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Abstract: Tissue regeneration substantially relies on the functionality of tissue-resident endogenous
adult stem cell populations. However, during aging, a progressive decline in organ function and
regenerative capacities impedes endogenous repair processes. Especially the adult human heart is
considered as an organ with generally low regenerative capacities. Interestingly, beneficial effects
of systemic factors carried by young blood have been described in diverse organs including the
heart, brain and skeletal muscle of the murine system. Thus, the interest in young blood or blood
components as potential therapeutic agents to target age-associated malignancies led to a wide range
of preclinical and clinical research. However, the translation of promising results from the murine
to the human system remains difficult. Likewise, the establishment of adequate cellular models
could help to study the effects of human blood plasma on the regeneration of human tissues and
particularly the heart. Facing this challenge, this review describes the current knowledge of blood
plasma-mediated protection and regeneration of aging tissues. The current status of preclinical
and clinical research examining blood borne factors that act in stem cell-based tissue maintenance
and regeneration is summarized. Further, examples of cellular model systems for a more detailed
examination of selected regulatory pathways are presented.

Keywords: adult cardiac stem cells; young blood; stem cell viability; blood serum; tissue regeneration;
tissue protection

1. Introduction

The aging process is associated with a progressive decline in tissue functionality, lead-
ing to severe age-associated degenerative diseases. The maintenance of tissue functionality
as well as the regeneration of injured tissue is ensured by the activity of endogenous stem
cell populations [1–4]. However, it has been shown that tissue aging is connected with di-
minished activity of tissue-resident progenitor cells or stem cells [5–7]. Cellular senescence
occurs due to telomere-shortening, mitochondrial dysfunction or oxidative stress, inducing
DNA-damage and the subsequent expression of cell cycle inhibitors [8]. In detail, this
process and the resulting cellular responses are dependent on cell type, age or the cellular
microenvironment. For instance, Anderson and colleagues described an age-dependent
senescence mechanism in mouse cardiomyocytes that consists of telomere damage but not
telomere shortening [9]. In mouse models, the senolytic drug ABT263 (Navitoclax) was
able to reduce this age-associated telomere dysfunction in cardiomyocytes by inhibiting
proteins of the Bcl-2 family of anti-apoptotic factors [10]. An age-independent senescence
mechanism is induced by diabetes mellitus type 2, where an increased production of
reactive oxygen species (ROS) leads to an increased number of senescent cardiac stem
or progenitor cells in human patients accompanied by reduced proliferation and limited
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stem cell functions such as sphere-forming capacities and differentiation in the myogenic
lineage [11]. In a mouse model, this diabetes type 2-induced senescent phenotype could be
successfully resorted by the application of the senolytics dasatinib and quercetin, which
likewise induce apoptosis of senescent cells [11]. Currently, a clinical trial is planned to
investigate a beneficial effect of the senolytic drug Fisetin as an addition to the treatment
with bone marrow stem cells for osteoarthritis patients [12]. Facing cardiac regeneration,
the existence of endogenous stem cell populations in the adult murine heart was first
reported in 2003 [13], and multipotent human cardiac stem cells were described in 2007 [14].
A range of studies followed, describing other cardiac stem and progenitor cell populations
based on the expression of different stem cell markers [15–26]. Excellent overviews about
mammalian cardiac stem cell populations were published in 2018 and 2019 [27,28]. In
addition, Figure 1 focuses on the currently known stem and progenitor cell populations
that can be identified in the adult human heart. In detail, adult cardiac stem or progenitor
cells can be isolated from human heart tissue based on their capacity to grow on the single
cell level or the expression of the cell surface marker Sca-1 [22,29]. These cells were further
described by Smits and colleagues to express the mesenchymal stem cell marker CD105,
the endothelial cell marker CD31, as well as the stem cell marker Sca-1. The stem cell
marker c-Kit (CD117) was detectable only in a minor fraction of cells. On a functional
level, these cardiac progenitor cells successfully differentiated into spontaneously beating
cardiomyocytes [22]. In 2012, Chimenti and colleagues provided a detailed protocol for the
isolation and expansion of so-called cardiosphere-derived cells (CDCs), a human cardiac
stem and progenitor population expressing c-kit with the potential to give rise to cells
from the cardiogenic and vasculogenic lineages [30]. Cardiospheres (CSs) and CDCs were
further described by Barile and coworkers with an extended marker profile showing mark-
ers from the mesenchymal lineage as well as markers for perivascular cells [23]. Another
strategy for the isolation of human cardiac stem cells is based on the activity of aldehyde
dehydrogenase (ALDH). ALDH+ cells express a wide range of pluripotency-associated
genes, such as Oct-4, Nanog, c-Myc, Klf-4 and lin-28, likewise showing a robust capacity to
differentiate into cardiomyocytes [24] (Figure 1).
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Figure 1. Overview about previously isolated and expanded cardiac stem and progenitor populations
from the adult human heart. Marker profiles as well as differentiation capacities are depicted. See
Refs. [14,22–26,29,30].
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The composition of marker proteins indicating bona fide cardiac stem cells has been
widely discussed. While the first reports about the identification of adult cardiac stem
cells focused on c-kit-positive (c-kit+) cells [14], other reports challenged the existence of
adult cardiac stem cells in general, claiming that c-kit+ cells do not induce cardiac repair
in a sufficient manner. For example, lineage tracing using c-kit+/Cre mice revealed that
endogenous c-kit+ cells indeed give rise to new cardiomyocytes, however, at a low level
of approximately 0.003 percent [31]. This experimental approach was challed into ques-
tion later, showing that the used c-kit+/Cre system does not reliably track a Lin−c-kitlow

cardiac stem cell population [32]. Moreover, it has been shown that the knock-in of the
Cre recombinase to the c-kit locus generates c-kit haploinsufficient mice with an impaired
endogenous cardiac repair after injury compared to c-kit diploid mice [33]. However,
more detailed experiments showed that additional depletion of CD45+ cells resulted in
a c-kit+CD45− subpopulation that is capable of supporting functional myocardial regen-
eration in a mouse model of myocardial injury [34]. However, despite the existence of
endogenous adult cardiac stem cell populations, the regenerative capacities of the aging
human heart are limited [35]. Interestingly, proliferating cardiomyocytes can be detected
in the fetal heart [36], in contrast to a generally low proliferation rate in the adult heart
with a yearly turnover of 0.5 to 1% [37,38]. Thus, the in vivo contribution of resident stem
and progenitor cell populations to cardiac repair is unclear and much discussed [39,40].
Notably, attempts to apply other non-cardiac stem cell populations were only partially
successful, and the mode of action of these transplanted stem cell populations in heart
regeneration remained elusive. For instance, contradictory results were reported regarding
the amount of repaired myocardium with differentiating transplanted cells [41,42]. The
intracoronary application of autologous bone marrow-derived mononuclear cells was first
recognized as a highly promising strategy, but the initial clinical results were difficult
to reproduce [43,44]. In addition, the inflammatory microenvironment at the infarct site
was considered to inhibit successful stem cell engraftment [45]. Currently, the majority of
actively recruiting clinical trials using adult stem or progenitor cells for myocardial repair
focus on allogenic umbilical cord-derived stem cells [46–49]. Later, the field of research for
stem cell-based tissue replacements moved from autologous adult stem cells to pluripotent
embryonic or reprogrammed stem cells, which need to be differentiated in vitro to avoid
teratoma formation. Using modern tissue engineering techniques, induced pluripotent
stem cell (iPSC)-derived cardiomyocytes can be applied as patches to the injured my-
ocardium [50]. The BioVAT-HF trial is currently recruiting patients with reduced ejection
fraction for the implantation of engineered heart muscle [51]. The use of tissue patches
for the application of stem cells to the injured heart could avoid the previously reported
insufficient engraftment efficiency due to constant movement of the beating heart and a
following washing-out effect [52–54]. On the other hand, a new strategy to enhance the
regenerative activity of resident cardiac stem cell populations could be highly promising to
overcome transplantation-associated issues. Interestingly, a stimulatory effect of applied
exogenous stem cells to endogenous stem cells was discussed to explain the improved
cardiac function after stem cell therapy [55]. The theory of a paracrine mechanism of the
applied stem cells inducing remodeling processes and cardioprotection after myocardial
infarct (MI) was strengthened by preclinical experiments using cell-free supernatants from
cultured stem cells [56]. These observations led to a wide range of research investigating
the mode of action of this stem cell-mediated paracrine signaling by examining cytokines,
chemokines, exosomes and micro RNAs (miRNAs) [57]. Therefore, in order to address
heart protection and repair with new stem cell-based therapeutic strategies, it is necessary
to understand and target the underlying mechanisms of cardiac stem cell features such as
proliferation, migration and differentiation.

Interestingly, blood plasma or serum is known as a powerful additive to enhance
in vitro proliferation and survival of cellular model systems [58–61]. Moreover, the applica-
tion of young blood or its derivates to old mice has resulted in enhanced tissue protection
and regeneration of the aging organism [62–64]. However, much more research is needed
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to explain the relevant factors and signaling pathways underlying this effect and to de-
velop a possible translation of this approach to the human system. When studying young
blood-mediated rejuvenation of old tissues, a key interest lies in the identification of specific
factors such as hormones, cytokines, chemokines or miRNAs [65]. The approaches to iden-
tify rejuvenating agents carried by young blood are highly diverse, including proteomic,
metabolomic and transcriptomic methods. This review aims to summarize current knowl-
edge about the protective effect of young blood on various organs of the mammalian body,
including the heart. Next to prominent studies from the murine system, previously identi-
fied blood-borne factors and the corresponding signaling pathways will be reviewed along
with the respective methods of identification. Finally, the first clinical trials investigating
potential young blood-derived therapeutic perspectives will be summarized.

2. Parabiosis as Animal Model for Heterochronic Blood Exchange

Heterochronic parabiosis is an experimental technique where two mice of different
age are surgically joined to share their circulatory systems, leading to the administra-
tion of young blood and blood borne factors to an old animal and vice versa. Aging
research gained momentum in 2005, when heterochronic parabiosis experiments revealed
significantly elevated regeneration of age-associated defects in old mice [66]. In detail,
heterochronic parabiosis induced enhanced regeneration of muscle tissue after injury and
increased proliferation of hepatocytes in old animals [66]. In 2014, the Wyss-Coray group
studied age-associated alterations of hippocampal tissue and function in heterochronic
parabionts and described beneficial effects of young blood on molecular, structural, and
cognitive levels [64]. Further, Salpeter and colleagues detected increased proliferation of
pancreatic β-cells as a rejuvenating effect of young blood in heterochronic parabiosis [67].
On the molecular level, Yousefzadeh and colleagues measured a significantly decreased
transcription of senescence markers in multiple tissues of aged mice undergoing hete-
rochronic parabiosis [68]. In 2018, Zhang and coworkers investigated correlations between
iron metabolism and molecular markers of aging such as telomerase reverse transcrip-
tase (TERT) and telomere length. By comparing heterochronic parabionts with isochronic
parabionts, they detected a negative correlation of TERT in the liver, kidney and heart
upon heterochronic parabiosis [69]. Despite these promising results obtained by studying
heterochronic parabionts, critics repeatedly referred to the artificial characteristics of this
experimental system. Next to blood-borne cytokines or chemokines, old parabionts also
benefit from physiological factors such as blood pressure, which is significantly lower in
young animals, and improved blood oxygenation [62,70]. Moreover, the younger organs
of the young parabiont, such as lungs, liver and kidney, execute a much better removal
of damaging metabolites [70]. Finally, following the 3R principles, the application of
highly invasive techniques such as heterochronic parabiosis should be reduced to a mini-
mum. Thus, new models to study the effect of young blood and its components on aged
tissues are needed for an efficient translation to the human system. Here, the varying
effects of young blood on different tissues of old mice underline the necessity of breaking
down these complex interactions into modellable entities that can be manipulated in a
controlled manner.

3. Identification of Blood-Borne Anti-Aging and Pro-Aging Factors

Heterochronic parabiosis experiments produced promising results, showing the high
potential of young blood as treatment for age-associated malignancies. Following studies
focused on the identification of specific blood-borne factors with protective or even regen-
erative capacities that have also been reviewed with different focuses elsewhere [65,71].

Using multi-analyte profiling, a commercially available service for quantitative, mul-
tiplexed immunoassays for 69 analytes, Chiao and colleagues detected elevated levels of
matrix metalloproteinase 9 (MMP9) and monocyte chemotactic protein 1 (MCP1) in plasma
samples and in left ventricle tissue of aged mice [72]. The authors thus concluded that
MMP9 and MCP1 could serve as biomarkers for cardiac aging [72]. Recently, a clinical



Int. J. Mol. Sci. 2022, 23, 9626 5 of 21

study demonstrated elevated MMP9 concentrations in serum and saliva of patients with
cardiovascular disease [73]. Moreover, in MMP9 knockout mice, enhanced cardiac pro-
tection after ischemia-reperfusion-induced myocardial infarction was reported [74], while
MCP1 was proposed to play a major role in the onset of cardiovascular disease [75]. Extend-
ing these conclusions, later studies introduced MCP1 and MMP9 as general biomarkers
for systemic aging and not only for cardiac aging. For instance, an increased expression
of MMP9 mRNA was also found in the gingiva of old (>60 years) compared to young
(17–20 years) patients [76]. In addition, Yousefzadeh and coworkers utilized a Luminex
platform to measure the levels of 14 circulating peptides in murine serum samples, like-
wise identifying MCP1 to be increased with advancing age. This group further measured
elevated levels of human MCP1 in frail patients with severe aortic stenosis compared to
non-frail patients [77]. In addition, comparing MCP1 plasma levels in a population of
young and old non-metastatic breast cancer patients, Brouwers and colleagues detected a
correlation with age but not with frailty [78]. Global analysis of RNA showed that MCP1
mRNA was strongly upregulated in glioblastoma cells when treated with tumor necrosis
factor α (TNFα) in a sustained manner and at the highest level of all analyzed genes. MCP1
protein expression correlated exactly with mRNA expression [79]. Furthermore, MCP-1
induced the migration of adult neural stem cells out of neurospheres [80]. Interestingly,
Pinke and coworkers detected in vitro age differences by measuring MCP1 levels in cell
culture supernatants of monocytes isolated from either young or old human donors [81].
Here, ELISA assays showed increased production of MCP1 and other proinflammatory
cytokines by monocytes from old (60–85 years) compared to young (20–50 years) donors.
In the clinical setting, a depletion of MCP1 from the blood of prostate cancer patients
was studied using the anti-MCP1 antibody Carlumab [82]. Although the treatment was
well tolerated, no clinical improvements in the patients’ status could be achieved, and
importantly, a permanent decrease in MCP1 serum levels could not be confirmed [83,84].
In a phase II trial, the small molecule PF-04136309, as an inhibitor of the MCP1 receptor
chemokine (C-C motif) receptor 2 (CCR2), was applied to patients suffering from pancreatic
ductal adenocarcinoma [85]. Unfortunately, the treatment raised concerns about pulmonary
toxicity [86]. However, to the best of our knowledge, a potential protection against age-
associated degeneration by depletion of MCP1 from the blood of old individuals had not
been studied so far. Given the concerns raised by the clinical application of anti-MCP1
antibodies or inhibitors of the MCP1 receptor, the in vitro evaluation of new drugs should
first be considered.

Next to MCP1, the chemokine Eotaxin 1, also known as C-C motif chemokine 11
(CCL11), is described to increase with age. Performing standard antibody-based multiplex
immunoassays (Luminex) with plasma from heterochronic parabiotic mice, Villeda and
colleagues detected a negative correlation between increasing Eotaxin 1 plasma levels and
neurogenesis [63]. Notably, this group likewise measured Eotaxin 1 plasma levels in healthy
human donors and described a positive correlation as well between Eotaxin 1 concentration
and chronologic age [63]. However, here, a correlation coefficient of 0.4 suggested that
an increase in Eotaxin 1 plasma levels alone is not sufficient to fully explain the onset of
age-associated decrease in cognitive function. Further, these results from the human system
were reproduced by Hoefer and colleagues, measuring via multiplex ELISA the levels of
Eotaxin 1 in blood products obtained from transfusion donors. Here, fresh frozen plasma
(FFP) as well as erythrocyte concentrate (EC) showed an age-dependent increase in the
concentration of Eotaxin 1 [87]. A very recently published clinical trial measuring Eotaxin 1
plasma levels in healthy elderly and in people with preclinical Alzheimer’s Disease (AD)
could not detect significant changes between both groups [88]. In the heart, a potential
role of Eotaxin 1 in cardiovascular disease seems to be localized in the endothelial cells
of coronary arteries by increasing vascular permeability and activating p38-MAPK, Stat3
and NF-kappaB pathways [89,90], but to the best of our knowledge, a direct connection
between elevated Eotaxin 1 plasma levels and age-associated cardiovascular disease has
not been shown so far. Interestingly, patients treated with autologous multipotent small
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blood stem cells (SB cells) to treat severe bone defects prior to dental implantation showed
improvements of the bone defects despite increased Eotaxin 1 serum levels [91,92].

Another so-called pro-aging factor described in the literature is the small protein beta 2
microglobulin (β2M), which is present in nearly all cells and body-fluids. Increased plasma
levels of β2M could be detected in aging mice via antibody-based multiplex immunoassays,
while intravenous or intrahippocampal injection of β2M in young mice resulted in impaired
neurogenesis and cognitive function [93]. Moreover, the study of Smith and colleagues
revealed significantly increased levels of β2M in human cerebrospinal fluid (CSF) of highly
aged donors [93]. Further, a slight tendency of elevated levels of β2M could also be
detected in human plasma samples, although a correlation coefficient of r = 0.51 may
not be sufficient to support a direct translation of these results from the murine to the
human system. β2M has further been associated with frailty in elderly [94,95]. Likewise,
in patients with coronary artery disease, slightly increased β2M serum levels could be
detected, which also correlated with the severity of disease [96]. Similar results were
obtained before in radioimmunoassays (RIAs) comparing β2M serum levels in post- and
pre-menopausal women [97]. Very recently, Althubiti and colleagues described a positive
correlation between age and β2M protein level, measured via ELISA assays, in human blood
serum, which could also be associated with the status of oxidative stress in the respective
samples. However, a direct causality between β2M serum level and oxidative stress has
not been shown thus far [98]. Interestingly, single cell transcriptomic data suggest β2M
is secreted by cardiomyocytes, stimulating cardiac fibroblasts after ischemia-reperfusion
injury [99], possibly indicating a tissue-specific function of β2M.

Next to blood-borne factors increasing with age, other factors have been described
with decreased abundance in aged individuals, thereby also potentially contributing to the
onset of age-associated degeneration. One example is the growth differentiation factor 11
(GDF11), also known as bone morphogenetic protein 11 (BMP11). Loffredo and coworkers
analyzed the plasma proteome of heterochronic mice by aptamer-based microarrays and
described GDF11 to decline with age. Moreover, the authors achieved a significant reduc-
tion in the symptoms of age-associated cardiac hypertrophy by intraperitoneal injection of
GDF11 in old mice. In iPSC-derived human cardiomyocytes, GDF11 induced increased
phosphorylation of SMAD2 and SMAD3, activating the TGFβ pathway [62]. The same
group later reported that administration of GDF11 also was able to reverse age-related
skeletal muscle and stem cell dysfunction [100]. However, the classification of GDF11
as a potential rejuvenating factor was challenged by contradictory results presented by
Egerman and colleagues. Here, the researchers performed immunoassays and detected
increased levels of GDF11 dimers, the active form of GDF11, in sera of old rats and humans,
which was associated with inhibited skeletal muscle regeneration in rats [101]. According
to the authors, these contradictory results to the Loffredo-study may be explained with
non-specificity of the used GDF11 aptamers and anti-GDF11 antibodies, which exhibited a
cross reactivity with myostatin (GDF8) [101]. In a subsequent study, the Loffredo group
performed additional experiments demonstrating that GDF11 as well as GDF8 declined
with age in mice, rats, horses, and sheep. The authors further hypothesized that the in-
creased signal detected by Egerman and colleagues could be caused by cross-reactivity
of the GDF11 antibody with immunoglobulin, a highly abundant protein in blood that is
known to increase with age [102]. Addressing this controversy, Peng and colleagues very
recently developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-
based assay for the simultaneous measurement of circulating GDF8 and GDF11 in human
serum samples [103]. The published results of clinical samples from healthy men between
20–90 years showed no age-associated changes in GDF8 or GDF11 [103]. Comparing indi-
vidual human plasma samples derived from healthy young (< 20 years) and healthy old
(>60 years) donors via commercial ELISA assays, we detected only a slight decrease in the
plasma protein levels of GDF11 as well as Eotaxin 1, while MCP 1 remained unchanged [25].
However, in patients with ischemic heart disease, higher plasma levels of GDF11 have been
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associated with lower risk of cardiovascular events and death [104], indicating that GDF11
is more likely associated with cardiovascular risk than with aging.

A further factor which has been shown to be associated with age is the hormone
oxytocin. Although the function of oxytocin and its receptor in lactation, parturition and
social behavior is well studied, its anti-aging effects in terms of regeneration or protection
against degenerative agents remained unclear. Elabd and coworkers measured declining
oxytocin plasma levels in aging mice via enzyme immunoassays (EIA) together with
decreased protein expression of oxytocin receptor in satellite cells, but not in skeletal muscle
cells [105]. This decrease in oxytocin expression was accompanied by inhibited skeletal
muscle regeneration, which could be reversed by systemic delivery of oxytocin [105].
Moreover, oxytocin has been shown to induce the proliferation of activated mouse satellite
cells via MAPK/ERK signaling in vitro [105]. Interestingly, oxytocin has further been
shown to exert a protective effect with antiapoptotic and anti-inflammatory properties
on cardiomyocytes [106]. Further, in the developing rat heart, increased expression of
oxytocin and its receptor has been reported, but decreases postnatally to lower levels [107].
Moreover, oxytocin was also successfully applied in myocardial differentiation of adult
murine progenitor cells [20]. In the human system, declining plasma levels of oxytocin
in osteoporotic women compared to non-osteoporotic women were reported by Elabd
and colleagues applying enzyme immunoassays [108]. Likewise, a cross-sectional study
measuring oxytocin serum levels in 1097 postmenopausal women showed high oxytocin
serum levels to be associated with high bone mineral density [109]. However, more
research is needed to clearly confirm age-dependent plasma levels of oxytocin and to
describe its protective effects on different stem cell populations particularly in the human
system. Interestingly, a randomized controlled trial investigating the effects of intranasal
application of oxytocin on psychological well-being of residentially housed older adults
revealed no effects on the cardiovascular state as a side measurement [110].

Another hormone declining with age in humans and mice is apelin. Apelin is produced
by myofibers, and its production is stimulated by exercise-associated muscle contraction,
but decreasing apelin synthesis in the skeletal muscle as well as decreasing levels in plasma
could be measured during aging in mice and humans [111]. Further, a reduced expression
of the apelin receptor was detected in muscle stem cells of old mice [111]. Likewise, apelin
supplementation resulted in restored skeletal muscle function with enhanced biogenesis
of mitochondria [111]. Apelin infusion further resulted in a reduction of age-associated
cardiac hypertrophy in mice and a reduction of senescence markers [112]. In the clinical
setting, interesting findings were achieved by the application of autologous bone marrow
mononuclear cells (BMMCs) to patients with severe heart failure secondary to myocardial
infarction. Here, generally lower serum levels of apelin were measured in all patients
compared to healthy subjects. After transplantation of BMMCs, a significant increase
in apelin accompanied by improvements in cardiac function was detected compared to
patients receiving standard medical treatments [113]. The researchers thus speculated that
apelin may act as a paracrine factor enhancing cardiac repair.

The Wyss-Coray group administered human umbilical cord blood plasma to aging
mice, detecting enhanced synaptic plasticity that led to improved cognitive function. Fur-
ther protein microarray-based comparisons of human umbilical cord plasma with plasma of
young and old adult donors showed significantly enriched amounts of the tissue inhibitor
of metalloproteinase 2 (TIMP2) in umbilical cord plasma. Moreover, depletion of TIMP2
from cord blood plasma in following experiments revealed a connection between TIMP2
abundance and the neuroprotective effects of cord blood plasma [114]. The Castellano
study focused on hippocampal aging, but TIMP2 deficiency has also been shown to in-
hibit cardiac remodeling processes after myocardial infarction in mice via inhibition of
membrane type 1 matrix metalloproteinase (MT1-MMP) [115]. TIMP2 has further been
proposed to be involved in homing mechanisms of mesenchymal stem cells [116]. In con-
trast, elevated plasma levels of TIMP1, TIMP2 and TIMP4 have been associated with higher
risk for major adverse cardiac events after acute myocardial injury in a clinical cohort of
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1313 patients [117]. More research is necessary to clarify the role of TIMP2 in cardiac and
neural protection.

Another circulating factor that has been shown to decline with age in humans, rhesus
monkeys and mice is the bone-derived hormone osteocalcin (OCN) [118–120]. Mera and
coworkers detected significantly decreasing OCN plasma levels with increasing age in
male and female mice via ELISA assays. Interestingly, a study by Khrimian and colleagues
linked the decrease in OCN plasma levels to a decrease in cognitive functions and showed
that OCN depletion in plasma samples from young mice partially reverses the beneficial
effects on cognitive function when applied to old mice, while systemic administration of
OCN improved the cognitive abilities of old mice [118]. In the human system, declining
OCN serum levels were linked to left ventricular systolic dysfunction in men but not in
women, might suggesting a sex-specific effect of OCN [121].

Using tandem mass spectrometry, Yang and colleagues detected declining plasma
levels of cadherin-13 in aged mice, while intraperitoneal injection of cadherin-13 delayed
age-associated bone loss [122]. This effect was explained by the capacity of cadherin-13 to in-
hibit the differentiation of bone marrow-derived macrophages to osteoclasts [122]. Figure 2
provides a graphical overview about the rejuvenating or pro-aging factors discussed herein.
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and impact on various age-associated malignancies. (A) Factors enriched in blood samples from
young individuals but declining with age. (B) Factors with low abundancy in young individuals but
with increasing levels with age.

Although most research to identify potential blood-borne factors influencing aging is
focused on proteomic approaches, the lipidome and the metabolome were also considered
to be involved. However, to the best of our knowledge, a contribution of either the lipidome
or the metabolome to the onset of age-associated degeneration has not been shown thus far.
As one example, Loffredo and coworkers performed metabolomic and lipidomic profiling
of plasma samples from heterochronic parabionts using LC-MS/MS analysis. However,
this method did not reveal significant differences between heterochronic compared to
isochronic parabiotic mice [62]. In addition, Yousef and colleagues removed the metabolites
from blood plasma from aged mice by dialysis before administration to young mice while
still observing reduced neural progenitor activity in the hippocampi. The researchers
thus suggested that proteins, and not metabolites or small molecules, would be the active
circulatory signal inducing age-related degenerations in the brain [123].
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Despite the promising identification of diverse potentially protective or even reju-
venating components in young blood plasma (Table 1), most of the effects seen in the
animal system have not been tested in the human system so far. To overcome this transi-
tional gap and to understand the effects of young human blood components at a cellular
and molecular level, suitable model systems are needed. Using iPSC-derived specialized
cell types, multicellular organotypic models can be established, such as organ-on-a-chip
systems, which are increasingly acknowledged in drug testing with a special focus on
cardiotoxicity [124]. However, a main limitation of iPSC-derived model systems is the
low grade of maturity compared to primary adult heart tissue [124,125]. In contrast, pri-
mary adult human stem cells are crucial actors in tissue homeostasis and regeneration and
should be considered as promising cellular model systems for the investigation of blood
plasma-mediated effects in the human system.

In vitro experiments performed by Walenda and coworkers showed that serum taken
from patients after high dose chemotherapy significantly increased the proliferation of
CD34+ hematopoietic stem and progenitor cells (HSPCs). Interestingly, using LC/MS and
GC/MS, the researchers could detect changes in the metabolomic profile of serum samples
before and after chemotherapy, but these metabolites seemed not to be the active compo-
nents inducing HSPC proliferation [126]. However, via microarray analysis, this model
revealed changes in the abundance of 23 miRNAs in serum samples after chemotherapy,
which led to the identification of miRNA-320c as a potentially active factor in the induction
of serum-mediated HSPC proliferation [126]. Along with miRNAs as potential mediators
of serum-induced effects, exosomes are discussed as carriers for anti-aging or pro-aging
factors in the blood. In recent years, numerous studies have investigated the potential of ex-
osomes derived from young plasma or from stem cell culture supernatants in regenerative
medicine [127,128]. In murine model systems of myocardial infarct, the intramyocardial
or intravenous injection of stem cell-derived exosomes resulted in significantly improved
cardiac repair [129,130]. Furthermore, in vitro assays were developed to investigate the
underlying mechanisms of the beneficial effects of exosomes on tissue repair. For instance,
Xu and colleagues applied mesenchymal stem cell-derived exosomes to cultured neonatal
rat cardiomyocytes and reported significantly reduced apoptosis after hypoxic injury [131].
Further, Bobis-Wozowicz and coworkers showed that iPSC-derived exosomes are able
to induce proliferation and enhance the cardiac and endothelial differentiation potential
of human heart-derived mesenchymal stromal cells [132]. Lee and colleagues recently
demonstrated that exosomes isolated from serum samples of young mice significantly
improved pathological markers of Huntington’s disease (HD) in an in vitro cellular model
of HD [133].

As the most abundant protein in blood serum, human serum albumin (HSA) exerts
multiple functions in the colloidal osmotic pressure of blood and binding and transport of
ions, toxins, or cytokines [134,135]. In addition, serum albumin has been shown to have
antioxidative properties [136]. Interestingly, a slight decrease in the level of serum HSA
during aging was suggested [137,138]. In the cardiovascular system, a meta-analysis by
Wang and colleagues revealed an association between low levels of HSA with an increased
risk of atrial fibrillation [139]. In the nervous system, Costa and Páez comprehensively
summed up current knowledge about the use of plasma exchange with albumin replace-
ment as a treatment for AD patients [140]. Likewise, we very recently described significant
protection against oxidative stress in mouse hippocampal slice cultures as well as in adult
human stem cell-derived human neurons [141] after application of HSA.

These data demonstrate the great potential of in vitro models using human stem cells
to test the effects of blood plasma or its single components. Moreover, omics approaches
are widely used to collect data helping to identify active factors. Likewise, in previous stud-
ies, we examined proliferation, senescence and migration of human blood serum-treated
adult human cardiac stem cells (hCSCs) [25,142]. Although we could detect significantly
increased proliferation and migration next to significantly decreased senescence in com-
parison to untreated cells, a direct conclusion about the underlying signaling pathways
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could not be drawn using these assays. Here, the bioinformatic analysis of the global tran-
scriptome of serum-treated hCSCs revealed potential molecular pathways to be affected
by serum treatment. Subsequent inhibitor assays revealed p38-MAPK to be involved in
the cellular response of hCSCs to human serum [25,142]. Further, using a microfluidic
cultivation chamber, we performed migration analysis of human cardiac stem cells on the
single cell level, revealing a signaling cascade via p38-MAPK and phosphorylated heat
shock protein 27 (phosphoHSP27) in response to serum treatment [142].

The use of single cell analysis combined with omics technologies to understand
the regenerative response of human (stem) cell populations further seems promising
regarding the highly interconnected pathways affected by systemic interventions. Very
recently, a consortium around the Wyss-Coray group investigated the cell type-specific
effects of heterochronic parabiosis on gene expression at the single cell level [143]. Here,
especially adipose-derived mesenchymal stem cells and hematopoietic stem cells, as well
as hepatocytes seemed to be most responsive upon treatment with young or old blood,
respectively. However, when interpreting these results, the age-independent effect on
the surgical procedure of parabiosis itself must be considered. Interestingly, an overall
reduction in gene expression was reported for all cell types upon aging. In our own in vitro
studies, we likewise detected an overall reduction in differential gene expression of human
cardiac stem cells treated with blood serum of old human donors (age > 60 years) [25].
The highly complex results of the Pálovics study once more underline the necessity to
investigate organ- and cell type-specific effects of young blood and its derivates on the
aging human body. Especially in research regarding cardiac regeneration, the use of single
cell analysis seems to be extremely promising to evaluate the responses of the different
cardiac cell types to the stimulus of young blood serum.

Table 1. Summary of previously identified blood-borne anti-aging or pro-aging factors. ↓: factor is
decreased with age. ↑: factor is increased with age.

Factor/Pathway Effect References

CCL11 (Eotaxin 1)↑

Elevated plasma levels are associated with decline in neurogenesis and impaired
learning and memory;

increases vascular permeability and activates p38-MAPK, Stat3 and NF-kappaB
pathways in human coronary artery endothelial cells;

no significant differences in Eotaxin 1 plasma levels in healthy elderly and in
people with preclinical AD

[63,88–90]

β2M↑
Induces impaired neurogenesis and cognitive function in mice;

stimulation of cardiac fibroblasts after ischemia-reperfusion injury;
elevated plasma levels are associated with frailty

[63,93–95,99]

GDF11↓↑

Contradictory results:
reduction in the symptoms of age-associated cardiac hypertrophy in old mice,

increase in SMAD2- and SMAD3 phosphorylation in cardiomyocytes;
reversal of age-related skeletal muscle and stem cell dysfunction;

inhibition of skeletal muscle regeneration in rats

[62,100–102,104]

Oxytocin↓

Application of oxytocin leads to activated skeletal muscle regeneration,
proliferation of mouse satellite cells via MAPK/ERK, antiapoptotic and

anti-inflammatory effects on cardiomyocytes; supports myocardial differentiation
of adult murine cardiac progenitor cells;

high oxytocin serum levels were associated with high bone mineral density in
postmenopausal women

[20,105,106,109]

Apelin↓

Decreasing levels in plasma of aging mice and humans accompanied with reduced
expression of the apelin receptor in mice;

apelin supplementation resulted in restored skeletal muscle function with
enhanced biogenesis of mitochondria and reduction of age-associated cardiac

hypertrophy in mice;
generally lower serum levels of apelin were measured in patients with severe

heart failure secondary to MI compared to healthy subjects

[111–113]
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Table 1. Cont.

Factor/Pathway Effect References

Cadherin-13↓

Declining plasma levels in aged mice, while intraperitoneal injection of
cadherin-13 delays age-associated bone loss;

inhibition of the differentiation of bone marrow-derived macrophages to
osteoclasts

[122]

TIMP2↓

Application of TIMP2 leads to enhanced synaptic plasticity and improved
cognitive function in mice;

TIMP2 deficiency inhibits cardiac remodeling processes after myocardial
infarction in mice via inhibition of membrane type 1 matrix metalloproteinase;

involved in homing mechanisms of human mesenchymal stem cells;
elevated plasma levels of TIMP1, TIMP2 and TIMP4 have been associated with

higher risk for major adverse cardiac events after acute myocardial injury in
humans

[114–117]

Osteocalcin↓

Decrease in OCN plasma levels is linked to a decrease in cognitive functions;
systemic administration of OCN improves the cognitive abilities of old mice;

declining OCN serum levels were linked to left ventricular systolic dysfunction in
men

[118,119,121]

MMP9 ↑

Biomarker for cardiac aging;
knockout leads to enhanced cardiac protection after myocardial infarction in mice;

elevated MMP9 concentrations were measured in serum and saliva of patients
with cardiovascular disease;

increased expression of MMP9 mRNA in the gingiva of old (>60 years) compared
to young (17–20 years) patients

[72–74,76]

MCP1↑

Biomarker for cardiac aging;
proposed to play a major role in the onset of cardiovascular disease;

depletion of MCP1 from the blood using the anti-MCP1 antibody Carlumab did
not result in a permanent decrease in MCP1 serum levels

[72,75,77,82–84]

Serum albumin↓

Low serum albumin levels are associated with decreased antioxidative properties;
application of serum albumin leads to protection against oxidative stress in mouse

hippocampal slice cultures and in human neurons;
low serum albumin levels are associated with increased risk of atrial fibrillation

[136,139,141]

Exosomes

Mesenchymal stem cell-derived exosomes reduce apoptosis after hypoxic injury in
neonatal rat cardiomyocytes;

iPSC-derived exosomes induce proliferation and enhance the cardiac and
endothelial differentiation potential of human heart-derived mesenchymal stromal

cells;
exosomes from serum of young mice significantly improved pathological markers

of Huntington’s disease

[131–133]

P38-MAPK pathway Increased proliferation and migration of hCSCs [25,142]

4. Clinical Trials Assessing the Effects of Young Blood

Although the idea of young blood as a source of diverse beneficial factors that ame-
liorate the phenotypic manifestations of aging is tempting, a recent review by Hofmann
reminded us that a translation of these promising results from the murine to the human
system has so far not been successful (Hofmann 2018). Facing this challenge, the first
clinical trials were conducted investigating the effects of blood or plasma from young
donors administered to old participants. Interestingly, the majority of these trials focused
either on general safety and feasibility or on the improvement of the symptoms of neurode-
generative diseases. To the best of our knowledge, clinical studies assessing a protective
effect of young blood on the heart and cardiovascular system have not been published so
far (Table 2).

Edgren and colleagues performed a retrospective cohort study using data from the
Scandinavian Donations and Transfusions database assessing a potential association be-
tween donor age and sex and the recipient survival rates after red blood cell transfusion.
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Here, data of 968,264 patients did not show a connection between donor age and sex and
the survival rates of the recipients [144].

The Wyss-Coray group performed a phase I clinical study testing safety, tolerability,
and feasibility of FFP from young donors (age 18–30) infused into 18 patients with AD [145].
This study aimed to translate the promising results in mice to the human system and
showed the general safety and feasibility of the procedure. Moreover, a clinical study
with the blood plasma-derived product GRF6019, a plasma fraction of about 400 proteins,
is already finished, but peer-reviewed results are only available regarding safety and
tolerability [146], while detailed readout of the respective manifestations of AD within
these patients has not yet been published.

A comparable study applying young blood plasma of male donors between
18–25 years old to Parkinson’s disease (PD) patients was likewise conducted. Here, next to
safety measurements, laboratory makers of Parkinson’s disease as well as the progression of
cognitive, mood and motor impairments were monitored. Interestingly, secondary outcome
measures revealed slight but significant improvement in phonemic fluency, indicating that
young blood plasma could be a powerful additive to conventional therapies. Further,
blood levels of the inflammatory marker TNFα were elevated before treatment with young
blood plasma but decreased after 4 weeks post transfusion. However, young blood plasma
seemed to have no effect on the levels of other inflammatory markers such as interleukin 6
(IL6) [147]. Here, more independent data would be useful to evaluate the impact of young
human blood plasma on the inflammatory marker profile of elderly or diseased individuals.

Several clinical trials were announced regarding the measurement of age-associated
biological and physiological scores such as markers of frailty or biomarkers of inflammation,
oxidative stress or adverse hormone status. For instance, in 2017, a clinical study was
planned to investigate the effects of umbilical cord blood on recipients between 50–80 years
of age. Here, extensive measurements were planned to assess the level of frailty via
inflammatory biomarkers, adrenal cortical hormones, oxidative stress status, telomere
length and the extent of DNA damage [148]. However, the actual recruitment status is
unclear, and potential results have not been published yet. A similar trial was planned in
2015 to evaluate the clinical effects of fresh cord blood, frozen cord blood and frozen plasma
on recipients with a diagnosis of pre-frailty [149]. Likewise, the recruitment status of this
study is unknown. Another clinical trial to assess the safety and efficacy of human umbilical
cord blood plasma for age-related cognitive decline was announced in 2020. Here, next to
the safety of umbilical cord blood plasma for recipients between 65–85 years, secondary
outcome measures should investigate executive function and working memory. However,
the results are not accessible since the study is not yet recruiting [150]. Further, a clinical
trial that started very recently plans to address the use of plasmapheresis for treatment of
age-related frailty. Here, therapeutic plasma exchange is planned to be applied during a
plasmapheresis procedure. In addition, serum albumin is to be added to replenish albumin
levels in the recipients. In this study, patients between 50–95 years of age with clinical signs
of frailty will be included. As an outcome measure, the overall fitness and frailty of the
recipients is planned to be measured according to the CSHA Clinical Frailty Scale. The
study is planned to be completed in 2025, and the results may help to extend the current
knowledge about the role of serum albumin levels in age-associated degenerations [151].
Interestingly, we recently performed experiments investigating neuroprotective effects of
human blood serum and serum albumin in oxidatively stressed murine hippocampal slice
cultures. We could detect comparable effects of human serum and serum albumin alone,
indicating a proper serum albumin level to be crucial for the observed neuroprotective
action of human blood serum [141]. Another study was planned to investigate potential
beneficial effects of young blood plasma infusions from donors aged between 18–30 years
to patients with acute stroke [152]. However, also for this study, the recruitment status is
unknown and results are not available. The company Ambrosia announced a clinical trial
with 200 participants receiving infusions of young blood plasma from donors aged between
16–25 years [153]. The aim of this study was to measure a panel of diverse biomarkers
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such as blood cell counts, blood chemistry, the levels of immunoglobulins and a wide
range of chemokines and cytokines including β2M, Eotaxin 1, MCP1 and MMP9. While
data on the clinical outcome would be highly interesting to gain more insights on how
young blood plasma affects old individuals, again, the results of this trial have not been
posted. Of note, in 2019, the company temporary halted operations after the Food and
Drug Administration (FDA) released a statement expressing concerns about the lack of
clinical evidence for benefits and associated safety risks related to infusions with young
blood plasma for profit [154]. In summary, although encouraging results occasionally could
be reported in the clinical setting, more data from clinical trials are needed for a profound
answer to the question of whether a blood plasma-mediated regeneration of the aged
organism can be observed even in the human system.

Overall, most clinical research investigating the effects of young blood on the aging
system and age-related pathologies has been focused on neurodegenerative diseases. Bear-
ing in mind the previously mentioned preclinical research showing cardioprotective effects
of young blood and its components, a clinical investigation of these effects would be highly
interesting. In 2020, a trial was planned to study the safety and efficacy of allogeneic young
plasma infusion in geriatric patients with heart failure, but this trial was withdrawn before
its start [155]. To the best of our knowledge, more clinical trials investigating the effects of
young blood plasma or its derivates on cardiac repair have not been announced thus far.

Table 2. Summary of clinical trials.

Product Target/Measurements Outcome Reference/
ClinicalTrials.gov Identifier

Young plasma
(male, 18–30 years)

Safety of intravenously
administered young plasma for

patients with AD

Safety and feasibility of
infusions with young plasma
for people with AD have been

demonstrated

[145,156] NCT02256306

GRF6019, a
plasma-derived product

Safety, tolerability, and feasibility of
intravenous infusion in patients

with mild to moderate AD

GRF6019 is safe and well
tolerated; patients

experienced no cognitive
decline

[146,157] NCT03520998

Young plasma
(male, 18–25 years)

Safety of young plasma for patients
with Parkinson’s disease; laboratory

makers of PD; progression of
cognitive, mood and motor

impairments

Primary outcome: safety and
feasibility of infusions with

young plasma for people with
PD. Secondary outcome:

slight but significant
improvement in phonemic
fluency; decreased blood

levels of TNFα

[147,158] NCT02968433

Umbilical cord blood
plasma

Safety for intravascular
administration for patients between
50–80 years; physiological markers

of frailty or other age-related
biological measures

Recruitment status unknown;
No outcome published [148] NCT03229785

Umbilical cord blood
plasma

Umbilical cord blood plasma
infusion (50 mL) in elderly adults

(65–85 years) with age-related
cognitive decline

Assessment of: safety, executive
function, working memory

Not yet recruiting; No results
posted [150] NCT04566757
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Table 2. Cont.

Product Target/Measurements Outcome Reference/
ClinicalTrials.gov Identifier

Fresh umbilical cord
blood, frozen umbilical

cord blood, frozen
plasma

Fresh cord blood, frozen cord blood
and frozen plasma intravenously
administered to recipients (>55

years) with a diagnosis of pre-frailty
Assessment of: safety, cardiac

output, biomarkers for oxidative
stress, inflammation and immune

response, methylation,
mitochondrial DNA copy number,

growth factors, antioxidant capacity,
hormone status, DNA damage,

metabolite

Recruitment status unknown;
No results posted [149] NCT02418013

Plasmapheresis

Safety and feasibility of
plasmapheresis/therapeutic plasma
exchange with albumin in patients

with age-related frailty (50–95
years)

Enrolling by invitation; No
results posted (estimated
primary completion date:

April 2025)

[151] NCT05054894

Young blood plasma
(male, 18–30 years)
Old blood plasma

(male, 40–55 years)

Efficacy and safety of young plasma
for patients with acute stroke

Recruitment status unknown;
No results posted [152] NCT02913183

Young blood plasma
(16–25 years)

Infusion of young plasma in healthy
recipients older than 30 years.

Measurement of clinical biomarkers
of aging.

No results posted [153] NCT02803554

Plasma from young
donors

Safety and feasibility of plasma
infusions in geriatric patients (65–80

years) with heart failure with
preserved ejection fraction (HFpEF)

Withdrawn before start [155] NCT04241159

5. Conclusions

The use of young blood or young blood-derived factors was sufficient to rescue age-
associated degenerations in diverse organs, including the heart, in the murine body. Further
research regarding the identification of its active factors and the underlying molecular mech-
anisms may promote the design of new drugs for tissue-specific regeneration. Although
it would be tempting to slow down or even reverse the progression of age-associated
diseases in the human system, scientific evidence from clinical trials is very limited at the
moment. Especially with regards to cardiac repair, clinical studies are not available. The
lack of information about potential clinical benefits induced by the administration of young
plasma or its derivates partially represents the lack of knowledge about the underlying
mechanisms. To close this gap, more research is necessary to understand the underlying
effects of young blood and the affected molecular pathways in a cell type-specific man-
ner. In this case, in vitro cultures of adult human stem cell populations are a useful and
easy-to-manipulate setup to obtain cell type-specific data from the human system on a
molecular level. Moreover, not only individual factors but rather the interaction or the ratio
of different blood-derived factors should be investigated in vitro to elucidate the mode of
action on special stem and progenitor cell populations.
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