classification performances
for true connections (network sparsity, 0.04; connection strength, −0.4;
average firing rate, 3.5 Hz). The curves for ΔL and ΔReLU were similar due
to the threshold selection process (Materials and Methods). (C) AUC across 50
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test). Control values were calculated by generating another realization of the
Erdös–Rényi graph with the same sparsity. Only one AUC value was shown
for the c-Granger estimate because of the excessive computation needed.
(D) MATLAB computation time on a computation cluster with 32 CPUs for
the dataset of 200 nodes by 200,000 time points. (E) AUC values for ΔL
applied to networks with a range of sparsities and connection strengths.
Estimates used (full) all time points, (active) time points around the spike
times, or (quiet) time points outside the spike time intervals. Unsurprisingly,
most network communication took place when there were active units.
Asterisks indicate the condition used for ΔL in C. Cspk: spike-train cross-
correlogram–based connectivity.

based nonlinear dynamics (Materials and Methods). We intention-
ally introduced a model mismatch—“sigmoid”-based generative
dynamics and “ReLU” nonlinearity for estimation—because in
practice, a perfect match is not possible. Both ΔL and ΔReLU
correctly inferred the existence and direction of the ground-truth
connections (Fig. 2) while the covariance matrix (Cov) failed to
explain away false positive connections and partial covariance
(P) was not able to determine the directionality of connections
(SI Appendix, Fig. S2B).

We further benchmarked DDC performance with more
sophisticated methods, including regularized partial covariance
(L1-/L2-reg), partial mutual information (MI), and conditional
Granger causality (c-Granger) (Fig. 2 E and F ). L1-reg and
c-Granger exhibited comparable performance in linear simula-
tions but their performance deteriorated for models with nonlin-
ear dynamics. The heavy computation burden for optimization or
model fitting makes these two methods difficult to scale up (see
computation time in SI Appendix, Fig. S2E for a 50-node task
and in Fig. 3D for a 200-node task). Because regularized partial
covariance and c-Granger assume stationarity, they performed
poorly on the state-switching case shown in Fig. 1 E and F.

DDC was also applied to a larger network consisting of 50
nodes and structured by a combination of confounder and chain
motifs (SI Appendix, Fig. S2A). As in the small network case, ΔL
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and ΔReLU accurately estimated the existence and direction
of connections (SI Appendix, Fig. S2B). L1-reg and c-Granger
achieved good performance for models with linear dynamics but
performed poorly when the system was nonlinear (SI Appendix,
Fig. S2D). In this 50-node estimation task, c-Granger computa-
tion time was more than three orders of magnitude greater than
that of the other methods (SI Appendix, Fig. S2E). Estimation
accuracy improved with larger datasets for most of the methods
we tested (SI Appendix, Fig. S2C ).

Finally, we asked whether DDC can track the information
flow in a nonlinear Rössler system, which has a deterministic
chaotic attractor. The three equations for this system in Fig. 2D
have a nonlinear bidirectional confounder motif. ΔL and ΔReLU
correctly identified direct connections and ignored the strong cor-
relations between x2 and x3. This suggests that DDC estimation
is robust to model mismatch and can faithfully reflect the direct
interactions in the system equation despite the unpredictability of
the chaotic system.

D. DDC Identified Ground-Truth Connections with High Sensitiv-
ity across Multiscale Neural Networks. Next, we tested DDC
on a network model with 200 leaky integrate-and-fire (LIF) neu-
rons (29). These neurons integrate exponentially filtered synaptic
inputs until the membrane potential reaches a threshold, which
triggers a spike and a reset to resting membrane potential. The
connectivity matrix was a globally connected Erdös–Rényi ran-
dom graph with uniform connection strengths, to test methods for
extracting the existence and direction of network edges (Materials
and Methods). We used the classification performance of true
connections with increasing binarization thresholds (Materials
and Methods) as a surrogate measure for how well the connectivity
of the entire matrix was estimated.

Graphs with a range of sparsity and connection strengths were
simulated and DDC was applied to the subthreshold membrane
potentials (Materials and Methods, representative traces shown
in Fig. 3A). Performance was quantified by the area under the
curve (AUC) of specificity versus sensitivity (Fig. 3 B and C ).
Directed estimation methods (c-Granger, dCov, and DDC) have
higher AUC values because the ground-truth matrices were not
symmetric. ΔL and ΔReLU were significantly (P <0.001, rank-
sum test) better than all other methods except c-Granger, which
reached a comparable performance level. However, one trial of
c-Granger estimation took ∼60 h on a computing cluster with
32 cores, which makes it impractical to analyze the large-scale
neural recordings that have become available. Both the linear and
nonlinear estimators presented similar curves (Fig. 3B) because the
threshold selection process (Materials and Methods) of ΔReLU
favored a low threshold, approximating a linear model. Possible
explanations and improvements of the nonlinear estimator are
explored in Discussion. Remarkably, the linear DDC estimator
retained its high level of performance in this highly nonlinear sim-
ulation and was robust to a broad range of network configurations
with different sparsity levels and connection strengths (Fig. 3E).
In general, the additional operation of taking partial covariance
compared to pairwise covariance did not improve the performance
(compare Cov, Δc with P, Δp in Fig. 3D) because in a sparsely
connected network structure the influence of indirect connections
is weak. Interestingly, Δp had very high sensitivity (true positive
rate) even when very few connections were thresholded as positive.
This might be due to its sparse estimation (21, 22).

We also tested the methods on simulated recordings of macro-
scopic neural activities based on the reduced Wong–Wang model
of the resting state (30). The interaction matrix involves both
self-excitation and experimentally measured long-range structural

Table 2. Summary of structural connectivity matrices
Features DTI HCP dMRI
Appearance SI Appendix, Fig. S5 Fig. 4
No. of subjects Population Population and

1,064 individuals
No. of nodes 76 360
Sparsity, % 3 5
Simulation size Two hemispheres One hemisphere
Evaluation size One hemisphere One hemisphere
Simulation parameter∗ — c = 0.01; I0 =−0.1
∗Most parameters are from ref. (30) unless otherwise denoted.

connectivity. We used two datasets of structural connectome in
the simulation: the Human Connectome Project (HCP) diffusion
MRI (dMRI) connectome (31) and the diffusion tensor imaging
(DTI) dataset built in the virtual brain simulator (TVB) (32).
The details of the two datasets and the simulation parameters are
summarized in Table 2. Most physiological parameters were taken
from Deco et al. (30) unless otherwise noted in Table 2. In the
dMRI simulation, the relative connection strength and driving
current were slightly tuned to resemble the bifurcation plot of the
full spiking network (figure 2 in ref. 30).

Due to the spike and reset process, the numerical derivative of
membrane potential jumps transiently during spike events, thus
significantly contributing to DDC estimators. We suspected the
DDC estimators performed well because of these spike events.
To test this possibility, we split the time trace and its derivative
trace into active time points where at least one neuron spikes
and quiet time points where no neuron emits a single spike.
We extended the simulation to 40 s to ensure a sufficient data
volume and quantified DDC performance for both parts (Fig. 3E,
Center and Right). Estimation of ΔL using active time points
was as accurate as that using full time points. However, the
spike train cross-correlogram was itself not enough to recover the
connectivity as indicated by the low AUC value of Cspk in Fig. 3C
and SI Appendix, Fig. S3C ). This points toward the importance of
including voltage fluctuations within the active period window, in
addition to the binary spike train.

For the HCP dMRI dataset, we simulated neural dynamics
based on both population-level connectivity (Fig. 4A) and 1,065
individual connectomes. We thresholded the structural connectiv-
ity matrix to a sparsity of 5% because it is difficult to achieve above
chance performance for any methods when the connectivity ma-
trix is too dense. Every node in the thresholded graph is still linked
to at least five other nodes as shown in SI Appendix, Fig. S4A.
The overall performance was quantified by c-sensitivity (Materials
and Methods), which is a measure of the separation between the
estimated value of true positive connections and the estimated
value of true negative connections. (c-sensitivity = 1 when the true
positives were completely separated from the others by the estima-
tion.) Chance-level performance was calculated by replacing the
ground-truth matrix with either realizations of the Erdös–Rényi
graph with the same sparsity level (control 1) or those of degree-
preserving randomized graphs (control 2).

In the population-level connectivity simulation, ΔL had the
best performance followed by (regularized) precision matrices and
c-Granger estimation (Fig. 4C ), probably because the reduced
Wong–Wang model exhibited linear fluctuations around the sta-
ble point (30). For c-Granger, only 10% of the data points were
used since it took about 46 h to run and full-length estimation
would take approximately 1 mo. The ΔL estimated connection
strength appeared to be negatively correlated with fiber tract
length, in line with most tractography reconstruction observations
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Fig. 4. Estimation performance for a macro-
scopic brain surface model. (A) Population-
averaged structural connectivity measured by
dMRI from one hemisphere. The matrix was
threshold into a binary matrix where only
the strongest 5% of connections (yellow en-
tries) were kept. (B) Correlation between ab-
solute value of ΔL estimate and fiber tract
length in the model. Time series were simu-
lated for 1,000 s at 1,000 Hz using a reduced
Wong–Wang model supported by population-
averaged dMRI connectivity from one hemi-
sphere. (C) Estimator performance (observed)
quantified through c-sensitivity, a measure of
the separation between estimated values of
true positive connections and true negative
connections. Control 1 was calculated based
on 1,000 realizations of an Erdös–Rényi graph
with same sparsity. Control 2 was calculated
based on 1,000 trials of a degree-preserving
randomization algorithm (28). Due to compu-
tation limit, “c-Granger” estimation was based
on 10% of the simulated data. (D) Estimation
performance (c-sensitivity) in simulations sup-
ported by 1,065 individual dMRI connectivities
(one hemisphere).

(31) (Fig. 4B). In the 1,065 individual simulations, ΔL continued
to exhibit the best performance (Fig. 4D).

In another simulation using the built-in structural connectivity
in the virtual brain simulator (SI Appendix, Fig. S6), ΔL had the
highest performance followed by c-Granger and ΔReLU. The
c-Granger method had comparable performance but the compu-
tation time was almost four orders of magnitude longer, making
it impractical. The raw ΔL and ΔReLU matrices uncovered the
strongest connections (red arrows) in the ground-truth matrix
(SI Appendix, Fig. S6B). Similarly, only the strongest long-range
connections were included, because all methods failed to reach
significance for graded anatomical connectivity.

E. DDC Estimation Is Reliable When Applied to rs-fMRI Record-
ings. To critically test DDC on neural data, we applied DDC to
rs-fMRI recordings obtained from the HCP. The imaging voxels
were parcellated through group independent component analysis
(ICA) (Materials and Methods), where each independent com-
ponent (IC) parcellation, shared across subjects, is composed of
voxels with similar dynamics. ICs are mainly composed of spatially
proximate voxels, forming anatomically recognizable brain regions
(SI Appendix, Fig. S9). In addition, we focused on the first 46 ICs
encompassing over 40% of cortical voxels (SI Appendix, Fig. S8A)
to match cortical measurements using dMRI. Dual regression
(Materials and Methods) assigned unique ICA-parcellated blood-
oxygen-level-dependent (BOLD) signals to each subject, which
were treated as nodes for DDC analysis.

We first established the reliability of ΔL estimation, that is,
the number of data points required for estimates to become stable
and whether the method provided consistent estimates across
sessions within one subject. Within one subject, we calculated
the correlation of ΔL estimation using all data points with that
estimated using different amounts of partial data. The correlation
value is 0.6 using data size equivalent to one recording session and
gradually increases as more data are included (Fig. 5A). Compared
to sample covariance estimation (SI Appendix, Fig. S7), the data
volume requirement is relatively higher probably due to the need
to calculate the derivative. For most subjects, 2,400 data points,
or equivalently, two sessions, were needed to reach a correlation
of 0.8. We further plotted the correlation of ΔL estimation using

a concatenation of two sessions within and between 10 randomly
selected subjects (Fig. 5B). The block structure on the diagonal
indicated a higher intraindividual similarity of ΔL across sessions.
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points. Each gray curve represents one subject and the black curve is the
average. (B) Correlation of ΔL estimated using a concatenation of two scan
sessions within and between 10 randomly selected subjects. The block diag-
onal structure indicates a higher level of intraindividual similarity. (C) Boxplot
of intra- and interindividual correlations pooled from all 1,003 subjects (two-
sided Wilcoxon rank-sum test, P < 10−15). The interindividual correlation
was calculated based on estimations from nonoverlapping concatenation of
sessions [e.g., correlation between ΔL (session 1 and 2) and ΔL (session
3 and 4)]. (D) Procedure of subject identification analysis adapted from ref.
33. The subject identity of the target matrix (estimated from two sessions)
was inferred based on distance ({d1, d2, . . . , dN}) between it and database
matrices (estimated from the remaining two sessions with known identity).
We adopted a soft criterion for identification: The candidate identity pool
was constructed as the top m subjects with highest correlation. If the true
target identity belongs to the candidate pool, then the identification process
is successful. ID accuracy was calculated as successful trials over the total
number of individuals. (E) Identification accuracy, a measure of intraindividual
consistency, with respect to candidate pool size (m).
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their IC parcellations registered on an MRI
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nection direction and the red arrows indicate
IC pairs that are anatomically close. Num-
bers indicate the IC indexes corresponding to
SI Appendix, Table S1 and Fig. S9.

The population statistics from 1,003 subjects (Fig. 5C ) con-
firmed a significantly higher within-subject similarity and a rela-
tively lower between-subject correlation (compare to SI Appendix,
Fig. S7C ).

In general, ΔL estimation is more variable than sample
covariance estimation. To quantify this, we adapted subject
identification analysis (33) (Fig. 5D): FC estimation from two
sessions together with their subject labels were constructed as
database matrices. The identity of a target FC matrix, estimated
from the remaining two sessions, was inferred based on the
correlation between it and database matrices. To obtain an
asymptotic behavior, we adopted a soft criterion for successful
identification events. If the true identity belongs to the candidate
pool, composed of the top m subjects with highest correlation,
then the identification process is successful.

As expected, the identification (ID) accuracy increased as the
sample pool size (m) increased (Fig. 5E). Cov and P showed very
high ID accuracy as reported in ref. 33. DDC estimators (Δc,
ΔL, and ΔReLU) showed an accuracy of around 65% and then
reached 90% as pool size increased to 30, which is still acceptable
given there are over 1,000 subjects in total. Dynamic FC has
been observed previously (34, 35), and identifying its origin might
reveal fundamental aspects of brain dynamics.

F. DDC Consistently Identified Structurally Connected Brain
Regions. The average and SD of the estimated interaction
matrices across subjects are shown in Fig. 6 A and B, respectively,
where ΔL and ΔReLU were sparser than the covariance matrix.
Two nodes (indicated by red arrows) in ΔL appeared to
have a broader range of interactions. They were anatomically
registered as “occipital pole” and “medial occipitotemporal gyrus,”
reflecting the large proportion of visual ICs in the network
(SI Appendix, Fig. S9 and Table S1). We binarized the estimated

matrices based on significance levels to minimize the influence of
nonsignificant spurious connections due to random fluctuations
in the signal, thereby increasing noise tolerance. The significance
test was determined by an autoregressive bootstrapping procedure.
The null hypothesis is that each time series was generated by
an independent autoregressive process, which was fitted to the
observed data. This ensured that the signature power spectra of
fMRI recordings were preserved (Materials and Methods). The
significant ΔL connections (yellow entries, P < 0.01) across
subjects are shown in Fig. 6C. These “backbone connections”
shared across a majority of the subjects could be flexibly tuned for
network sparsity level. We adopted a strict criterion because we
were interested in the most conserved connections shared by over
90% of subjects (red dashed vertical line in Fig. 6C ). Their IC
parcellations were registered on an MRI template (Fig. 6D). In
this case, backbone connections were identified between ICs from
the same anatomical region as well as interregional interactions
(marked in red).

To quantify the extent to which estimated FCs matched the
structural connectivity, we further processed dMRI measurements
from the HCP dataset (31) to obtain individual-level IC-based
dMRI matrices (SI Appendix, Fig. S8 and Materials and Methods).
At the IC level, dMRI strengths were bimodal (Fig. 7A), indicating
a clear separation between the strong and weak connections. ΔL
identified connections with higher dMRI strength compared to
those chosen by the covariance matrix (Fig. 7B). Fig. 7C shows
the increasing average dMRI strength for decreasing binarization
threshold, linking the significance of rs-fMRI to dMRI con-
nectivity for all methods and confirming their biological rel-
evance. DDC uncovered connections with significantly higher
dMRI strength values than covariance-based methods (Fig. 7C )
and also identified a larger proportion of strong connections
(Fig. 7D).
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Fig. 7. DDC picked up connections with strong dMRI values. (A) Distribution
of IC-level dMRI strengths. Connections to the right of the cutoff value (red
dashed line) were classified as strong connections. (B) The dMRI strength dis-
tribution of significant ΔL and Cov connections (binarization P value < 10−9).
The two distributions are significantly different (two-sided Wilcoxon rank-sum
test, P < 10−15). Note the log scale on the y axis due to the large abundance
of weak connections. (C) Average dMRI strength value of significant connec-
tions picked by different methods with stricter binarization thresholds. (D)
Proportion of strong connections. It was used as a supplementary statistic
to compare distributions as dMRI strength distribution is almost bimodal.

3. Discussion

DDC is a promising family of estimators for analyzing the con-
nectivity underlying large-scale brain recordings. Because DDC
is derived directly from dynamical system equations that govern
neural interactions, no optimization or model fitting is required.
DDC is a practical and intuitive method that can be computed
rapidly and scales well with the number of recording sites. Unlike
methods based on covariance, which are inherently symmetrical,
DDC can detect directional interactions and obtain statistical
estimates of causality. DDC uncovered ground truth when applied
to dynamical simulations of network models and significantly
improved estimates of strong dMRI connectivity from rs-fMRI
recordings compared with covariance methods. Further analysis is
needed to probe the ability of DDC methods to uncover weaker
connectivity. Structural anatomy is foundational in neuroscience
and functional anatomy that is consistent with the underly-
ing structural anatomy makes possible more accurate predictions
about information flow in specific pathways.

The improved performance of DDC on benchmarks had some
limitations. First, the parcellation used for analyzing fMRI was
based on ICA, which was different from dMRI analysis that used
atlas-based parcellation. The additional step to link them through
voxel coordinates complicates interpretation of the results. It
would have been more parsimonious to use the same parcellation
to process both the fMRI and dMRI data as raw voxels, but this
would have required reprocessing the raw fMRI or dMRI imaging
data. After briefly analyzing another atlas-based fMRI dataset,
several nodes were highly colinear with others, leading to a rank-
deficient covariance matrix whose inversion made the algorithm

unstable. The refactoring of the fMRI data into IC components,
as in the HCP dataset and commonly performed in resting-
state studies, alleviated the colinearity problem. An alternative
approach is simply to discard the dependent nodes as they provide
no additional information when perfectly dependent. Algorithms
that can invert a rank-deficient matrix could also be applied. For
example, the Moore–Penrose pseudoinverse achieves the least-
squares estimation of Eq. 3. However, the inverse of a rank-
deficient matrix is not unique, which could result in an infinite
number of connectivity estimates. Further constraints such as
connection balancing and wiring costs are needed to arrive at a
unique estimate.

Another limitation, for both macroscopic brain simulations
and HCP fMRI analysis, is that the “ground-truth” matrix
(dMRI connectivity) is symmetric due to limitations of diffusion
imaging, which precluded harnessing DDC’s capacity to estimate
directed connections. Tract tracing, on the other hand, could
provide directed structural connections. Two connectome
matrices available from macaque brains (figure 2A in ref.
36 and figure 11B in ref. 37) are also nearly symmetric.
Alternatively, directionality can be disambiguated by taking
into account known physiological constraints on the directed
connections.

The nonlinear version of DDC is underconstrained and more
accurate connectivity estimates could be made by adapting the
nonlinear function to the specific process generating the neural
activity and recordings. For example, a hemodynamic response
kernel could be used for fMRI recordings. Here, we adopted a
ReLU nonlinearity, which has been widely used to model nonlin-
ear rate-based network models, but its performance on the spiking
network model was no better than that on the linear model. A
better model for a spiking network would take into account the
spiking mechanism and dynamical time constants. (See Materials
and Methods, 1.G.4 for further discussion on how to modify
nonlinear DDC for spiking networks.) In principle, we could
also optimize the nonlinear function in a function path space
by applying variational calculus. A simpler approach would be to
express R(x ) as a linear combination of nonlinear basis functions
(such as B-splines) and then optimize the linear coefficients based
on model evidence.

Although we focused on the application of DDC to resting-
state fMRI, it could also be used to analyze fMRI or EEG
time-series data collected during a cognitive task. Brain states
during dynamical tasks are often nonstationary. For example,
attentional mechanisms and neuromodulatory processes can result
in fluctuations of the mean and variance of neural activity. Since
DDC does not assume stationarity, it should be robust to these
fluctuations and could thus be useful in revealing task-related
changes in brain connectivity. This can be implemented by a
sliding-window analysis, although temporal precision may be
limited as DDC typically requires more data points (on the order
of 103 samples) than simpler correlation methods. This limitation
can be ameliorated by recording at a high sampling frequency,
which is possible for EEG. We also plan to explore the bilinear
approximation of dynamical systems in the DCM framework
(8). This could reveal not only the endogenous connectivity but
also the effects of experimental manipulations on communication
between brain regions.

In conclusion, DDC has a number of favorable mathematical
properties that should ensure robust estimation of connectivity
from a wide range of noisy and nonstationary recordings. Ac-
cess to the directionality of neural connections opens additional
avenues for interpreting the causal flow of information through
networks. Identifying connectivity based on dynamical systems
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models makes direct contact with similar approaches in many
other disciplines such as bioengineering, control theory, and net-
work science. DDC should have a broad impact on studies in these
areas whenever there is need for estimating directional network
connectivity from network activity.

Materials and Methods

1. FC Estimators. All estimators and abbreviations are summarized in Table 1.
A. Covariance-based estimators. The Cov and P matrices are

Cov = 〈x, x〉 [5]

P = Cov−1, [6]
where x is a column vector of the system variable and the operation 〈, 〉 takes
the outer product of two vectors and averages across time. In this paper, all time
traces were z scored; thus, the covariance matrix is equivalent to correlation. The
covariance matrix reveals only pairwise correlations but the partial covariance
matrix controls for confounding effects, one step closer to a causal estimation of
global connectivity.
B. Regularized partial covariance. Under the assumption that the connec-
tivity matrix is sparse, regularization methods could be implemented during
the regression step of calculating the partial covariance matrix. For example,
we calculated L1- and L2-regularized partial covariance matrices through the
FMRIB (functional magnetic resonance imaging of the brain) software library
(FSL) toolbox (38). To choose the regularization parameter (λ), we tested a range
of them and chose the one with the best performance with a corresponding
quantification metric. We tested λ= 5, 10, 20, 50, 100, 200 for L1 regulariza-
tion while λ= 0.1, 0.2, 0.5, 1, 5 for L2 regularization.
C. Mutual information. MI quantified the statistical dependence of two random
variables beyond second-order statistics. It is a model-free estimation of depen-
dencies and therefore it should work equally well for both linear and nonlinear
simulations. We used the implementation in the Functional Connectivity Toolbox
(15) to estimate partial MI since we want to estimate the global network structure.
D. Granger causality. Granger causality (12) defines a statistical interpreta-
tion of causality based on predictability: A is said to “Granger cause” B if the
predictability of B declines when A is removed from the predictors. The test of
predictability increase or decline is usually implemented through multivariate
vector autoregressive modeling. We implemented conditional Granger causality
through the multivariate Granger causality (MVGC) MATLAB toolbox (39). In
this approach, the fundamental assumption is that the time-series data are a
realization of a stationary vector autoregressive (VAR) process. The VAR model
order was chosen based on the Akaike information criterion and the coefficients
of the full/reduced regression model were computed through an ordinary least-
squares solution to the regression.
E. Spike-train cross-correlograms. Following Das and Fiete (40) and Guisti
et al. (41), we calculated the cross-correlograms based on their Pearson
correlation and averaged within a time window (τ = 0.1 s) to get a spike-
based connectivity measure Cspk. Specifically, for spike-train xi and xj,
gij(τ) =

∫ T−τ

0 x̄i(t)x̄j(t + τ)dt, where the superscript bar denotes the
centered version of the spike train. Then the connectivity value from j to i was
evaluated as

Cspk(i, j) =
1
τ

∫ 0

−τ

gij(t)dt. [7]

For numerical calculation, we used the sampled time interval (dt = 0.5 ms) to
evaluate the integral. For neuron pairs whose firing rates are smaller than 0.1
Hz, their connectivity value was assigned as zero. Around 2,000 connection pairs
were skipped in SI Appendix, Fig. S3C.
F. dCov estimators. Differential covariance (Δc) was calculated as Eq. 8 where
dx
dt was numerically computed using a symmetric difference quotient (42). The

evaluation of partial differential covariance (Δp) was derived in parallel to partial
covariance. The calculation was performed elementwise as in Eq. 9 where Cov
refers to the covariance matrix, and K denotes the set of all nodes except i and j:

Δc = 〈dx
dt

, x〉 [8]

Δpij =Δcij − CovjK Cov−1
KK ΔcT

iK . [9]

G. DDC. The definitions of ΔL, ΔR, and ΔReLU can be found in the main
text. The parameter θ for ΔReLU was varied from the 5th percentile to the 95th
percentile of the z-scored data. The optimal value was chosen based on either
the estimation errors (three-neuron simulations) or the AUC values (LIF neuron
simulations). In the brain surface model, θ was set to zero.
G.1. LSE of the system equations. The DDC estimators are actually least-
squares estimation of the assumed system equations. Let us use the linear system
equation as an example:

(
dx
dt
)t = Wxt

L =
∑

t

Lt =
∑

t

[(
dx
dt
)t − Wxt]

T [(
dx
dt
)t − Wxt]

[10]

To achieve the minimum of square error (L), we take the derivative of L with respect
to W:

∂L
∂W

=
∑

t

∂Lt

∂W

∂Lt

∂W
=−2(

dx
dt
)txT

t + 2WxtxT
t

[11]

Then setting ∂L
∂W = 0, we obtained the LSE of W:

Ŵ
∑

t

xtxT
t =

∑
t

(
dx
dt
)txT

t

ΔL := Ŵ = 〈dx
dt

, x〉〈x, x〉−1.

[12]

In the nonlinear case, the above derivation process holds by replacing xt with
R(xt). In this view, we could refer to the well-developed statistical theory to
improve technical issues such as the singularity of the covariance matrix and the
regularization procedure.
G.2. DDC derivation for stochastic network models. To model the random-
ness in the recorded neural activities, we used stochastic differential equations
(SDEs) and evaluated DDC in this stochastic framework:

dx
dt

= Wx + D
dβ
dt

, [13]

where β is a multidimensional Brownian motion with variance Q and noise
structure D influencing the state variable x . See Eq. 1 for the definitions of the
other terms. The time averages (〈x〉 :=

∑T
t=0 xt) are different from ensemble

averages [E(x)] under nonstationary conditions, as analyzed in the next section.
Operating on both sides of this equation with 〈, x〉,

〈dx
dt

, x〉= W〈x, x〉+ D〈dβ
dt

, x〉

E〈dx
dt

, x〉= WE〈x, x〉+ DE〈dβ
dt

, x〉.
[14]

To evaluate 〈 dβ
dt , x〉, we first write down the explicit solution of the linear SDE

starting at t = 0 and then time average both sides:

xt = exp(Wt)x0 +

∫ t

0
exp(W(t − τ))Ddβτ

〈dβ
dt

, x〉= 〈dβ
dt

, exp(Wt)x0〉+ 〈dβ
dt

,
∫ t

0
exp(W(t − τ))Ddβτ 〉

= WT + BT

[15]

The first term WT is the summation of time-dependent linear Brownian incre-
ments, and thus the mean is zero and the variance is a time-dependent scaling
of the Brownian variance:

E(WT) = 0
Var(WT) = Q〈exp(Wt)x0, exp(Wt)x0〉.

[16]

The second term BT was evaluated using the Ito integral. Because Brownian
motion is nowhere differentiable on its path, we numerically approximated the
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time derivative that we used in the simulations. If we assume {tk}∞k=1 as a
partition of [0, t]whose partition size is infinitesimal as n →∞ , we can compute
the Ito integral in the limit. For simplicity, defineΦτ = exp(W(t − τ))D. Then
the two terms are composed of nonoverlapping Brownian increments

(
dβ
dt

)t =
βt+dt − βt

dt∫ t

0
Φτ dβτ = lim

n→∞

∑
k

Φ(tk)[βtk+1 − βtk ]
[17]

from which it follows thatE(Bt) = 0 because Brownian motion has independent
and stationary increments:

BT ∝
∑

t

lim
n→∞

∑
k

(βt+dt − βt)[Φ(tk)(βtk+1 − βtk )]
T

E(BT) = 0.
[18]

Taken together, the first-order statistics of our linear DDC estimator become

E〈dx
dt

, x〉= WE〈x, x〉

E(ΔL) = E(〈dx
dt

, x〉〈x, x〉−1) = W.
[19]

This derivation confirms that DDC is unbiased in the presence of noise as a
linear combination of Brownian motion. Simulations of the linear three-neuron
model revealed that 〈 dβ

dt , x〉 is at least 10 times smaller in magnitude than 〈x, x〉
even for very high noise variance Q. Remarkably, DDC can still recover the ground-
truth connectivity for correlated noise structure (D in Eq. 13).
G.3. Nonstationary conditions. A continuous-time stochastic solution of the
SDE, {xt}T

t=0, is stationary when its finite-dimensional joint distribution is time
invariant, which implies that its mean and covariance remain constant across
time. Only under the stationary assumption can the covariance matrix then be
estimated by the time-averaged sample covariance.

The above SDE framework allows the mean and covariance of state variables
to vary with time according to the Ito formula

dm
dt

= Wm

dP
dt

= WP + PWT + DQDT,
[20]

where m = E(x), P = Var(x). The process is stationary if the right-hand sides
are zero. The steady-state solution of m is either zero or within the null space of
W. Meanwhile, the steady-state solution of W is given by the Lyapunov matrix
equation and can be solved by vectorization (v ) and Kronecker product (⊗):

Pv =−(I ⊗ A + A ⊗ I)−1(D ⊗ D)Qv . [21]

Under nonstationary conditions, 〈x, x〉 is no longer a valid estimate of the co-
variance matrix. Because the system equation holds at every time step regardless
of stationarity, our DDC estimators remain valid and unbiased. These properties
make DDC a robust and efficient estimator of FC.
G.4. Modifications of the nonlinear estimator. Models of spiking neurons
have several features that are not included in the models studied in this paper.
First, decay time constants for neurons and synapses are an important part of
their dynamics, such as the leaky dynamics of LIF models. Consider the following
linear and nonlinear system equations that include membrane time constants for
temporal filtering:

τ
dx
dt

=−x + Wx

τ
dx
dt

=−x + WR(x)
[22]

For the linear case, DDC estimation differs only up to a scaling factor and the
diagonal terms:

ΔL = 〈dx
dt

, x〉〈x, x〉−1 =
1
τ
(W − I). [23]

For the nonlinear system, the time decay introduces a new term:

τ〈dx
dt

, x〉=−〈x, x〉+ W〈R(x), x〉 [24]

ΔD = (τ〈dx
dt

, x〉+ 〈x, x〉)〈R(x), x〉−1, [25]

whereΔD is a different DDC estimator of W for the temporally filtered nonlinear
system. It is proportional to a weighted average of dCov and Cov. The time
constant in Eq. 25 is a free parameter that can be estimated or optimized. This
approach allows for a better match with the circuit mechanisms that generate the
activity and how that activity is transformed by the recording techniques.

A second modification to DDC concerns the sparsity of the spiking. For the
simulated LIF network, the sparse spike trains were filtered with decaying synaptic
currents. As a consequence, 〈R(x), x〉 was rank deficient and thus noninvertible.
One potential remedy is to find the least-squares solution of a sequence of linear
equations to optimize W. This will be explored in a future study.

2. Simulations of Neural Systems.
A. Neural motif dynamics. We tested the performance of these methods in
networks structured to have typical false positive motifs—chain (Fig. 3 A and B)
and confounder (Fig. 3C)—with different dynamics and in another Rössler chaotic
system. To stabilize the simulation, all nodes had decaying dynamics and they
were linked by inhibitory connections. Specifically, the diagonal entries in the
ground-truth matrix were set to−1 and connection strength was set to−0.5. We
tested connection strength from −0.1 to −1 and it did not affect the estimation
results qualitatively.

For linear dynamics, system variable x was simulated through Euler integra-
tion according to Eq. 26, where u is the Gaussian-distributed random drive and
ε is the Gaussian-distributed observational noise, both independent from x. The
integration step is 0.01 s and the length of simulation is 1,000 s unless otherwise
specified:

dx
dt

= Wx + u, u ∼N (0, σ2)

xobs = x + ε, ε∼N (0, σ2
obs).

[26]

For nonlinear dynamics, simulation was governed by Eq. 27, where we used a
centered sigmoid function to simulate the nonlinearity. The sigmoid function was
shifted to have mean of zero because otherwise the inhibitory signal would be too
strong in the network and the signal would decay to zero in a short time interval.
In the expression of R(x), slopeα controls the level of nonlinearity in the network
and was set to 1 by default. Note the mismatch between simulation nonlinearity
and the estimation nonlinearity. The integration step is 0.1 ms and signals were
down-sampled to 100 Hz after estimation. Simulation length is 1,000 s unless
otherwise mentioned:

dx
dt

= WR(x) + u, u ∼N (0, σ2)

R(x) =
1

1 + e−αx − 1
2

.
[27]

The equations for the Rössler system are

dx1

dt
=−x2 − x3

dx2

dt
= x1 + ax2

dx3

dt
= b + x3(x1 − c),

[28]

where x = [x1, x2, x3]
T , a = b = 0.2, and c = 5.7. This set of parameters was

originally used by Rössler to study the behavior of its chaotic dynamics. The
signal was integrated at the step of 0.01 s for 1,000 s. The first 100 s of transient
dynamics were discarded.

To simulate a nonstationary system with time-invariant connectivity pattern,
we borrowed the idea of hidden Markov models and simulated a two-state
dynamical system. The system was simulated for 1,000 s using Euler integration
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governed by Eq. 29. Up until 500 s, the noise structure remained to be the
identity matrix. After 500 s, we switched the noise structure to D2. The steady-state
covariance structure of these two states could be analytically evaluated using Eq.
21 and is plotted in Fig. 2A:

dx
dt

= Wx + Du, u ∼N (0,σ2)

D1 = I, D2 =

⎡
⎣1 0 1

1 1 0
0 1 1

⎤
⎦ .

[29]

B. Sparse LIF network. The connectivity matrix was constructed as an Erdös–
Rényi random graph: Two nodes being connected has probability equal to net-
work sparsity. All connected edges were assigned to have the same strength.
Thus, the connectivity matrices were parameterized by only sparsity level and
connection strength. LIF neurons could be described by Eq. 30 with double-
exponential filtered synapses (29). Once membrane voltage V reaches a threshold
Vthres, the neuron will emit a spike and reset the membrane potential to Vreset .
The spike train was described by

∑
tk<t δ(t − tk) and then filtered to generate

synaptic current ri. We used subthreshold membrane potential as the system
variable (x) of interest. We simulated networks with 200 neurons. The integration
process was performed at the step of 0.05 ms, down-sampled to 2,000 Hz, and
simulated for 20 s unless otherwise mentioned:

τ
dV
dt

=−V + Wr + IBIAS

dri

dt
=− 1

τd
ri + hi

dhi

dt
=− 1

τr
hi +

1
τdτr

∑
tk<t

δ(t − tk)

[30]

C. Anatomically supported brain surface model. Regional brain activities
were simulated using a reduced Wong–Wang model (30) (Eq. 31), where state
variable Si denotes the dynamics of the synaptic gating variable and H(xi) is
the population firing rate. This model is a dynamic mean-field approximation
of numerous local spiking units and was applied to efficiently model resting-
state dynamics. It involves both self-excitation and long-range experimentally
measured connections. The state variable was simulated at 1,000 Hz and the
simulation length was 100 s:

τ
dSi

dt
=− Si

τ
+ (1 − Si)γH(xi) + σνi

H(xi) =
axi − b

1 − exp(−d(axi − b))

xi = cJSi + GJ
∑

j

WijSj + I0

. [31]

3. Estimator Performance Quantification.
A. Variance and bias. Following Das and Fiete (40), we decomposed the es-
timation error into variance and bias (SI Appendix, Fig. S1). In most cases, the
estimation is different from the ground-truth matrix by a scale. So we normalized
both estimated and ground-truth matrices between−1 and 1. In addition, dCov-
based estimators are directed estimators while covariance-based ones are not.
For fair comparison, we considered only the estimation of the lower triangle part
where all ground-truth connections are located.

After scaling and lower triangle restriction, estimation error, variance, and
bias were calculated as Eq. 32, where W, Ŵ, and W̄ are ground-truth matrix,
estimated matrix, and the average of estimated matrices across trials and ||.||
is the vector L2 norm. It is easy to verify that Error2 = Bias2 + Variance2 and
thus the vector forms of bias and variance are orthogonal to each other. We
measure the relative contribution of bias by the angle (θb, Eq. 33) between the
vectors associated with bias and variance. Fifty repetitive trials were used across all
simulations:

Error =
||W − Ŵ||

||W||

Bias =
||W − W̄||

||W||

Variance =
||Ŵ − W̄||

||W||

[32]

θb = tan−1(
Bias

Variance
). [33]

B. Sensitivity and specificity. To evaluate the estimation performance in LIF
networks, connection recovery sensitivity and specificity were calculated since the
networks have sparse connection and the connection strengths are uniform. To
be more specific, the estimated matrices were binarized based on their absolute
values to determine the existence of connections, which were then compared
with the ground-truth connections. We used the absolute value because we
cared only about the presence of a connection. Sensitivity and specificity were
calculated as the true positive rate and one minus the false positive rate. Varying
the binarization threshold gave rise to the receiver operator curve (ROC). The
area under the ROC, calculated by trapezoidal integration, indicates the method’s
general performance in classifying connections.

For performance evaluation in the brain surface model, c-sensitivity (6) (equa-
tion 17 in ref. 43) was adopted. It is defined as the fraction of the estimated
true positive values that are higher than the 95th percentile of the false positive
values. Like ROC, c-sensitivity quantitatively estimated how sensitive methods
are to estimating the presence of a connection. Thus, the absolute values of the
estimated matrices were used here.

4. HCP Dataset.
A. Extracting time traces from rs-fMRI recordings. We used the extensively
processed “HCP1200 Parcellation + Timeseries + Netmats (1003 Subjects)”
dataset available through the website (https://www.humanconnectome.org). De-
tailed preprocessing and study design could be easily accessed through the
website. In this release, 1,003 healthy adult human subjects (ages 22 to 37 y, 534
females) were scanned on a 3-T Siemens connectome-Skyra scanner (customized
to achieve 100 mTm−1 gradient strength). Each subject underwent 4 × 15 min
recording sessions with temporal resolution of 0.73 s and spatial resolution of
2 mm isotropic.

For imaging data processing, each 15-min run of each subject’s rs-fMRI data
was preprocessed according to Smith et al. (44); it was minimally preprocessed
(45) and had artifacts removed using ICA and FMRIB’s ICA-based X-noiseifier
(FIX) (46, 47). Intersubject registration of cerebral cortex was carried out using
areal-feature–based alignment and the multimodal surface matching algorithm
(“MSMAll”) (48, 49). Each dataset was temporally demeaned and had variance
normalization and then was fed into the MIGP algorithm, whose output is the
top 4,500 weighted spatial eigenvectors from a group-averaged principal compo-
nent analysis (PCA) (a very close approximation to concatenating all subjects’ time
series and then applying PCA) (50). The MIGP output was fed into group ICA using
FSL’s MELODIC tool, applying it at several different dimensionalities (D = 25, 50,
100, 200, 300). In our analysis, we used the 100-dimension decomposition.

For a given parcellation (group-ICA map), the ICA spatial maps were used to
derive one representative time series per IC per subject. This process was fulfilled
by the standard “dual-regression stage-1” approach, in which the full set of ICA
maps was used as spatial regressors against the full data (51). This results in an
N × T (number of components×number of time points) matrix for each subject.
Thus, we consider each IC as a network node.
B. Intra- and interindividual variability. The intraindividual variability was
quantified as the correlation between DDC estimations across scans. Since DDC
requires data points from at least two scans to achieve a relatively high consis-
tency, we concatenated data from two scans for DDC estimation and compared
them with the estimation results from the other two remaining scans (Fig. 5C).
For interindividual variability, estimation results of all six different combinations
of concatenation were compared.
C. Significance test of the estimated connections. To assess the statistical sig-
nificance of the estimated connection, we used an autoregressive (AR) bootstrap
procedure (52, 53) to preserve the power spectrum density of BOLD signals. For
a specific estimated connection, denoted as element (i, j), our null hypothesis
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was that signals xi and xj are independent regardless of other nodes’ influence.
To generate null time series, we fitted separate AR processes of model order q
to node-specific time traces. The model order q was determined according to
the Bayesian information criterion (BIC). A higher-order model was rejected if
it could not decrease BIC by more than 2. Using the estimated AR coefficients
of empirical time series, we generated 1,000 surrogate null time series and
then computed the associated FC corresponding to the null hypothesis. For each
connection, we assumed a Gaussian distribution of the null connectivity values
generated from null time traces. The P value was calculated as the probability of
the empirical value that appeared under the null Gaussian distribution. In this
paper, we adopted a sequence of significance levels to binarize the matrix so that
we could investigate the network behavior asymptotically.
D. Individual-level dMRI strength. To compare the FC metrics to the under-
lying corticocortical white matter connectivity, we reorganized our previously
published diffusion-MRI–based structural connectome (31) in which connectivity
was assessed among the 360 cortical areas of the HCP multi-modal parcellation
version 1.0 (MMP1.0) atlas (49). Of the 100 IC nodes, 46 are composed of at
least 40% cortical voxels (SI Appendix, Fig. S8A) and as the dMRI connectome was
restricted to corticocortical relationships, we limited the scope of our analyses to
these nodes. Because the IC nodes have a greater spatial extent than the atlas
areas, each is composed of several areas, in whole or in part (mean= 28.3 areas).

For each IC node pair, dMRI connectivity was assessed by obtaining the average
of the nodes’ constituent interareal connectivity weighted by the fraction of the
node pair’s voxels assigned to each areal pair. In cases where an atlas area was
partially present in both IC nodes of a pair, that area was excluded from the mean
as short-range intra-areal anatomical connectivity was not available.

Data Availability. See SI Appendix, Table S1 and Figs. S1–S9 for supporting
information. Implementation of DDC, network simulation, and HCP processing
scripts are all available through GitHub (https://github.com/yschen13/DDC). Pre-
viously published data were used for this work (Human Connectome Project).
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