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Abstract: The aim of this research is to recommend a set of criteria for estimating the compressive
strength of concrete under marine environment with various saturation and salinity conditions.
Cylindrical specimens from three different design mixtures are used as concrete samples. The speci-
mens are subjected to different saturation levels (oven-dry, saturated-surface dry and three partially
dry conditions: 25%, 50% and 75%) on water and water–NaCl solutions. Three parameters (P- and
S-wave velocities and electrical resistivity) of concrete are measured using two NDT equipment in
the laboratory while two parameters (density and water-to-binder ratio) are obtained from the design
documents of the concrete cylinders. Three different machine learning methods, which include, artifi-
cial neural network (ANN), support vector machine (SVM) and Gaussian process regression (GPR),
are used to obtain multivariate prediction models for compressive strength from multiple parameters.
Based on the R-squared value, ANN results in the highest accuracy of estimation while GPR gives
the lowest root-mean-squared error (RMSE). Considering both the data analysis and practicality of
the method, the prediction model based on two NDE parameters (P-wave velocity measurement and
electrical resistivity) and one design parameter (water-to-binder ratio) is recommended for assessing
compressive strength under marine environment.

Keywords: data fusion; ultrasonic pulse velocity; electrical resistivity; marine environment; compressive
strength

1. Introduction

Concrete in buildings and civil infrastructure systems is employed to mainly resist
compressive stress in structural members under various external loadings. Consequently,
compressive strength of concrete, fc, is one of the most critical engineering parameters de-
scribing performance of concrete. In many general design codes [1,2], compressive strength
of concrete is used to estimate the other important engineering properties for strength and
deformability of concrete (e.g., tensile strength, shear strength, debonding strength and
elastic modulus of concrete). Compressive strength of concrete is a fundamental parameter
for elastic and plastic analyses of reinforced concrete structures for designing new struc-
tures and/or evaluation of structural integrity of old/exiting structures. Measurement of fc
is needed in the new construction sites to determine the timing of critical site works such
as reshoring, demolding and post-tensioning and to achieve quality control and quality
assurance (QA/QC) [3–5]. It is reported that fc has a good correlation with durability
indices (e.g., chloride permeability and coefficient of chloride diffusion) [6–8]. Therefore, it
is important to evaluate fc in structures to better understand the structural integrity and
durability of new and existing structures.

There are several measurements methods for evaluation of compressive strength of
concrete in the laboratory and the filed practices. First, compressive strength of concrete can

Materials 2022, 15, 1662. https://doi.org/10.3390/ma15051662 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15051662
https://doi.org/10.3390/ma15051662
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-2702-3432
https://orcid.org/0000-0002-7743-4881
https://orcid.org/0000-0001-7564-831X
https://doi.org/10.3390/ma15051662
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15051662?type=check_update&version=2


Materials 2022, 15, 1662 2 of 25

be typically assessed using a destructive method on regularly shaped concrete samples in
construction sites and/or core samples directly collected from various sections of concrete
members [3]. While this approach may provide precise data, it is time-consuming, costly
and may cause additional damage to the structure being investigated. Furthermore, to
achieve reliable results, many concrete cores will need to be obtained across the entire
concrete structure, which will significantly increase cost and effort and restrict the use
in field practice. For structural health monitoring of concrete infrastructures, several
nondestructive evaluation (NDE) techniques are now in use. One of the popular methods
used for NDE assessment is the measurement of ultrasonic pulse velocity (UPV) [1,2,9,10].
Measurement of UPV requires a simple process and the method is already standardized in
many countries. Estimation of concrete’s compressive strength has been done several times.
The study by Hong et al. [11] correlated the UPV with the compressive strength of concrete
according to the age. This way, compressive strength of concrete at early stage can be
estimated by UPV that may help QA/QC of concrete during construction. In the study of
Saint-Pierre et al. [12], UPV is used to designate concrete quality in old concrete structures.
Omer et al. [13] proposed a relationship between compressive strength of concrete and UPV
of ground granulated ballast furnace slag (GGBFS)-based geopolymer mortars that were
exposed to elevated temperatures. The study of Owaid et al. [14] correlated the UPV with
the strength of thermally activated alum sludge (AAS) multiple blended high-performance
concretes. Their study concluded that UPV values are affected by the pozzolanic materials
and the AAS. More recently, Presa et al. [15] studied the relationship between fc and UPV
in samples of mortars with 25% of pozzolanic content.

Until now, P-wave velocity calculations have been mostly used in the laboratory
and in the field practice to assess UPV of concrete and to estimate fc. However, P-wave
velocity of concrete is affected by many factors such as smoothness of contact surface
during test, temperature, moisture content, material and mix proportion and presence of
reinforcing steel or fiber [16,17] that is not directly correlated with compressive strength of
concrete values. It may not be enough to estimate the mechanical properties of concrete
as was shown in a previous study [18–20]. Recently, some researchers demonstrated
that the use of S-wave velocity can be used for estimating concrete properties because it
has a strong association with concrete mechanical properties, with less susceptibility to
other material and environmental impacts [21–23]. However, there are still practical and
theoretical limitations of using S-wave velocity measurements in the field practice. For
examples, generation of pure S-wave is a challenging task compared to the use of P-wave,
and compared to P-wave, experimental data on the S-wave velocity and compressive
strength is limited in the literature. In summary, it is not sufficient to solely use an UPV
parameter (P-wave or S-wave) for reliable and consistent prediction of compressive strength
of concrete under various environmental conditions.

Some researchers argued the importance of the use of multiple NDE parameters
that complement the use of UPV. Each individual nondestructive test (NDT) evaluates a
different set of parameters such as UPV for wave velocities [24–26], rebound hammer for
hardness [27–29], ground penetrating radar for relative permittivity [30,31] and electrical
resistivity (ER) measurements for electrical resistivity [32–34]. It has been demonstrated
that the use of combined parameters, using UPV as one of the parameters, is effective for a
more reliable evaluation or estimation of compressive strength of concrete [35–44]. These
studies paired UPV with other parameters such as weight of concrete [35,37], properties of
concrete aggregate [36,43], water-to-cement ratio, fly ash content, humidity, age and micro-
silica [38,41,43]. Some researchers combined UPV with other nondestructive test parameters
from electrical resistivity, ground penetrating radar [39] and rebound hammer [44].

There have been several data fusion methods that relate multiple sensor data to esti-
mate compressive strength of concrete. Regression analysis is one of the common methods
that has been used for estimation of mechanical properties of concrete, specifically, its com-
pressive strength. For predicting associated tasks, regression techniques are the simplest
and most efficient; however, the performance of the regression analysis results is strongly
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dependent on a relationship between various parameters (independent parameters) and
compressive strength of concrete (dependent variable) that is predefined before the regres-
sion analysis. Therefore, it is necessary to establish consolidated knowledge background on
the variables of interest in regression techniques. Another method of data fusion is through
machine learning. Machine learning algorithms employ computational methods to “learn”
information directly from data rather than relying on a model based on a predetermined
equation. As the number of samples available for learning grows, the algorithms adjust
their performance. Examples of this methods are the artificial neural network (ANN),
support vector machines (SVM) and Gaussian process regression (GPR). Most studies that
use regression analysis for prediction of compressive strength of concrete compare the
results with ANN analysis [35,36,38,39,41,42,45]. Other studies have also used ANN in
improving the measurement accuracy of some equipment like flowmeter in measuring gas
volumetric percentage [46,47]. Some studies on prediction of concrete compressive strength
have used SVM in regression [48–54]. SVM is a supervised learning technique for solving
classification and regression problems with data. An SVM training algorithm creates a
model that assigns new examples to one of two categories using a set of training patterns
that are each labeled as belonging to one of two categories. In addition, the nonparametric,
Bayesian approach to regression known as GPR is making waves in the field of machine
learning. GPR has many advantages, including the ability to work with small datasets and
provide uncertainty measurements on forecasts. Because GPR is nonparametric (i.e., not
constrained by a functional form), rather than computing the probability distribution of
parameters of a single function, GPR computes the probability distribution of all admissible
functions that fit the data. Few studies have already used GPR in estimating properties of
concrete [55–60]. Table 1 summarizes the principles, advantages and limitations of the four
data fusion methods used in the prior studies.

While data fusion has been widely used in estimating the properties of concrete,
it is seldom that the effect of water saturation and other environmental factors, such as
presence of sodium chloride in concrete, are included in estimating the concrete compressive
strength. Concrete, a porous and heterogenous material, comprises several types of voids
(e.g., entrapped air voids, capillary voids, interface space in C-S-H and entrained air
bubbles) [61] that can be infiltrated by other materials like water and salt. Moreover,
with recent technologies in sourcing the raw materials for concrete batching, it is also
important to consider the effect of other recycled compositions of the materials. Some
recent studies [62,63] have investigated the effect of such materials in the performance
of concrete. Water in concrete pores has been found to have a significant impact on
concrete’s mechanical and durability properties [64]. It has been demonstrated that the
increasing moisture content (or water saturation level) decrease the compressive strength
of concrete [61,64–67]. Mechanical properties and durability of concrete are two distinct
factors that can describe the quality of concrete. Several studies have been made to relate the
durability and compressive strengths of concrete [68–74]. While durability and compressive
strength are two different characteristics of concrete, they share some of the indicators. In
this study, some durability factors were selected to estimate the compressive strength of
concrete such as moisture content and water-to-binder ratio.

The objective of this study is to estimate the compressive strength of concrete using
the combination of different NDT parameters, ultrasonic velocities (P- and S-waves) and
ER of concrete, and two physical parameters of concrete, density and water-to-binder ratio
of concrete. Experimental and data fusion materials and methodology of this study is
discussed in the succeeding section. The concrete specimens used in the experimental part
were commercially sourced from a batching plant and the details of material properties
are described in Section 2. The research would evaluate the optimum combination of these
five parameters to give a more reliable estimation of the compressive strength of concrete.
Finally, different data fusion will be compared to determine the optimum way of combining
the different parameters. For this study, MATLAB tools for neural network and regression
learner would be used for data fusion analysis. With the data and results from the present
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study, it is anticipated that estimation of compressive strength of concrete under various
environmental conditions will be improved.

Table 1. Summary of principles, advantages and limitations of popular data fusion methods in
prior studies.

Data Fusion Method Principles Advantage Limitations

Conventional
Method

1. Regression
Analysis

Conventional statistical
approach in
determining the
relationship between a
dependent variable and
independent
variable/s.

• Allows researchers to
look at relationships
between variables in an
overarching way and to
quantify the
relationship between
variables.

• Complex and involve
high level mathematics
that require a statistical
program to analyze
the data.

Machine
Learning
Method

2. Artificial Neural
Network (ANN)

Computing technique
designed to simulate
the human brain’s
method in
problem-solving.

• Information such is
stored on the entire
network, not on a
database.

• Disappearance of a few
pieces of information in
one place does not
prevent the network
from functioning.

• Require processors with
parallel processing
power, in accordance
with their structure. For
this reason, the
realization of the
equipment
is dependent.

3. Support Vector
Machine (SVM)

Classifies the data
using hyperplane
which acts like a
decision boundary
between
different classes.

• Has good
generalization
capabilities which
prevent it from
over-fitting, and it can
efficiently handle
non-linear data using
Kernel trick.

• Algorithmic complexity
and memory
requirements are
very high.

4. Gaussian Process
Regression (GPR)

Nonparametric,
Gaussian process
calculates the
probability distribution
over all admissible
functions that fit the
data set.

• Can compute empirical
confidence intervals
and decide based on
those if one should refit
the prediction in some
region of interest.

• Use the whole
samples/features
information to perform
the prediction so they
are computationally
expensive.

2. Materials and Methods
2.1. Experimental Studies
2.1.1. Sample Preparation and Water and NaCl Saturation

Sample cylinders, with 200 mm height and 100 mm diameter, were manufactured for
all the tests that were done for the study. Three concrete mixes were used, with different
water-to-binder ratios—MIX 1, MIX 2 and MIX 3. The properties and quantities of the
samples are presented in Table 2.

Saturation curves were developed to use as reference for the tests on saturated concrete
cylinders, both in water and water–NaCl solution. Five target saturation levels were
considered for this study—standard saturations (oven-dry and saturated-surface dry), 25%,
50% and 75%. The variables for this procedure were the proportion of the mix and the time
spent immersed in the water. Three examples from each design mix were utilized in this
approach, for a total of nine cylindrical specimens. After being cured in water for at least
150 days, the specimens were dried in an electronic oven (KST, Busan, South Korea) for at
least 72 h at a constant temperature of 105 ◦C. The specimens’ mass was measured thirty
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minutes after they were removed from the oven. The specimens were then placed in small
tanks in groups, and tap water was gently added to ensure that they remained submerged
in water after the initial water absorption of the concrete. For the first ten hours, the mass of
the specimens was recorded every 30 min. Excess water was wiped off the specimens with
a moist cloth when they were removed from the tanks. The cylinders were then returned
to the water for continuous immersion once the mass was recorded. Then, the mass was
continuously measured every 24 h until the tenth day of immersion time. Figure 1 shows
the saturation curves that were developed from this method. In this study, numerical
formula that describes the saturation of concrete cylinders with time was determined by
non-linear regression analysis of measured data based on a rational equation as follows,

SD =
∑3

i=1 ait(i−1)

∑2
i=1 bit(i−1)

(1)

where SD represents the estimated degree of saturation in a unit of % at time t after an oven-
dry concrete cylinder is immersed in water, ai and bi are constant coefficients of the rational
equation in Equation (1) and the subscript i is index of the constants. Table 3 summarizes the
constant coefficients values for MIX 1, 2 and 3 concrete cylinders determined by non-linear
regression analysis. Estimated saturation curves are presented as dash lines in Figure 1.
In this study, the approximate time to obtain concrete cylinders with the target saturation
degree (25%, 50%, 75% and 100%) was determined from the estimated saturation curves,
which are summarized in Table 4. In this study, it was confirmed that estimated saturation
curved for water saturation is still valid for estimating those for the NaCl saturation.

Table 2. Concrete mixture proportions of the concrete cylinders used in this study.

Mixture Proportion (kg/m3)

W C S G
SCMs CA W/B

(%) SV/AV

FA SC AE

MIX 1 170 99 884 931 33 198 1.98 51.52 0.490
MIX 2 170 110 858 923 37 220 2.57 35.43 0.495
MIX 3 160 312 725 876 63 250 6.88 25.60 0.456

Note—W: water, B: binder, SV: volume of sand, AV: volume of aggregates, W: water, C: Portland cement type I,
S: sand, G: gravel, SCMs: supplementary cementitious materials, FA: fly ash type II, SC: blast furnace slag cement
type II, CA: chemical admixtures and AE: high performance air-entraining agent.
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Table 3. Summary of constant coefficients for the estimated saturation curves determined by non-
linear regression analysis.

a1 a2 a3 b1 b2

MIX 1 9.985 × 10 4.312 × 104 1.617 × 102 5.509 × 102 6.767 × 103

MIX 2 9.987 × 10 2.245 × 104 5.738 × 10 3.719 × 102 4.788 × 103

MIX 3 9.900 × 10 2.356 × 104 1.314 × 102 3.575 × 102 4.902 × 103

Table 4. Summary of approximate time t for the target saturation degree of specimens (25%, 50%, 75%
and 100%) determined from the estimated saturation curves for the MIX 1, 2 and 3 concrete cylinders.

Time t (min)

25% 50% 75% 100%

MIX 1 5.6 20.4 111.2 14,400
MIX 2 8.7 40.7 271.9 14,400
MIX 3 8.1 33.4 208.8 14,400

During testing, the actual saturation was an estimate of the target saturation from
the reference curve. The actual readings in this study are extremely close to the target
saturation levels, demonstrating the procedure’s efficiency. After actual saturation of the
cylinders, nondestructive and uniaxial compressive tests were performed. The inclusion
of saturating concrete specimens with NaCl was studied to consider the effect of other
environmental factors in the properties of concrete.

2.1.2. Ultrasonic Pulse Velocity Measurement

A total of fifteen groups were assembled for this experiment. For each design mix, five
specimens were prepared for the measurement from each saturation level, giving a total of
75 specimens. The standard test procedure according to ASTM C 597/C597M-16 was used
to assess the P-wave velocity of concrete cylinders with five different saturation levels [75].
The study used a pair of transducers with about 50 kHz center frequency which can transmit
and receive ultrasonic pulses (see Figure 2). Using a pulser-receiver (Panametrics 5077 PR,
Tokyo, Japan), a 200 V square pulse with a duration of 10 µs was used to drive the source
transducer (Olympus, Tokyo, Japan). The receiving sensor recorded transient stress waves
that were created by the source sensor and propagated through the concrete. The received
signal was digitized by a high-speed digital oscilloscope (NI-PXI 5101, Austin, TX, USA)
with a total signal length of 0.001 s at a sampling rate of 10 MHz. The digitized data were
transferred to a laptop computer for data storage and post-processing. Figure 3a presents
the typical P-wave signals measured from the MIX 1 concrete cylinders used in this study
with five different water saturation conditions (0%, 25%, 50%, 75% and 100%). The P-wave
velocity of concrete, Vp, was determined by dividing the travel distance by the travel time
of the wave

VP =
d

(ta − td)
(2)

where d is the distance between transducers, ta is the time of first wave arrival and td is the
delay time, calculated during calibration of the probes. Delay time was determined when
time for the first arrival wave was registered when the two transducers were positioned
against each other. The first arrival time of the P-waves, ta, was determined by the modified
threshold method [18].

The S-wave velocity of concrete was measured using the P-wave velocity method
described in the previous section but using a different pair of transducers (40 kHz dry-point
shear wave transducer produced by Proceq, Schwerzenbach, Switzerland). The S-wave
transducer has a weight of 340 g with dimensions of 114 mm (length) by 84 mm (diameter),
which is portable. Its eight dry point shear wave sensor array does not require extra
coupling agent (such as a sticky and viscous coupling gel). This minimizes the influence



Materials 2022, 15, 1662 7 of 25

of coupling conditions between the concrete surface and the transducer. Moreover, the
shear wave sensors’ dry contact function substantially improves test speed while ensuring
accurate and consistent data gathering. Figure 3b shows the typical impulse signals
produced from the S-wave velocity measurement. The modified threshold technique was
used to calculate the initial arrival time of the S-wave, similar to the P-wave velocity
measurement method. However, precise detection of the first arrival time of the S-waves
is often difficult due to the interference between direct P- and S-waves. Low amplitude
P-wave components still appear in the time domain along with the S-wave components
even when using S-wave transducers. For the present study, the first arrival of the S-waves
was defined as the intersection of the fitting line to the first negative component of the
S-wave and the calculated zero signal level, shown as a red dashed line in Figure 3b. To be
clear, the initial low-amplitude signal was assumed to represent P-waves.
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2.1.3. Electrical Resistivity Measurement

Electrical resistivity (ER) of concrete was measured by a commercially available four-
point Wenner probe with an electrode spacing of 38 mm. Four electrodes are aligned
linearly at equidistant with each other (see Figure 4). The device follows the standard
specification for AASHTO Designation T358-15 (surface resistivity indication of concrete’s
ability to resist chloride ion penetration) [76]. Eight measurements were taken from each
cylinder as prescribed from the specifications. The device shows an output value in kΩ-cm,
which is the unit of measurement for apparent ER. Measurements were taken from five
saturation conditions (0%, 25%, 50%, 75% and 100%).
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Figure 4. Test setup of electrical resistivity measurements of concrete: (a) four-point Wenner probe
configuration, with an equal distance (=38 mm) between the electrodes, and (b) A-A section view of
the Wenner probe configuration in Figure 4a.

2.1.4. Measurement of Mechanical Properties

After measuring the three NDE parameters (P- and S-wave velocities and ER), the
compressive strength of the cylindrical specimens were measured using a 2000 kN universal
testing machine (UTM, KST, Busan, South Korea). The specimens were at the age of around
226 to 263 days at the time of testing. The compressive strengths were tested in accordance
with ASTM C39/C39M-20 [77] under displacement control. Uniaxial compressive testing
was carried out at an axial movement rate of 2 mm/min. A load cell with a capacity of
2000 kN was used to measure the compressive loads applied to the surface of concrete
cylinders, 1© in Figure 5. Two sets of extensometers were mounted to two fixed frames to
measure deformations, 2© in Figure 5. It has two aluminum rings with screws for fastening
the specimen, 3© and 4© in Figure 5. The screws from the top and bottom aluminum rings
have a 100 mm spacing between them, which serves as a gauge length (L0) to determine
axial strain from the evaluated deformations. A data acquisition device (DEWE43A, East
Greenwich, RI, USA) with a sampling frequency of 100 Hz was used to digitize the load
and deformation data obtained by the load cell and extensometers.
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2.2. Data Fusion
2.2.1. Pre-Processing of Data

Before combining different parameters for estimation purposes, it is important to
pre-process the data to be used for the different data fusion methods. Statistical analysis
was used to verify the experimental data to be used for the study. Coefficient of variation
was used to determine the variability of the NDT measurements as well as the compressive
strength of the concrete specimens. The Pearson correlation was also calculated to deter-
mine the strength of association between the different parameters and to the dependent
variable, compressive strength of concrete. Outliers were also determined to improve the
estimation analysis. When there is an outlier, the corresponding parameter for that outlier
data was also removed from the analysis. This is done so that there is a balanced amount
of data for all the parameters used in the analysis.

2.2.2. Multi-Variate Regression Analysis

A computer software (SPSS Statistics from IBM) was used for regression analysis
and the nonlinear regression analysis were considered for evaluation. In this software,
the nonlinear function model was defined by the user, and the coefficients and constant
were estimated by doing many iterations until the differences between the previous and
current estimates were minimal. Different functions were defined, depending on the
number of combinations used, with different initial estimates for the coefficients and
constants. The function defined is additive with each term characterized depending
on the relationship of the compressive strength with a particular parameter. Previous
studies have established that the relationship between wave velocities and compressive
strength is exponential [18,24,78–83] and linear logarithmic between ER and compressive
strength [32–34,84,85]. It is also well-known that there is linear relationship between density
and compressive strength and inversely proportionality between water-to-cement ratio
and compressive strength.

In general, the function that was defined in the program is presented below:

fc = (B1eA1S)− (B2eA2P) + B3D + B4ln(ER) +
(

B5

B6WB

)
− B7 (3)

where fc is the predicted compressive strength of the concrete, S is the S-wave velocity in
km/s, P is P-wave velocity in km/s, D is the density in g/cm3, ER is the electrical resistivity
in kΩcm and WB is the water-to-binder ratio. B1, B2, B3, B4, B5, B6, B7, A1 and A2 are
the coefficients and constants estimated by the software. Depending on the number of
parameters being combined, the number of the constants and the coefficients would change.
In the equation presented, all five parameters were considered. Finally, the effectivity of
the statistical method was compared to the results of the machine learning analysis.

2.2.3. Artificial Neural Network (ANN)

For artificial neural network (ANN) method, one of the Machine Learning Toolbox
from MATLAB software was used. The data set used for analysis was subdivided into three
groups: training set, validation set and test set. Each group had a corresponding number of
data that can be selected inside the toolbox. For the present study, the data distribution is
as follows: 70% of data set for training, 15% for validation and 15% for testing. The analysis
was done with one hidden layer selected for the ANN architecture as shown in Figure 6.
For simplicity of the computation cost, the default setup from MATLAB (one hidden layer
with eight neurons) was initially used for the analysis. After initial trainings and trials, one
hidden layer with ten neurons was eventually selected since additional neurons added to
the model do not significantly improve the performance of the model. Moreover, additional
layers make the process more expensive in terms of storage and time while fewer neurons
tend to underfit the experimental data. In implementing ANN, weights and biases are
used to link all the neurons in each layer. Modifying the weights adjusts the values of
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the neuron from the preceding layers, which is then compensated for by the bias. The
activation functions calculate the sum, which is then passed on to the next layer. This can
be represented by the following equation:

yi = f (net) = f
(
∑n

i=1wijxi + bj

)
(4)

where yi is the weighted sum in the ith neuron, xi is the input in the ith neuron, wij
is the weight between the ith and jth neurons, bj is the bias in jth neuron and f is the
activation function.
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Figure 6. Schematic diagram for the ANN architecture used in analysis: this specific architecture
considers the combination of five parameters for strength estimation.

2.2.4. Regression Learner (RL)

Another one of the machine learning applications from MATLAB software was used,
which is the regression learner (RL) method. For this study, only the models support
vector machine (SVM) and Gaussian process regression (GPR) were considered after initial
analysis with the other methods in MATLAB software. The general method used for
regression training is shown in Figure 7.
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Support vector machine (SVM) has been used widely for classification and recently,
also been used for regression [15–21]. This method of regression was first established
by Vladimir Vapnik [14]. In-depth discussion on how SVMs work has been discussed in
previous studies [47–52]. For a training dataset of N points of the form (x, y) where x is the
input vector, y is the target value and N is the size of the dataset acquired by the mapping
of x into a high-dimensional feature space:

f (x) = x′β + b (5)

The goal of the SVM is to make the function as flat as possible, i.e., to minimize the
structural risks in the model.

The nonparametric, Bayesian approach to regression known as Gaussian process re-
gression (GPR) is making waves in the field of machine learning. GPR has many advantages,
including the ability to work with small datasets and provide uncertainty measurements
on forecasts. Because GPR is nonparametric (i.e., not constrained by a functional form),
rather than computing the probability distribution of parameters of a single function, GPR
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computes the probability distribution of all admissible functions that fit the data. Few
studies have already used GPR in estimating properties of concrete [59–64]. Similar to SVM,
GPR are highly accurate but can be difficult to interpret.

3. Results and Discussion
3.1. Statistical Analysis of Experimental Data

It is important to analyze and verify the experimental data obtained from this study
before doing the data combination. When investigating the consistency and reliability of the
test methods used for this study, experimental variability was examined. For this research,
the coefficient of variation (COV) was calculated and used as a means for evaluating the
experimental variability of the NDT measurements as well as the compressive strength of
the concrete cylinders. Moreover, outliers were determined by the quartile method. The
summary of the statistical analysis is presented in Table 5.

The COV of the density ranges from 1.53% to 3.12% for concrete cylinders with
different mixture proportions and saturation levels. The water-to-binder ratio was not
included in the analysis as the data set was subdivided with respect to the different mix
proportions. The COV for P-wave velocity ranges from 4.76% to 6.39% and for S-wave
velocity, the range is from 1.43% to 2.17%. One outlier data was removed from the set
of S-wave velocity before analysis. These values show that the P-wave velocity are more
affected by the water saturation than the S-wave velocity, regardless of the type of liquid
they were saturated with. For electrical resistivity (ER), the values of COV are very large
because ER is greatly affected by the amount of water present in the concrete. The values
from the oven-dried concrete specimens were not recorded since the values exceeded the
capacity of the equipment. As for the compressive strength, the COV ranges from 11.55%
to 20.22%. This can be explained by the levels of saturation that the concrete cylinders were
exposed in. There were two outliers excluded from the analysis from this parameter.

Table 5. Summary of statistical analysis of the parameters.

D S P ER fc

Mix 1

N 50 50 50 40 50
µ 2089.94 1967.07 3665.97 49.17 28.01
σ 65.26 28.09 234.26 75.31 3.24

COV 3.12 1.43 6.39 153.16 11.55

Mix 2

N 50 50 50 40 50
µ 2266.98 2190.95 4268.88 46.60 47.80
σ 46.62 47.54 246.37 47.51 7.88

COV 2.06 2.17 5.77 101.96 16.48

Mix 3

N 50 49 50 40 48
µ 2341.04 2325.08 4581.52 43.94 74.61
σ 35.85 41.67 217.98 37.33 15.09

COV 1.53 1.79 4.76 84.96 20.22

Note—D: density (g/cm3), S: S-wave velocity (m/s), P: P-wave velocity (m/s), ER: electrical resistivity (kΩcm),
fc: compressive strength of concrete (MPa), N: number of samples, µ: average, σ: standard deviation and
COV: coefficient of variable.

Using the SPSS software from IBM, the different parameters were tested on their
correlation with each other, as well as to the dependent variable, fc. Table 6 shows the
Pearson correlation between the parameters. From the table, there is a strong positive
correlation between the compressive strength and the S-wave velocity, followed by the
density of the concrete. There is also a strong negative correlation between the compressive
strength and water-to-binder ratio. Although there are small correlations between the
other parameters and the compressive strength, the statistical analysis concluded that their
correlations are still significant based on the calculated p-values.
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Table 6. Pearson correlation between the variables.

WB S D P ER SD SAL fc

WB 1 −0.964 −0.899 −0.854 0.000 0 0 −0.859
S −0.964 1 0.86 0.8 0.073 −0.057 −0.007 0.874
D −0.899 0.86 1 0.919 −0.25 0.378 0.041 0.648
P −0.854 0.8 0.919 1 −0.308 0.386 −0.096 0.582

ER 0.000 0.073 −0.25 −0.308 1 −0.707 0 0.319
SD 0 0.378 −0.057 0.386 −0.707 1 0 0.022

SAL 0 0.041 −0.007 −0.096 0 0 1 −0.344
fc −0.859 0.874 0.648 0.582 0.319 −0.344 0.022 1

Note—WB: water-to-cement ratio, S: S-wave velocity, D: density, P: P-wave velocity, ER: electrical resistivity,
SD: degree of saturation, SAL: concentration of NaCl solution and fc: compressive strength of concrete.

Based on the calculated Pearson correlation coefficients, the most influential parameter
that can affect the compressive strength is the S-wave velocity and the water-to-binder ratio.
Analysis of this combination was also checked together with the electrical resistivity to
consider the saturation degree and effect of the presence of NaCl in the environment. The
combinations were chosen according to the correlation coefficients between parameters
and the target variable, which is the compressive strength, and the practicality and ease
of data collection, e.g., ease of use of NDT equipment. The combination of parameters
considered for this study is listed as follows:

1. All five parameters: P, S, ER, D, WB.
2. P, WB, ER.
3. S, WB, ER.
4. P, WB.
5. S, WB.
6. P, ER.
7. S, ER.
8. P, S.
9. P.
10. S.

3.2. Multi-Variate Regression Analysis

Figure 8 presents the correlation between actual and predicted compressive strength
of concrete, fc,test and fc,pred, respectively, using different combinations of the five parameters
(P-wave velocity, P; S-wave velocity, S; electrical resistivity, ER; density, D; water-to-binder
ratio, WB) from multivariate regression analysis. Table 7 summarizes the resulting non-
linear equations relating fc,test and fc,pred. For these equations, fc,pred is in MPa, P and S are
in km/s, ER is in kΩcm and D is in g/cm3. As can be seen from Figure 8 and Table 7, all
but two combinations of parameters gave acceptable values of coefficient of determination,
R2, ranging from 0.818 to 0.930 with the exception of using P-wave velocity alone, with R2

of 0.440, and P-wave velocity and electrical resistivity with R2 of 0.118. Using ER alone
was not included in the summary since from initial analysis, it gave an unacceptable of R2.
This can be explained by the results obtained when the concrete specimens were under the
oven-dried conditions and the high variability of the values across all saturation conditions.
Using the combination of P-wave velocity and ER gave the lowest R2 of 0.118 among the
10 combinations considered. This can be explained by the effect of water saturation in
both the P-wave velocity and ER values. On the other hand, using S-wave velocities alone
already gave an acceptable value of coefficient of determination equal to 0.838.

It can be observed from Figure 8 and Table 7 that using a single parameter to esti-
mate the compressive strength of concrete could still be improved by adding additional
parameter. In the present study, among all the nonlinear equations, the combinations of
the five parameters give the highest coefficient of determination equal to 0.93. Using only
the S-wave velocity and water-to-binder ratio for estimating the compressive strength,
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the R2 value calculated by the nonlinear analysis is equal to 0.844. For the combination
of P-wave velocity and water-to-binder ratio, the R2 value from the nonlinear analysis is
equal to 0.886. As discussed from Section 1, studies have shown that combination of two or
more parameters is better in estimating the compressive strength of concrete. Since several
factors can affect each NDT parameter, additional parameters that can complement the
other parameter would improve the performance of the regression model.
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Figure 8. Correlation between actual fc,test and predicted fc,pred using different combinations of the
five parameters from multivariate regression analysis: (a) only UPV parameters: P, S, or P and S,
(b) combination of UPV and one other parameter: P and WB, S and WB, P and ER, or S and ER,
(c) combination of UPV, ER and WB: P, ER and WB, or S, ER and WB and (d) five all parameters: P, S,
ER, D and WB. Note—S: S-wave velocity, P: P-wave velocity, ER: electric resistivity, D: density and
WB: water-to-binder ratio.

Table 7. Summary of nonlinear equations obtained from different parameter combinations.

Combination Equation R2

P, S, WB, ER, D
fc,pred =

(
6.459

(
10−7)e7.071S)− (

7.78
(
10−6)e3.033P)− 19.106D +

0.444 ln(ER) + 288.725
261.548WB + 48.187

0.930

P, WB, ER fc,pred =
(
−2.366

(
10−5)e2.846P)+ 0.569 ln ER− 414.979

959.115WB + 12.712 0.920

S, WB, ER fc,pred =
(
2.01

(
10−8)e8.577S)+ 0.681 ln ER− 208.149

282.163WB + 11.123 0.907

P, WB fc,pred =
(
−0.006e1.824P)− 410.421

391.294WB + 114.346 0.886

S, WB fc,pred =
(
3.354

(
10−7)e7.665S)− 131.526

84.586WB + 13.427 0.844

P, ER fc,pred =
(
1.4

(
10−8)e−5.5P)+ 0.860 ln ER + 43.953 0.118

S, ER fc,pred =
(
0.10e2.806S)+ 0.549 ln ER− 0.939 0.861
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Table 7. Cont.

Combination Equation R2

P, S fc,pred =
(
0.011e3.694S)− (

1.421
(
10−8)e−5.497P)+ 12.479 0.818

P fc,pred = 3.0876e0.6476P 0.440

S fc,pred = 0.1768e2.5728S 0.838

Note: D: density (g/cm3), S: S-wave velocity (km/s), P: P-wave velocity (km/s), ER: electrical resistivity (kΩcm)
and fc: predicted compressive strength of concrete (MPa).

While regression analysis is easy to interpret, it entails a background in statistical
training, and are frequently constrained by rigorous normality, variable independence,
one-pass approximation, linearity, dimensionality, among others. In addition, it includes
a lengthy and difficult computation and analytical technique since initial value must be
assumed for each parameter. Background on the relationships and/or correlations of
each estimator to the compressive strength must also be known to make the analysis and
iterations faster.

3.3. Machine Learnig Methods
3.3.1. Artificial Neural Network (ANN)

For this research, MATLAB was used with its integrated application of Neural Net
Fitting. Seventy percent of the experimental data were allotted for training and fifteen
percent each for validation and testing analysis. A few rounds of training were done with
different configurations to determine the optimal model that can predict the compressive
strength of concrete. The training algorithm used in this study is the Lavenberg–Marquardt
(LM) network since it requires less time but still requires more memory. The same sets of
combinations from the multi-variate regression were used for ANN analysis. ANN tool in
MATLAB do not analyze single parameter for data fusion. For this analysis, the coefficient
of determination was used as a criterion in determining the best combination of parameters
in estimating the compressive strength of concrete. Table 8 presents the values of coefficient
of determination, R2, of eight sets of combinations in compressive strength estimation.

Figure 9 presents the relationship between the actual or observed and predicted
compressive strength of the concrete, fc,test and fc,pred, respectively, based on ANN analysis
from the neural network fitting application in MATLAB. Predicted results from the toolbox
can be also stored after the analysis to compare with the actual values. Based on the R2

values, the best combination from ANN analysis is the combination of five parameters.
This is derived from ANN analysis with 10 hidden neurons. The ranking with respect to
the best combination of parameters is the same from the multi-variate regression analysis.
The R2 values from the different combinations are relatively close to each other. In this
case, based on ANN analysis, all the combinations are sufficient to estimate compressive
strength of concrete. Playing with different number of hidden layers of neurons, it was
observed that increasing or decreasing the number would not greatly affect the overall R2

value of the combinations. It is better to use lesser number of hidden neurons since large
number of neurons may result to overfitting the data. If that happens, it might mean that
the model did not learn the trend and thus will not be able to generalize to new available
data. While it is suggested to use fewer hidden layers for ANN, it is still best to be cautious
because too few might yield to an underfitting or bias model that would not be able to fit
new data as well.

As can be seen from Figure 10, the convergence of iterations became faster as the num-
ber of parameters combined increased. The values of mean squared error also decreased
when the number of parameters was improved. The discrepancies in prediction between
the validation and test data sets are also decreased, and the accuracy is greatly enhanced
even with the fact that the prediction accuracy for the test and validation data sets is high
due to concrete’s nonlinearity and to the restricted quantity of data.
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Table 8. Coefficient of determination values (R-squared values, R2) of training results from artificial
neural network (ANN) training for all experimental data.

Coefficient of Determination, R2

Combination Training Validation Test Overall

S, P, WB, ER, D 0.98 0.98 0.98 0.97
P, WB, ER 0.97 0.98 0.96 0.96
S, WB, ER 0.95 0.97 0.95 0.94

P, WB 0.94 0.98 0.96 0.93
S, WB 0.91 0.93 0.93 0.89
P, ER 0.77 0.92 0.84 0.75
S, ER 0.94 0.93 0.92 0.92
S, P 0.93 0.95 0.94 0.92
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Figure 9. Correlation between actual fc,test and predicted fc,pred using different combinations of the
five parameters from ANN analysis. (a) only UPV parameters: P, S, or P and S, (b) combination
of UPV and one other parameter: P and WB, S and WB, P and ER or S and ER, (c) combination of
UPV, ER and WB: P, ER and WB or S, ER and WB and (d) five all parameters: P, S, ER, D and WB.
Note—S is S-wave velocity, P is P-wave velocity, ER is electric resistivity, D is density and WB is
water-to-binder ratio.

From this analysis, although the combination of all five parameters gives the highest
coefficient of determination, other combinations tested are sufficient to estimate the
compressive strength of concrete. The practicality of gathering the parameters might be
one criterion to determine which is the optimum combination to use in the estimation.
Moreover, while ANN is considered more accurate than multi-variate regression analysis,
the relative importance of the various parameters is not provided by the ANN. ANN
also requires a large training data set to accurately predict a property. Moreover, the
neural network being considered as a “black box”, its approximation will not provide
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any insight into the shape of the function. There is no straightforward relationship
between the weights and the estimated function. Even determining which input feature
is irrelevant is a challenge.
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Figure 10. Sample parameter optimization using LM algorithm training: (a) 2 parameters,
(b) 3 parameters and (c) 5 parameters.

3.3.2. Regression Learner: Support Vector Method (SVM) and Gaussian Process
Regression (GPR)

Figures 11 and 12 present the correlation between actual and predicted compressive
strength of concrete, fc,test and fc,pred, respectively, using different combinations of the five
parameters from SVM and GPR in the regression learner application in MATLAB. The
correlation results from SVM and GPR are similar to those obtained from ANN in Figure 9.
Consistent with the results from multi-variate regression and ANN, it can be confirmed
that combination of two or more parameters can improve the accuracy of the predicted
compressive strength of concrete. As can be seen from Figures 11a and 12a, the arrangement
of data points (presented with ‘o’ marks in red) is quite sparse for the estimation using
only P-wave velocities indicating high variability of the estimated values compared to data
points of the combination of five parameters (represented by ‘o’ marks in blue) shown in
Figures 11d and 12d for SVM and GPR, respectively.

Table 9 summarizes coefficient of determination (R2) values from SVM and GPR for the
prediction of compressive strength of concrete using 10 different combinations of the five
input parameters (P, S, ER, D and WB). Kernels and predefined models used in this study
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are also presented in Table 9. The suggested SVM model types differ for each combination
being tested while GPR model types gave a consistent model type of exponential GPR.
The R2 values from both methods are almost similar. Both methods gave the highest R2 to
the combination of all five parameters while the lowest R2 came from using only P-wave
velocities. The R2 values from SVM and GPR were comparable to the values from ANN if
same input parameters are used.
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Figure 11. Correlation between actual fc,test and predicted fc,pred using different combinations of
the five parameters from support vector machine analysis. (a) only UPV parameters: P, S, or P and
S, (b) combination of UPV and one other parameter: P and WB, S and WB, P and ER or S and ER,
(c) combination of UPV, ER and WB: P, ER and WB or S, ER and WB and (d) five all parameters: P, S,
ER, D and WB. Note S is S-wave velocity, P is P-wave velocity, ER is electric resistivity, D is density
and WB is water-to-binder ratio.

Table 9. Coefficient of determination values (R-squared values, R2) of training results from regression
learner training.

Coefficient of Determination, R2

Combination
SVM GPR

R2 Kernel R2 Model

S, P, WB, ER, D 0.95 Quadratic 0.96 Exponential
P, WB, ER 0.94 Quadratic 0.94 Exponential
S, WB, ER 0.93 Quadratic 0.93 Exponential

P, WB 0.92 Medium Gaussian 0.92 Exponential
S, WB 0.85 Fine Gaussian 0.88 Exponential
P, ER 0.71 Fine Gaussian 0.70 Exponential
S, ER 0.86 Medium Gaussian 0.90 Exponential
S, P 0.88 Fine Gaussian 0.92 Exponential

P 0.35 Cubic 0.34 Exponential
S 0.84 Fine Gaussian 0.86 Exponential
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Figure 12. Correlation between actual fc,test and predicted fc,pred using different combinations of the
five parameters from Gaussian process regression analysis. (a) only UPV parameters: P, S, or P and
S, (b) combination of UPV and one other parameter: P and WB, S and WB, P and ER or S and ER,
(c) combination of UPV, ER and WB: P, ER and WB or S, ER and WB and (d) five all parameters: P, S,
ER, D and WB. Note S is S-wave velocity, P is P-wave velocity, ER is electric resistivity, D is density
and WB is water-to-binder ratio.

3.4. Comparison of Methods and Parameter Combinations

The effectivity in estimating the compressive strength of the concrete using different
methods were compared in terms of their R-squared. Table 10 presents the different R-
squared values from different methods. As already discussed, ANN does not evaluate
models with only one independent variable because ANN is for combination of two or
more parameters to estimate or predict a certain characteristic.

Table 10. R-squared comparison between the different methods used in the study.

R-Squared

Combination ANN SVM GPR Multi-Variate Regression

S, P, WB, ER, D 0.97 0.95 0.96 0.93
S, WB 0.89 0.83 0.85 0.84

S, WB, ER 0.94 0.93 0.93 0.91
P, WB 0.93 0.92 0.92 0.89

P, WB, ER 0.96 0.94 0.94 0.92
S - 0.84 0.86 0.84
P - 0.35 0.34 0.44

S, P 0.92 0.88 0.92 0.82
S, ER 0.92 0.86 0.90 0.86
P, ER 0.75 0.71 0.70 0.12
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The calculation of root mean square error (RMSE) is another way of comparing the
different methods used for this study. The coefficient of determination, R-squared, is
helpful when trying to rationalize what considerations might be driving the fundamental
process of interest for the dependent variable. RMSE, on the other hand, gives an indication
of how close the estimated values are to the actual observed data. This is useful in a range
of applications to comprehend the accuracy of the model’s predictions. Table 9 presents the
RMSE values of the different methods used for this study.

Based on the results of both the statistical criteria, R2 and RMSE, among the three
methods from machine learning used, GPR is the most promising giving the good values
for both R2 and RMSE. However, it should be noted that all four methods gave good values
of R2 and RMSE as shown in Tables 10 and 11. The discrepancies between the values are
not significant. In this case, more study is needed on the use of GPR since research on this
data fusion method is still limited.

Table 11. Comparison of RMSE between the different methods used in the study.

RMSE (MPa)

Combination ANN SVM GPR Multi-Variate Regression

S, P, WB, ER, D 4.988 4.971 4.292 5.879
S, WB 8.354 8.762 7.783 8.783

S, WB, ER 6.153 5.991 5.742 6.796
P, WB 9.476 6.476 6.163 7.522

P, WB, ER 5.493 5.485 5.305 6.4792
S - 9.146 8.462 9.769
P - 18.04 18.154 18.708

S, P 7.055 7.843 6.543 9.512
S, ER 6.745 8.2987 7.0455 8.293
P, ER 11.950 12.036 12.305 20.896

Using only the single parameter, S-wave velocity, gives good values for the statistical
criteria with values equal to 0.86 for coefficient of determination and 8.462 for RMSE.
However, estimating concrete’s compressive strength using S-wave velocity needs more
analysis and study since gathering of experimental and/or data is not easy and there is still
limited research on this topic. On the other hand, the use of only P-wave velocity did not
result in good values for the statistical criteria (R2 = 0.44 and RMSE = 18.04). This shows
that P-wave velocity is greatly affected by the saturation condition of concrete. Adding
another NDT parameter to both wave velocities may improve their performance. In this
case, electrical resistivity, which is a parameter that is also easy to measure, was combined
to the wave velocities. The results for both combination (P and ER, and S and ER) improved
but not significantly for S-wave velocity. In terms of coefficient of determination, addition
of ER to S-wave velocity improved its performance by only 6.98% but to P-wave velocity,
the improvement was 70.45% except when the conventional regression analysis. Adding
another property to the NDT parameters might improve the performance significantly. In
this study, water-to-binder ratio, which is a concrete property available through the design
documents, is added to the ultrasonic wave velocities. As can be seen from Tables 10 and 11,
the combinations of P- and S-wave velocities with both ER and WB significantly improved
the performance from the combinations of only the ultrasonic wave velocities and ER. It
can be observed this significant improvement especially for the P-wave velocity with more
than 100% increase in its performance.

Based solely on the data analysis and on the values of R2, the best combination to
estimate the compressive strength of concrete is the combination of all five parameters (P,
S, ER, D and WB). The first three components are NDE parameters that can be measured
in situ using the available NDT equipment while the last two components are generally
available from the design documents. Among the four regression methods used, ANN
gave the highest R-squared value equal to 0.97 while the use of GPR gave the lowest RMSE
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equal to 4.292. Figure 13 illustrates the comparison between the four methods using the
best combination of parameters. Figure 13 presents the relationship between the actual or
observed and predicted compressive strength of the concrete based on the combination of
five parameters from all regression methods used in the study.
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Figure 13. Correlation between measured and predicted compressive strength of concrete using the
combination of five parameters from four different machine learning methods.

The analysis from RMSE calculations and an additional statistical parameter (mean
absolute error or MAE from Table 12) gave a similar result as that of the coefficient of
determination. The combination of all five parameters has the smallest RMSE and MAE
among the different combinations tested from all methods of data fusion. One important
observation is among the combinations tested for data fusion, combinations with ER
parameter give the highest R-squared values and the lowest RMSEs and MAEs. This
observation is sufficient to say that for concrete elements that are exposed to different levels
of saturation and to the presence of chloride, ER together with other NDE parameters can
give a more accurate estimation of the compressive strength of concrete.

Table 12. Comparison of MAE between the different methods used in the study.

MAE (MPa)

Combination ANN SVM GPR Multi-Variate Regression

S, P, WB, ER, D 3.579 3.568 3.058 4.4005
S, WB 6.291 6.230 5.741 6.297

S, WB, ER 4.551 4.374 4.240 5.190
P, WB 7.073 4.963 4.698 5.849

P, WB, ER 3.929 3.975 3.918 5.161
S - 6.367 6.141 7.059
P - 12.337 13.072 12.756

S, P 5.235 5.638 4.447 6.918
S, ER 5.005 6.035 5.121 6.577
P, ER 9.414 8.419 9.081 17.215
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4. Conclusions

This study aims to propose a combination of parameters to estimate the compressive
strength of concrete exposed to different environmental conditions. The concrete samples
used were cylindrical specimens from three different design mixtures. The inclusion of
water-to-binder ratio was done to compensate for the different mixture proportions of the
concrete specimens used in this study while the electrical resistivity is for the consideration
of the presence of chloride in the water. Summarized below are two main findings from
this study.

1. Based on the R-squared values and RMSE done for the study, using only one NDT
parameter may not be sufficient to estimate the property of saturated concrete. More-
over, based on the same factors, the best combination of parameters in estimating
the compressive strength of concrete is the inclusion of all five estimators used in
this study—S-wave and P-wave velocities, electric resistant, density and water-to-
binder ratio.

2. From all methods, artificial neural network showed the highest accuracy in terms
of R-squared values while the Gaussian process regression gave the lowest value of
root-mean-squared error.

3. Though combination of all parameters for compressive strength estimation of concrete
gave the most accurate results, it is not always practical. From the point of view
of practicality along with the results of the data analysis, the combination of three
parameters—P-wave (or S-wave) velocity, electric resistivity and water-to-binder
ratio—are sufficient to estimate the compressive strength of concrete when it is ex-
posed to wet condition or marine environment. However, when choosing between
P-wave and S-wave velocity measurement, it is more practical to use P-wave as it is
easier to measure than the S-wave velocity.

4. This study also recommends to further investigate the potential use of S-wave velocity
in estimating concrete under a saturated condition. This recommendation is based
on the observations on the accuracy of using S-wave velocity, together with other
parameters, in terms of the R-squared and RMSE values.

5. In the end, using only one NDT parameter is not enough in estimating the compressive
strength of concrete under a saturated condition. Considering the practicality and ease
of NDT measurement, the combination of P-wave (or S-wave) velocity, water-to-binder
ratio and electrical resistivity might be good enough to estimate the compressive
strength of concrete exposed in different saturation environments.
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Abbreviations

AAS Activated alum sludge
ANN Artificial neural network
COV Coefficient of variation
fc Compressive strength
D Density
ER Electrical resistivity
GPR Gaussian process regression
GGBFS Ground granulated ballast furnace slag
LM Lavenberg-Marquardt
MAE Mean absolute error
MSE Mean squared error
NDE Nondestructive evaluation
NDT Nondestructive test
P P-wave velocity
QA Quality assurance
QC Quality control
RL Regression Learner
RMSE Root-mean-squared error
SVM Support vector machine
S S-wave velocity
UPV Ultrasonic pulse velocity
UTM Universal testing machine
WB Water-to-binder ratio
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