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Abstract: Since operating urban air quality stations is not only time consuming but also costly, and
because air pollutants can cause serious health problems, this paper presents the hourly prediction
of ten air pollutant concentrations (CO2, NH3, NO, NO2, NOx, O3, PM1, PM2.5, PM10 and PN10) in
a street canyon in Münster using an artificial neural network (ANN) approach. Special attention
was paid to comparing three predictor options representing the traffic volume: we included acoustic
sound measurements (sound), the total number of vehicles (traffic), and the hour of the day and
the day of the week (time) as input variables and then compared their prediction powers. The models
were trained, validated and tested to evaluate their performance. Results showed that the predictions
of the gaseous air pollutants NO, NO2, NOx, and O3 reveal very good agreement with observations,
whereas predictions for particle concentrations and NH3 were less successful, indicating that these
models can be improved. All three input variable options (sound, traffic and time) proved to be
suitable and showed distinct strengths for modelling various air pollutant concentrations.

Keywords: ANN; prediction; traffic; sound; acoustic; ozone; nitrogen oxides; ammonia; particulate
matter; deep learning

1. Introduction

The effect of air pollutant exposure on human health has been intensively studied; exposure
increases the risk of several diseases for both children and adults [1–3]. In particular, nitrogen oxides
(NOx) and particulate matter (PM) can cause significant long-term health effects such as respiratory
diseases, cardiovascular damage, and different types of cancer [3,4], whereas NOx and tropospheric
ozone (O3) may also have short-term effects on the respiratory system [4]. According to the United
States Environmental Protection Agency (USEPA), the pollutants NOx, tropospheric O3 and PM
are the main air components that define the air quality in a certain area [4,5]. Furthermore, NOx,
tropospheric O3, PM, CO2 and particle number concentration (PN) are highly important in terms
of climate change, leading the EU to commit to complying with the specified limit values for NO2,
O3, PM2.5 and PM10 [6]. Another pollutant, ammonia, is an atmospheric precursor for fine inorganic
aerosol formation, and it is toxic to the environment [7,8]. Recent studies have started investigating
whether NH3 is emitted from catalytic converters in cars [7,9], as NH3 may be emitted from three-way
catalytic converters (TWCs) in gasoline-powered cars. In diesel-powered cars, selective catalytic
reduction (SCR) uses urea in order to reduce NO emissions, but NH3 may still be emitted after thermal
decomposition and hydrolysis [9].

Motor traffic is not only the major source for NOx [10] and PM [11] in urban environments, but,
due to the noise it creates, traffic also increases people’s stress levels and, consequently, impacts their
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health [12–14]. Especially in street canyons, both the noise levels and the NO2 and PM10 concentrations
are high [15]. As an increased traffic density correlates with a high noise level [16], several studies
have shown that urban air pollutant concentrations can be well described by metrics of sound [17,18].
Alternatively, another proxy for the traffic density and, in turn, air pollutant concentrations, can be
achieved by combining the time of the day with the day of the week [19].

While sources of air pollutants beyond traffic, e.g., industry, are also important for certain cities,
the main drivers of local pollutant concentrations in the urban atmospheric boundary layer are
traffic emissions, background concentrations and meteorological conditions that control the transport
of pollutants [20]. Thus, these drivers should be considered as predictors in air pollution models.
Since environmental relationships are nonlinear and reasonably complex, this context is well suited
to artificial neural networks (ANNs) [18,21–23]. In particular, the modelling of urban NO2/NOx

concentrations [24] and PM/PN concentrations [18] using a Multilayer Perceptron (MLP) has shown
good prediction results. The basic idea of ANNs is to mimic processes that occur in the human brain.
They receive and process information and output results, whereby the network can restructure itself
during processing [25]. By recognizing certain patterns within input datasets, they can learn the best
way to predict the output [26].

This study presents the development and evaluation of ten ANN models for predicting urban
air pollutant concentrations (CO2, NH3, NO, NO2, NOx, O3, PM1, PM2.5, PM10 and PN10) using
meteorological data, background concentrations and certain predictors of traffic volume, namely sound,
traffic and time, as new input variables. We selected these particular novel input variables—acoustic
sound measurement data (sound), the total number of vehicles (traffic) and the hour and weekday
(time)—in order to identify a simple yet accurate method for prediction. This way, the model approach
was simplified by using freely accessible data as much as possible. The ANNs were trained, validated
and afterwards tested to evaluate their performance in a comprehensive statistical analysis. Overall,
this work represents a feasibility study that evaluates a fast and cost-effective approach for 1 h
mean value prediction of pollutant concentrations in order to predict precise urban air pollutant
concentrations at moderate costs and rather little computing effort; as such, it potentially offers a toolbox
for urban planners.

2. Materials and Methods

2.1. Site Description

All data were collected in the city of Münster, northwest Germany, from 30 August 2018 through
31 October 2018 (Figure 1). Most of the data were measured in an inner-city road canyon called
“Bült” (51◦57′49.2”N, 7◦37′52.3”E), where the street consists of two traffic lanes, one in each direction,
surrounded by buildings of three or four floors and a height of nine to twelve meters (aspect ratio:
0.56–0.75). As the street is used as an important east–west connection right in the city centre, it is
a busy street, with a daily traffic volume of over 33,000 vehicles, including coaches of 19 different
public bus routes. The bus stop is located 75 m to the NW from the measurement site. The speed limit
on Bült is 30 km h−1. Traffic jams occur often, especially during the rush hours. Due to a channelling
effect in the street canyon, the wind direction is almost exclusively either NW or SE. Data describing
the stability of the atmospheric boundary layer were collected at a permanent measurement station of
the University of Münster, located at Steinfurter Straße (51◦58′48.5”N, 7◦35′57.3”E), approximately
2.9 km to the NW of Bült. Background concentrations of the air pollutants were taken from the North
Rhine-Westphalian State Office for Nature, Environment, and Consumer Protection (LANUV) at their
Münster-Geist Background Station (MSGE) at Oberschlesier Straße 73 (51◦56′11.5”N 7◦36′41.5”E),
approximately 3 km to the south-southwest of the city centre. The measurement campaign was set up
on top of an overseas container at a height of 4 m above ground level (AGL).
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Figure 1. The location of Münster in Germany (left) and the three measurement stations within 

Münster (right). 

Figure 2 shows the setup of the measurement station on Bült. 

 

Figure 2. Setup on top of the container. A Class 1 microphone (1), air sample inlets for NH3, NOx, O3, 

and particles (2), a CO2-/H2O gas analyser (3), a sonic anemometer (4), a temperature and humidity 

sensor (5) and traffic cameras one in each direction (6). 

The container was positioned in a parking lot in front of Bült number 16, next to the street (Figure 

3). Bült is slightly curved from a WNW–ESE orientation to a NNW–SSE direction.  

  

Figure 1. The location of Münster in Germany (left) and the three measurement stations within Münster
(right).

Figure 2 shows the setup of the measurement station on Bült.
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Figure 2. Setup on top of the container. A Class 1 microphone (1), air sample inlets for NH3, NOx, O3,
and particles (2), a CO2-/H2O gas analyser (3), a sonic anemometer (4), a temperature and humidity
sensor (5) and traffic cameras one in each direction (6).

The container was positioned in a parking lot in front of Bült number 16, next to the street
(Figure 3). Bült is slightly curved from a WNW–ESE orientation to a NNW–SSE direction.
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Figure 3. The container hosting the measurement station on Bült in a parking space in front of number
16. The container is equipped with measuring instruments on top.

2.2. Data Measurement and Processing

2.2.1. Meteorological Data

The meteorological data were measured at the Bült station. For wind speed and wind direction,
a Gill R3-50 ultrasonic anemometer (4.40 m AGL) with a time resolution of 10 Hz was used. Temperature
and relative humidity were measured with a Campbell HC2-S3 air-temperature and humidity sensor
(3.54 m AGL) with a time resolution of 1 min. The meteorological data were averaged if at least 75% of
the hourly data were valid; this represents the currently requested percentage of the available data for
modelling [27]. LANUV also uses this standard as a quality criterion for processing the background
concentrations (see Section 2.2.3). At Münster Steinfurter Straße a Gill R3-50 ultrasonic anemometer
was operated with 10 Hz time resolution at 10 m AGL over a flat agriculture field. The software
package Eddy Pro 6.2.0 [28] was then employed to calculate the friction velocity u* and the stability
parameter ζ = z / L (z = height AGL, L = Monin–Obukhov length).

2.2.2. Pollutants

The concentrations of the trace gases CO2, NH3, NO, NO2 and O3, as well as four particle metrics,
i.e., particle mass concentrations PM1, PM2.5, PM10 and particle number concentration PN10, were
measured at Bült. To quantify CO2 concentrations, a LI-COR LI-7500 A open path CO2/H2O gas
analyser (4.34 m AGL) with a time resolution of 10 Hz was used; for NH3 concentrations, a Teledyne
M501E NH3 analyser (3.78 m AGL) measuring at 2 Hz was employed. The NO, NO2, NOx (NOx = NO
+ NO2) and O3 concentrations were determined with an EcoPhysics CLD 899 Y for NO, NO2, NOx

(4.04 m AGL) and an EcoPhysics CLD 88 for O3 (4.03 m AGL) at 10 Hz. EcoPhysics as well as Teledyne
NH3 instruments, which are both based on the principle of chemiluminescence [29], were calibrated
in the laboratory before the measurement campaign. Particle mass concentrations as well as particle
number concentrations were measured with a Dekati electric low-pressure impactor ELPI+ (3.96 m
AGL) and, hence, contain particle information in a range from 6 nm to 10 µm particle diameters. An
ELPI+ baseline calibration was done every two to three days after changing the impaction foils and
reinstalling the impactor.

2.2.3. Background Data

The LANUV operates background stations in many cities in North Rhine-Westphalia (NRW)
to obtain a picture of the urban background concentrations. As Münster is mostly surrounded by
agriculture, it is likely that the background reflects an agricultural rural environment. Background
concentrations for most of the measured pollutants were accessible from the Münster-Geist Background
Station (MSGE). The raw data consisted of 0.2 Hz data for NO, NO2, NOx, O3 and PM10 particle mass
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concentration. For quality control, all data with quality code (FC) > 7 were excluded, and a 1 h average
was calculated only if at least 75% of the hourly data were valid. This data quality/quality assurance
(QA/QC) procedure (see Section 2.2.1) was determined by the LANUV itself.

2.2.4. Acoustics

Traffic is a major source of noise pollution at Münster Bült [30]. Continuous data for physical
sound pressure were recorded with an NTI Sound Level Meter XL2 at 24 Bit [31] and using a Class
1 M2230 microphone with a sensitivity of 43.9 mV Pa−1 at 1 kHz. It was calibrated with a Class 1
Precision Calibrator 94/114 at a frequency of 1 kHz in dry conditions, on a daily basis for the first two
weeks and then every third day after good calibration values were confirmed. The maximum deviation
was at 0.1 dB for the entire period. For the analysis, the equivalent sound pressure level (LZeq) was
calculated. By doing so, the integral of unweighted sound levels over the frequencies between 5 Hz
and 20 kHz was calculated and temporarily averaged (1 h mean). Paas et al. (2016) found that LZeq
was a good acoustic representative for motor vehicle traffic. Thus, LZeq is considered a good predictor
for particle emissions within street canyons and, thus, was selected as an input parameter for ANNs.
The data processing followed recommendations of Paas et al. [18].

2.2.5. Traffic

As traffic is one of the major sources of urban pollutants [4,20], we used the total number of vehicles
as an alternative predictor for ANN processing. Two cameras (universe number plate cameras ANPR
Long Range 25 mm), one set for each traffic lane, captured information on the traffic volume. These
data were anonymously processed by the Federal Motor Transport Authority (KBA) and averaged
to 1 h. The required video surveillance in public spaces and the respective data handling had been
approved before the experimental period by the responsible data protection officer according to current
European Union legislation.

2.2.6. Time

In order to offer very simple input variables to the model, the parameter time was used as a third
alternative to train a model for predicting pollutant concentrations. Traffic intensity and more factors
that exert an influence on pollutant concentrations typically occur in a recurring temporal pattern [20].
Time of day and the day of the week have previously shown good prediction power [19]. Therefore,
information about the hour and whether it is a workday, Saturday or Sunday were included into
the input dataset instead of sound and traffic. The time of day and the day of the week can reflect
traffic behaviour and rush hours. The time always indicates the beginning of the respective hour, so
that “10” stands for the hour between 10 and 11 hrs CET.

2.2.7. Data Processing

All data that were used for the ANN were measured continuously and averaged to 1 h mean
values. In total, the time series included data from 1481 hours. First, a strict QA/QC procedure was
applied using R Studio [32]. All data were normalised to the range from 0 to 1 (Equation (1)) [18,20,33].

xnorm =
(xi − xmin)

(xmax − xmin)
, (1)

The normalised hourly average of parameter x (xnorm) was computed by subtracting the minimum
value (xmin) of the entire time series from the original value (xi) and subsequently dividing the results
by the difference between the highest (xmax) and the lowest value (xmin). This procedure yields
datasets that are unbiased by extremes and can therefore be directly processed with an ANN [20,24].
Normalisation was performed individually for each variable in each ANN model. For the statistical
performance analyses of the models, all values were transformed back to absolute values.
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2.3. Multilayer Perceptron

A Multilayer Perceptron (MLP) is a feedforward neural network organised in different layers
consisting of different neurons [25,34]. As MLPs showed good performance in predicting air pollutant
concentrations [20,21,26], we employed MLPs in this study to model concentrations of ten different
air pollutants in a street canyon: CO2, NH3, NO, NO2, NOx, O3, PM1, PM2.5, PM10 and PN10.
The information processing flow is not circular but moves in a forward direction (input layer→ hidden
layer→ output layer). The input layer is visible and provides all relevant signals from the external
environment. Then, the provided information is processed within one single hidden layer [34], which
enables the neural network to model nonlinear relationships between parameters and provides a better
generalisation than a single-layer perceptron. The output layer describes the response of the MLP to
the questions raised, in this case the prediction of pollutant concentrations [35,36]. All connections
between neurons are translated into specific connection weights which quantify the strengths of positive,
negative or neutral relationships between information. The greater the weights between the neurons,
the stronger their correlations and the stronger their effect on the output signal [25,34,37]. This allows
the model to identify and quantify associations between predictors and output variables [34].

The design of the model’s architecture is crucial in developing the best possible MLP.
The architecture is mostly defined by the number of neurons in the input layer, the number of
hidden layers, the number of neurons within the hidden layer, the weights between all neurons, and
by the transfer function. The type of this transfer function can widely differ from linear functions to
binary normally distributed functions to sigmoid functions. Typically, a sigmoid function is selected.
Sigmoid functions reduce the importance of extreme values within a dataset without removing these
values. In a logistic sigmoid transfer function, the value range is limited between 0 and 1; for a tangents
hyperbolic transfer function, the value range is between +1 and −1 [25,34,35,38]. Regarding the number
of hidden neurons, the ideal number is determined during the model structure development process
(see Section 2.3.3), whereas the optimum connection weights between neurons are identified during
the training process and by using a backpropagation algorithm. The backpropagation algorithm is
used for computational error minimisation for feedforward networks [20,25]. At the beginning of
the training, all weights are randomly set, and their errors are evaluated. Hereby, all error values
are squared and summed up. If the output results are sufficiently precise, the weights are kept as
they are. Otherwise, if the errors reach a certain threshold value, they need to be adjusted to reach
a better result. In this case, the error values are passed back into the opposite direction towards
the input layer. In accordance with the calculated error signal, the weights are gradually modified by
the gradient descent, first for the hidden layer and the output layer, and then for the input layer and
the hidden layer [20,25]. For neural networks that contain more than one hidden layer, the gradient
descent commences for the last hidden layer and the output. This process is repeated for the entire
training dataset until the output reaches an error minimum [25]. Further mathematical calculations
during the backpropagation process are described in Rojas, 1996 [39]. Figure 4 shows the architecture
of the MPL to predict O3 concentrations with the time of the day and day of the week (time) as
a predictor. The perceptron contains seven input variables in the input layer and two hidden neurones
and a hyperbolic tangent transfer function in the hidden layer to model O3 concentrations as the output
(see Section 2.3.3).



Int. J. Environ. Res. Public Health 2020, 17, 2025 7 of 22Int. J. Environ. Res. Public Health 2020, 17, x 7 of 22 

 

.

 

Figure 4. Architecture of the Multilayer Perceptron (MLP) to predict O3 concentrations. 

BC = background concentration. 

2.3.1. Input Variable Selection 

The input variable selection (IVS) is a fundamental step in ANN model development. The aim is 

to identify the most relevant variables out of the total number of variable candidates available [40,41]. 

Even though an input variable candidate might have a strong correlation with the output layer, its 

information can still have little prediction power if another input variable already supplies the same 

information. Thus, it is important to find the set of input variables with the fewest candidates needed 

to define the desired output properties. While too little information cannot sufficiently supply all 

necessary information to predict a good output, redundant and noisy information can lead to a more 

difficult, slower, and less effective training process with worse model prediction accuracy. Models with 

redundant variables show less generalisation capacity since the noise covers essential input-output 

correlations [41,42]. Thus, for adequate IVS, we chose the partial mutual information (PMI) method by 

Sharma (2000) [43], as this unbiased approach tests the significance of all potential variables and 

inherently eliminates redundancies [42,44,45]. Further information about the formula and calculation 

of PMI-based selection (PMIS) can be found in Fernando et al. 2008 [42]. 

Generally, urban air pollution is driven by the background concentrations, local emissions and 

their local dispersion [20]. It is important for the ANN that each of these drivers is represented by at 

least one input variable. The background concentrations are represented by the LANUV suburban 

background data. To ensure best fitting of background concentration for NO, NO2, NOx and O3 

modelling, another PMIS was separately run to identify the optimal background variables. Thus, no 

redundant information was included into the PMIS. The emission data are represented by three 

different variables, which were used alternatively and whose performances were tested and compared 

to each other; as such, LZeq, ntraffic, and the hour and day of the week were included into the ANN 

Figure 4. Architecture of the Multilayer Perceptron (MLP) to predict O3 concentrations.
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2.3.1. Input Variable Selection

The input variable selection (IVS) is a fundamental step in ANN model development. The aim is
to identify the most relevant variables out of the total number of variable candidates available [40,41].
Even though an input variable candidate might have a strong correlation with the output layer, its
information can still have little prediction power if another input variable already supplies the same
information. Thus, it is important to find the set of input variables with the fewest candidates needed
to define the desired output properties. While too little information cannot sufficiently supply all
necessary information to predict a good output, redundant and noisy information can lead to a more
difficult, slower, and less effective training process with worse model prediction accuracy. Models with
redundant variables show less generalisation capacity since the noise covers essential input-output
correlations [41,42]. Thus, for adequate IVS, we chose the partial mutual information (PMI) method
by Sharma (2000) [43], as this unbiased approach tests the significance of all potential variables and
inherently eliminates redundancies [42,44,45]. Further information about the formula and calculation
of PMI-based selection (PMIS) can be found in Fernando et al. 2008 [42].

Generally, urban air pollution is driven by the background concentrations, local emissions and
their local dispersion [20]. It is important for the ANN that each of these drivers is represented by at
least one input variable. The background concentrations are represented by the LANUV suburban
background data. To ensure best fitting of background concentration for NO, NO2, NOx and O3

modelling, another PMIS was separately run to identify the optimal background variables. Thus,
no redundant information was included into the PMIS. The emission data are represented by three
different variables, which were used alternatively and whose performances were tested and compared
to each other; as such, LZeq, ntraffic, and the hour and day of the week were included into the ANN
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model development. These parameters were used as direct predictors for traffic emissions without
previous PMIS testing. Motor traffic emissions are known as a major source for inner city pollutant
concentrations [15], and, even though factors such as industry, domestic fuel, and restaurants also have
an influence on the pollutant concentrations, we did not take them into account because measuring
these impacts is not considered effective yet is time consuming and inexact [20]. Regarding air
pollution dispersion and distribution, these are well accounted for in ANNs by meteorological data [20].
The meteorological variables air temperature (Ta), pressure (p), relative humidity (rH), wind speed
(WS), wind direction (WD), u*, and ζ were analysed within a PMIS calculation process. Precipitation is
also proven to have a strong impact on pollution dispersion, especially with regard to the wash-out
effect for particles [18,20]. However, precipitation was not included in ANN development as these
data were not available. All meteorological data as well as background concentrations and time as
a direct predictor are available on an area-wide basis and can be used at no additional costs.

In order to interpret the output of the PMIS analysis correctly, the Akaike information criterion
(AIC) was used, as it expresses the best trade-off between accuracy (model error) and the amount
of input variables in the input dataset (model size). The AIC automatically punishes overfitting
by excluding redundant information. Mathematical information about the AIC can be found in
May et al. 2008 [44] and Akaike 1974 [46]. To determine the final set of input variables, all candidates
up to a global AIC minimum should be included into the model development [41,44]. The resulting set
of input variables for each pollutant is described in Section 2.3.3.

2.3.2. SOM-Based Stratified Data Splitting

Data splitting is a key aspect during ANN development. In order to rule out overfitting, the dataset
for each pollutant is divided into three data subsets: a training Ttr, a validation Tv, and a test dataset
Tt [40,47,48]. The ANN needs to be robust to provide a good fit to the training set as well as a good
accuracy when calculating with unseen data. These two demands lead to a conflict and are referred to
as the Bias and Variance Dilemma [49]. Overtraining is avoided by the cross-validation technique [35].
This technique takes the majority of the data (70%) for training. Another 20% of the data is used to
evaluate the performance during the training. As soon as the performance reaches its best result at
a minimum error, the training improvement is stopped [50]. The test data (10%) are used to examine
the model performance with previously unseen data [47]. To ensure that the whole variety of data
points is represented and the statistical properties are alike in each data subset, all datasets are split
by the self-organizing map (SOM) method [51]. This is an unsupervised learning technique with no
clearly defined output. Within this method, all data are organised in weighted clusters of the same
properties [25]. Similar elements are moved closer together, dissimilar ones further away from each
other [34]. Afterwards, the data within each cluster are randomly allocated to the subsets, so that each
cluster is represented in each of the subsets. Thus, all samples from each cluster are selected with
the same probability. This is a so-called SOM-based stratified random data splitting (SBSS) [40]. Not
only the sample allocation but also the size of the SOM is an essential setting to minimise the bias and
variance within the datasets. Hereby, the SOM grid size (SOMgs) is calculated by the sample size (Sn),
where the SOMgs equals Sn0.54. The length of the SOM map is 1.6 times the SOMgs, and the width is
equal to the SOMgs. Table 1 shows all SOM parameters set for the SBSS [18,40]. Further mathematical
information about the SBSS calculation can be found in May et al. 2008 [40].

Table 1. Parameters for the self-organizing map (SOM)-based stratified random data splitting
(SBSS) settings.

Parameter Ordering Tuning

Initial Learning Rate 0.9 0.1
Initial Neighbourhood Size See Table 2 1

Epochs 2 20
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Table 2. Calculated SOM grid sizes (SOMgs) and sample sizes (Sn) for each pollutant.

Pollutant Sound Traffic Time

Sn Width Sn Width Sn Width

CO2 717 10.046 783 10.535 824 10.829
NH3 558 8.774 828 10.858 847 10.992
NO 566 8.841 574 8.909 593 9.067
NO2 643 9.742 650 9.527 669 9.677
NOx 644 9.48 652 9.543 671 9.692
O3 644 9.48 652 9.543 671 9.692

PM1 658 9.591 651 9.535 687 9.816
PM2.5 658 9.591 651 9.535 687 9.816
PM10 646 9.496 634 9.400 670 9.685
PN10 658 9.591 651 9.535 687 9.816

All calculated grid sizes for every pollutant are shown in Table 2.

2.3.3. Model Structure Development

Input variables for each pollutant with the predictors sound, traffic, and time were selected
according to a PMIS method as described in 2.3.1. In order to detect the optimum number of hidden
neurons, a trial and error principle was applied, beginning with one single neuron within the hidden
layer. Adding one neuron at a time, up to 20 hidden neurons per pollutant were tested to find
the optimum number. Meanwhile, the correct transfer function had to be identified. Two transfer
functions (hyperbolic tangent and logistic sigmoid) were used for each of the 20 numbers of hidden
neurons. Parameters set for calculating the MLPs are listed in Table 3. In this study, the learning rate
was set to 0.1 and multiplied by the error signal in order to adjust the connection weights during
the backpropagation process. In general, high learning rates enlarge the steps of the weight correction,
while small values reduce it. A larger step saves time but carries the risk that the minimum is missed.
In this case, the backpropagation algorithm jumps back and forth around the minimum without ever
reaching it [34]. The momentum parameter prevents the learning algorithm from getting stuck in
certain search spaces; therefore, it helps to find the minimum and supports better model quality [34].
Within this study, a momentum value of 0.9 was used.

Table 3. Parameters for Multilayer Perceptron (MLP) calculation for all pollutants.

Parameter Value

Learning rate 0.1
Momentum 0.9

Max. iterations 100,000
Tolerance 0.0001

For each combination of hidden neurons and transfer function, the root mean squared error
(RMSE) of the validation dataset was calculated, and the combination with the lowest error was
selected as the optimum architecture [18,23]. If two RMSE values were identical or significantly close,
the standard deviation (SD’) was additionally calculated and chosen to be the deciding parameter.
All results for model architectures for each pollutant with the predictors sound, traffic and time are
presented in Table 4.
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Table 4. Model architecture for each pollutant.

Pollutant Input Variables
+LZeq/ntraffic/time

Transfer Function,
Hidden Neurons

(Sound)

Transfer Function,
Hidden Neurons

(Traffic)

Transfer Function,
Hidden Neurons

(Time)

CO2 Ta, p, rH, u* H.t. 6 L.s. 2 L.s. 9
NH3 Ta, p, rH H.t.15 H.t. 1 L.s.1
NO Ta, WD, BC NOx H.t.6 H.t. 10 H.t. 10
NO2 Ta, WS, WD, rH, BC NO2 L.s. 3 H.t. 11 H.t. 17
NOx Ta, WD, BC NOx L.s. 12 L.s. 5 H.t. 19
O3 u*, rH, Ta, WD, p, BC O3 H.t. 1 H.t. 9 H.t. 2

PM1 u*, p, Ta, rH, WD H.t. 1 L.s. 1 L.s. 6
PM2.5 U*, Ta, rH, p, WD H.t. 8 L.s. 3 H.t. 1
PM10 Ta, rH, WD, BC PM10 H.t. 8 H.t. 5 H.t. 10
PN10 Ta, WS, WD L.s. 6 L.s. 4 H.t. 7

BC = background concentration (taken from LANUV North Rhine-Westphalia;
H.t. = hyperbolic tangent; L.s. = logistic sigmoid.

2.4. Analysis of Model Performance

For analysing the model performances, several statistics were used, since all of them have their
own advantages and drawbacks [27]. For the analysis of model fitness, we included the root mean
squared error (RMSE), the correlation coefficient (R), the normalised mean standard deviation (NMSD),
the normalised mean bias (NMB), the rank correlation by Spearman (rs), and the standard deviation of
the observed values (SD) as well as the modelled values (SD’). The Forum for Air Quality Modelling in
Europe (FAIRMODE) has proposed the RMSE, R, NMB and NMSD as a core set of statistical indicators
for assessing the performance of air quality models [27]. The RMSE (Equation (2)) was used during
the model structure development as well as for final assessment of the model fitness, as it provides
general information on the deviation between a modelled value and an observed value. Hereby, Mi

are the modelled values, and Oi the observed ones. Their differences are squared and summed up,
then square-rooted and divided by the total number of values.

RMSE =
1
N

√∑N

i=1
(Mi −Oi)

2, (2)

In the context of the FAIRMODE’s Guidance Document on Modelling Quality Objectives and
Benchmarking, R has been calculated with Equation (3), NMB with Equation (4) and NMSD with
Equation (5) [27]. NMB indicates how much a model over- or underestimates the observed values,
where positive values describe an overestimation, negative values an underestimation. The closer
the NMB is to zero, the smaller the over- or underestimation. Additionally, the rs was calculated, as it
uses the rank of data and arranges the values in an ascending order before calculating the relationship
between the observed and the predicted values [52]. The rs value can range from 0 to 1. The closer
the value to 0, the weaker the correlation between the ranks.

R =

∑N
i=1

(
Mi −M

)(
Oi −O

)
√∑N

i=1

(
Mi −M

)2
√∑N

i=1

(
Oi −O

)2
, (3)

NMB=
BIAS

O
, (4)

NMSD =
σM − σO

σO
, (5)

To assess whether the model performs sufficiently well, the FAIRMODE’s Guidance Document
provides the Modelling Quality Indicator (MQI), a single value that either considers the results
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acceptable or not. Therefore, it divides the RMSE by the measurement uncertainty (RMSU) and a fixed
factor (β) as shown in Equation (6).

MQI =
RMSE
βRMSU

, (6)

The fixed factor β is set to 2 by the FAIRMODE, allowing the difference between the modelled
and the observed values to be twice the measurement uncertainty. The RMSU calculation is shown in
Equation (7).

RMSU =

√∑N
i=1(U(Oi))

2

N
, (7)

For calculating the measurement uncertainty of the observed values (U(Oi)), we used Equation (8).
Within this equation, α is a fraction between 0 and 1, set by the FAIRMODE itself, as well as values for
the relative standard measurement uncertainty around the reference value (Ur(RV)) and the reference
value (RV). The actual values for α, Ur(RV) and RV for calculating U(Oi) for NO2, O3, PM10 and PM2.5

can be found in Janssen et al. (2019) [27].

U(Oi) = Ur(RV)

√
(1−α2)Oi

2 + α2RV2, (8)

3. Results

Concentrations of ten air pollutants (CO2, NH3, NO, NO2, NOx, O3, PM1, PM2.5, PM10 and PN10)
have been modelled using an MLP. For modelling, the equivalent sound pressure level (LZeq), the total
number of vehicles and the hour and day of the week were compared as three different input variable
options representing the motor traffic intensity. Meteorological data and background concentrations
were also included in the IVS. For analysing the ANN performance, observed and modelled values
were compared, with each data point representing a 1 h average. Figure 5 shows the results for the trace
gases CO2, NH3, NO, NO2, NOx and O3 comparing the three input variable options. All models,
except NH3, show a positive correlation between the predictions and the observations for all three
input variable options. Using all three input variable options, NH3 concentrations were predicted
around the mean of observations without much variation. The model is completely insensitive to
actual changes in the input layer. Both CO2 and NO show fairly good prediction results. Results
show a clear positive correlation between modelled and observed values. Values in the high-end and
the low-end concentration range scatter most. Intermediate values show good agreement. NO2 and
O3 models perform best, having a very small variance and a good fit to the 1:1 line (see Figure 5). NOx

results are fairly good but cannot supply the same precision as predictions of NO2. The NOx model
using sound data instead of traffic counts or time data as input variables shows the best results.
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Figure 5. Scatter plot diagrams of trace gas predictions and observations for three input variable
options (sound, traffic and time). The blue line illustrates a 1:1 match between the modelled and
observed values.

Figure 6 shows the results for aerosol particle predictions. Throughout, the modelled particle
concentrations show worse agreement with the observations than the models for trace gases (see
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Figure 5). Models for PM1 using sound, traffic and time as input variable options do not show any
reaction to changing inputs. Only an average value was calculated without much variation, especially
using traffic input data. Predictions of PM2.5 show moderate accuracy for modelling with sound
input data, whereas the model using traffic input data is completely insensitive to changing inputs.
For the model using time input data, no positive correlation between the modelled and observed
values could be identified. The model results scatter widely around the mean value of observations.
Modelling PM10 with input variable options of both traffic and time shows a positive correlation,
although the variance is very large. The model using sound input data is insensitive to changes in
the input layer. The models predicting PN10 concentrations using both sound and time input variable
options show a slightly positive correlation with the observed values with a large variance. Overall,
the results for all three input variable options outline poor performance for PN10 modelling.
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Figure 6. Scatter plot diagrams of aerosol particle predictions and observations for three input variable
options (sound, traffic and time). The blue line illustrates a 1:1 match between the modelled and
observed values.

To determine which of the input variable options (LZeq, ntraffic, hour and weekday) performs best
in predicting pollutant concentrations, the RMSE was calculated for comparison. In Figure 7, which
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shows normalised RMSE values for all pollutants, one can see that the best RMSE values emerge for
three models when using sound input data (NOx, PM2.5, PN10) for four models when using traffic data
inputs (CO2, NO, PM1, PM10) and for three models when using time input data (NH3, NO2, O3).Int. J. Environ. Res. Public Health 2020, 17, x 14 of 22 
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indicate the smallest error for each pollutant.

In addition to the RMSE, Table 5 shows other statistical parameters for evaluating model
performance (see Section 2.4). Through the evaluation of R, good prediction accuracy can be confirmed
for models of NO using traffic inputs (R of 0.739), NO2 across all input data (R of 0.878, 0.812 and
0.915), NOx with sound input data (R of 0.751), and O3 across all input data (R of 0.750, 0.821 and
0.871). Values of R point out moderate prediction accuracy for CO2 across all input data (R of 0.569,
0.685 and 0.658), NH3 using sound input data (R of 0.648), NOx using both traffic and time inputs
(R of 0.646 and 0.698), PM2.5 with sound (R of 0.587) and PM10 with traffic input data (R of 0.536).
While the evaluation of R shows poor model performance for both NH3 and PM2.5 using traffic (R of
0.233 and 0.353) and time input data (R of 0.329 and 0.163), the models of PM1 and PN10 show poor
performance using all three input variable options (R of 0.315, 0.240 and 0.384 for PM1 and R of 0.449,
0.253 and 0.397 for PN10). For the models of both NO and PM10 using sound (R of 0.478 and 0.400) and
time inputs (R of 0.346 and 0.425), poor performance was discovered. The rs values support the above
findings for CO2 (rs of 0.616, 0.695 and 0.665), NH3 (rs of 0.632, 0.239, 0.403), NO (rs of 0.531, 0.751
and 0.390), NO2 (rs of 0.816, 0.830 and 0.881), NOx (rs of 0.761, 0.703 and 0.685), O3 (rs of 0.737, 0.811
and 0.870), PM1 (rs of 0.188, 0.289 and 0.416), PM2.5 traffic and time (rs of 0.192 and 0.149), PM10 (rs

of 0.148, 0.658 and 0.519) and PN10 (rs of 0.524, 0.249 and 0.445). In contrast to the R values above,
the rs value for PM2.5 sound (rs of 0.384) shows poor model results. The NMB points out that 19 out of
30 models underestimate the observed values, while 10 overestimate them. For CO2 using traffic input
data, the NMB equals 0.000. Generally, none of the three predictors consistently show the best result
for all gases or particle measures.
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Table 5. Statistical parameters for evaluating the ANN performance.

Pollutant RMSE rs SD’ SD NMB R NMSD

CO2
[mmol m−3]

Sound 0.716 0.616 0.558 0.868 0.003 0.569 −0.357
Traffic 0.790 0.695 0.656 1.082 0.000 0.685 −0.394
Time 1.090 0.665 − ** 1.066 −0.042 0.658 −

NH3
[ppb]

Sound 8.314 0.632 5.540 10.559 −0.118 0.648 −0.475
Traffic 13.474 0.239 7.667 12.427 0.205 0.233 −0.383
Time 11.968 0.403 4.307 12.073 0.312 0.329 −0.643

NO
[ppb]

Sound 17.207 0.531 10.395 19.661 −0.014 0.478 −0.471
Traffic 16.017 0.751 21.107 22.433 −0.133 0.739 −0.059
Time 21.893 0.390 12.078 22.799 −0.161 0.346 −0.470

NO2
[ppb]

Sound 5.240 0.816 0.548 * 9.496 0.092 0.878 −

Traffic 5.092 0.830 0.422 * 8.732 −0.017 0.812 −

Time 3.811 0.881 9.115 9.416 −0.002 0.915 −0.032

NOx
[ppb]

Sound 16.683 0.761 20.706 24.359 0.133 0.751 −0.150
Traffic 32.820 0.703 17.756 29.728 −0.594 0.646 −0.403
Time 19.983 0.685 21.021 27.848 −0.045 0.698 −0.245

O3
[ppb]

Sound 7.372 0.737 4.168 1.828 * 0.294 0.750 1.280
Traffic 5.774 0.811 0.722 * 8.211 −0.271 0.821 −

Time 4.526 0.870 7.506 9.081 −0.057 0.871 −0.173

PM1
[mg m−3]

Sound 0.014 0.188 0.551 * 0.014 −0.204 0.315 −

Traffic 0.010 0.289 − ** 0.010 −0.048 0.240 −

Time 0.009 0.416 0.006 0.009 −0.141 0.384 −0.333

PM2.5
[mg m−3]

Sound 0.009 0.384 0.008 0.011 0.049 0.587 −0.273
Traffic 0.013 0.192 0.002 0.012 −0.283 0.353 −0.833
Time 0.014 0.149 − ** 0.013 0.227 0.163 −

PM10
[mg m−3]

Sound 0.057 0.148 0.016 0.062 0.066 0.400 −0.742
Traffic 0.050 0.658 0.740 * 0.057 −0.067 0.536 −

Time 0.078 0.519 0.538 * 0.086 −0.131 0.425 −

PN10
[n m−3]

Sound 15,915.23 0.524 0.922 * 14,946 −0.318 0.449 −

Traffic 12,872.74 0.249 375.384 13,022.7 0.002 0.253 −0.971
Time 11,934.47 0.445 8858.02 12,321.3 −0.002 0.397 −0.281

Values marked with * are logarithmised to guarantee normal distribution. Values marked with ** could not achieve
normal distribution by logarithmising.

While all statistical parameters have advantages and disadvantages with respect to the evaluation
of models, the MQI was developed by the FAIRMODE to find the limit of acceptable performance
with a single number. Table 6 shows the MQI for the models of NO2, O3, PM2.5 and PM10. For all
other models, MQI calculations could not be performed due to the lack of available reference values
from the FAIRMODE. All models reaching MQI values lower than 1 can be considered sufficiently
good. The models of both NO2 and O3 show very good results for all three input variable options.
Concentrations of NO2 and O3 are best predicted with time input data (MQI of 0.281 and 0.255).
Models using traffic input data show the second best results (MQI of 0.342 and 0.327). Although
models using sound input data show the worst MQI for the prediction of NO2 and O3 concentrations,
the performance is still very good (MQI of 0.357 and 0.414). The MQI values for PM2.5 models present
moderate but still acceptable performance with all three input variable options (MQI of 0.566, 0.778 and
0.828) even though the models using traffic and time input data do not reveal sensitivity to changing
inputs (see Figure 6). The PM10 models using sound and time input data have MQI values higher than
1 (MQI of 1.004 and 1.071), which is considered unsatisfactory. The PM10 model using traffic input
data performs adequately, with an MQI below yet close to 1 (MQI of 0.882).
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Table 6. Model Quality Index (MQI) of NO2, O3, PM2.5 and PM10 developed by Forum for Air Quality
Modelling in Europe (FAIRMODE). Values greater than 1 represent a model performance that is not
sufficiently good.

NO2 O3 PM2.5 PM10
Sound Traffic Time Sound Traffic Time Sound Traffic Time Sound Traffic Time

0.357 0.342 0.281 0.414 0.327 0.255 0.566 0.778 0.828 1.004 0.882 1.071

4. Discussion

ANN modelling for the ten air pollutant concentrations (CO2, NH3, NO, NO2, NOx, O3, PM1, PM2.5,
PM10 and PN10) using sound, traffic and time data as additional input variable options to represent
the traffic volume shows very disparate results for an urban street canyon in Münster, Germany.

Concerning MQI, the performance of all models for which an MQI could be calculated was rated
as sufficiently good, except for the PM10 model using sound and time input data. The MQI values
also reflect the precision of the model, which could also be highlighted with other statistics, showing
that NO2 and O3 give the best results expressed by the lowest MQIs of 0.281 and 0.255, respectively.
However, PM2.5 models using traffic and time inputs show no response to changes in the input layer
even though their MQIs are within the acceptable range (see Figure 6). This leads to the presumption
that, at least in PM2.5 modelling, the MQI alone cannot adequately assess the model’s performance in
this study. Hence, we propose an MQI limit value of 0.7 instead of 1.0 for the analysis of the data used
in this study so that models that can only reproduce mean values of observations can be identified
more easily through the MQI.

The modelling of trace gases with ANNs has yielded very precise predictions. A direct link
between concentrations of NO2, O3, CO2 and the traffic volume was shown. As the (photo-)chemical
reactions between NO, NO2 and O3 in the atmosphere cause a strong relation between these gases [53],
it is expected that modelling NO, NO2 and O3 will lead to a similar quality of the results. Other
studies using ANN models to predict concentrations of nitrogen oxides and O3 also show good
results [19,20,54]. Cai et al. achieved an RMSE value of 21.1 µg m−3 for an ANN with NO2 background
concentrations as input variables, which is slightly worse than the best RMSE obtained in this study
(7.288 µg m−3 with time input data). For the prediction of O3, they arrived at an RMSE of 9.5 µg m−3,
whereas this study revealed a best RMSE value of 9.031 µg m−3 using time input data [20]. Kamali et al.
reached model performances with consistently higher RMSE values for predictions of NO, NO2, NOx

and O3 concentrations [19].
Particle modelling, on the other hand, shows results that are still in need of improvement

considering the RMSE, rs, R and MQI. Modelling of PM2.5 with sound input data and PM10 with
traffic input data show acceptable results concerning the statistical performance measures. However,
modelling PM1 and PM2.5 using traffic and time inputs and modelling PM10 using sound and time
inputs as well as PN10 cannot adequately reproduce the emission and transport processes taking place
in the atmosphere. Figure 6 reveals that either these models scatter around a mean concentration of
observations without reacting to actual changes in the input layer (PM1, PM2.5 using traffic and time
inputs, PM10 using sound inputs and PN10 using traffic inputs) or the models show a clear positive
reaction to changed concentrations but are associated with high uncertainty. Their prediction accuracy
was assessed to be poor. For the PM10 prediction, the MQI clarifies that sound and time input variables
do not produce satisfactory results. Models for the prediction of PM10 using traffic inputs and PM2.5

using traffic and time input data also reach relatively high MQI values close to 1.
In general, there is considerable room for improvement in modelling particle concentrations using

ANNs. Not only are the sources of particles complex, but they also have large within-atmosphere
dynamics. For example, impaction and coagulation modify their concentrations and sizes [53]. Car
traffic is a source of both primary and secondary aerosol particles [55,56] and the limited dispersion
within a street canyon leads to relative accumulation of particles. During low-traffic times, e.g.,
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at night, the diameters increase while the number concentration (PN) decreases [57,58]. Further,
particles are scavenged from the atmosphere during rain events [59]; in this case, the number of
particles is expected to decrease while the sound volume increases. For very small particles (PM1 and
PN10, which are both dominated by small particles), processes other than traffic presumably drive
the particle concentration to a larger extent, so that neither LZeq, ntraffic nor time reflects local processes
well enough. Those processes may be the transport of secondary particles after nitrate or ammonia
formation from the agricultural precursors as well as particle emissions from households [60]. In
addition, background concentrations were only available for PM10 but not for PM1, PM2.5, or PN10.
The PMIS (see Section 2.3.1) has shown for all models that the use of background concentrations as
input variables are of very high importance for precise modelling. Results of Cai et al. 2009 [20] also
stress the relevance of background concentration data.

In general, the predictive capacity of our particle concentration models differs from that found in
other studies. For example, Bai et al. 2016 show very good results using a backpropagation neural
network for modelling PM10 concentrations (RMSE of 23.6 µg m−3), but we could not achieve those
results here (RMSE of 50, 57 and 78 µg m−3) [54]. The model accuracy of Paas et al. 2017 to predict
aerosol particle concentrations also could not be reproduced here [18]. This could have arisen for
reasons. Paas et al. 2017 simplified the dataset for model development in various ways. They avoided
rainy conditions during data collection, while in this study data from all weather conditions were used
over a two-month period. Thus, washout effects occurred during this work that likely led to spurious
effects in the input layer of the ANN and thus to less precise predictions. Whereas data from Paas
et al. were averaged over 10 minutes, all data in this study were averaged to 1 h values. This may
have led to a loss of information about processes that typically occur on smaller temporal scales and
thus to lower correlations between the traffic volume and particle concentrations. Further, the good
model performance in Paas et al. 2017 was reached with data taken at different locations with varying
distances to vehicle traffic sources, so that a strong spatial gradient was established there; by contrast,
this study used data from a fixed site.

Regarding NH3 emissions, our approach could not confirm the hypothesis that NH3 is emitted
by car catalytic converters; the models show no reaction to changes in the input layer. Values of R
between 0.233 and 0.329 and rs values of 0.239 and 0.403 for modelling with traffic and time input
data, respectively, reveal very poor correlation between modelled and observed values. Statistical
parameters for the model using sound input data indicate a slightly better performance, but they do
not support satisfactory model accuracy. The model using traffic input data has the lowest prediction
power for NH3 when considering rs and R, which indicates that the observed NH3 concentrations
are mainly influenced by sources other than car traffic. Since the data were averaged over a period
of one hour, the car catalytic emission of NH3 cannot be ruled out completely as an emission source
within our dataset. However, it is more likely that a larger fraction of NH3 originates from background
transport due to intensive agricultural economy in the surrounding area, at least at the research site
and time period of this study.

Ozone is formed in the atmosphere through photochemical reactions. Further, the O3

concentrations are strongly driven by the boundary layer stability during the night and mixing
during the day [61]. All these processes are of diurnal nature, which is reflected by the good capability
of the parameter time to predict O3. The nitrogen oxides NO, NO2, and NOx (which is the sum of NO
and NO2) exhibit a complex pattern, which is generally difficult to model. The traffic emissions of NO
are well reflected by the high capability of the parameter traffic to predict them. Nitrogen dioxide is
formed through a reaction of NO with O3, which is reflected by its good predictability by the parameter
time. In that sense, their sum (NOx) should be well predicted by traffic. Surprisingly, the ANN does
not support that hypothesis. It remains unclear why sound is the better predictor as compared to
traffic. Likely, the boundary layer dynamics plays an important yet not recognized role.

Limited model performance may also result from methodological limitations or simplifications.
The model was kept as simple as possible and aimed to use freely accessible data as much as possible.
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Furthermore, the campaign to measure the concentrations of pollutants was limited to only two months.
Note that the larger the size of the training dataset, the more precise an ANN model will predict
previously unseen data.

Generally, ANN models can often represent environmental relationships with surprising accuracy,
although they are not fully understood by traditional theory. Ultimately, all ANNs are based on
the intrinsic principle of the “black-box” [24,33]. Hence, it is not possible to trace and adjust individual
steps within the model calculation. Connections and weighting adjustments are not visible for
the modeler [33].

Future work on the improvement of the ANN performance will have to integrate rain into the IVS
as an input variable. Rain is important in two aspects. First, it leads to scavenging of particles and
water-soluble gases and thus to smaller concentrations of these. Secondly, it produces sound, an effect
that has to be taken into account when working with LZeq data.

The inner-city street canyon Bült represents a very specific, rather isolated measurement site, where
any influences from industry and agriculture was at a minimum. It was thus reasonable to consider
traffic as the main source for the variability of air pollutant concentrations. Further, the measurement
was carried out in summer, so that domestic fuel is of little importance. For generally valid statements
and to cover seasonal variations, long-term measurements throughout the year should be made [19].

The three input variable options examined do not show a clear trend of which has the highest
predictive power for modelling air pollutants. All three options calculate similar results and have
different strengths for different pollutants. They all show good potential as input variables. For future
applications, it will be reasonable to look at what resources are available as input variables. For
example, data on traffic counts is not available in many places, whereas sound measurement devices
are affordable and easy to operate. Further, the time and day of the week are permanently available
information that have no cost. However, while sound and traffic data are directly related to absolute
traffic volumes, the time data depend on the location’s specific traffic pattern. Therefore, models using
time data as a predictor must be re-trained for each location, while models using sound or traffic data
can be used without re-training if the values are within the same range as the training dataset.

5. Conclusions

Air pollutant concentrations in an urban street canyon were modelled using an ANN with
the input of meteorological data, background concentrations and three different traffic volume
predictors. The models were developed, tested and evaluated with a dataset from a street canyon in
Münster containing the trace gases CO2, NH3, NO, NO2, NOx, O3, and the particle concentrations
PM1, PM2.5, PM10 and PN10. The equivalent sound pressure level (LZeq), the total amount of vehicles
(ntraffic), and the hour of the day and day of the week (time) were compared to determine the best
traffic volume predictor for modelling each pollutant. Results for NO2 and O3 conclude a very accurate
prediction power of the models with all three input variables, showing nearly perfect MQI, R and rs

values when compared to observations. The NOx model using sound input data also shows good
model results. Moderate results could be achieved for all CO2 and NO models, the NOx model
using traffic and time input data, the PM2.5 model with sound and the PM10 model with traffic input
data. They all present a clear positive correlation between modelled and observed values but a lower
variation than the observed values. We conclude that for the above-mentioned pollutants, the ANN
approach applied within this study is a powerful tool for air pollution modelling. Nonetheless, models
predicting the concentrations of NH3, PM1, PM2.5 with traffic and time input data, PM10 models using
sound and time inputs and all PN10 models do not show satisfactory model results, leaving room for
model improvement.

For assessing the ANN performance, the MQI represents a suitable parameter for the statistical
analysis. Nevertheless, we would suggest a limit value of 0.7 instead of 1.0 for this study to more
easily detect models that only reproduce mean values of observations. Since precipitation data were
not available as a meteorological input parameter, this data could be considered to possibly improve
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particle concentration modelling in the future. This may be realised by excluding rain events or by
filtering out frequencies within LZeq attributed to rain. Alternatively, rain may be measured in future
studies and integrated into the IVS as an input variable.

This study presents modelling results limited to nowcasting. As a next step, one could investigate
how capable the model architecture developed with this work is with forecasting. Input variables
from weather forecast models could be used as input variables that represent the transport of
pollutants. Further, although background concentrations have a large impact within IVS, such data
were unfortunately not available for CO2, NH3, PM1, PM2.5, and PN10. Overall, we can conclude
that each input variable option has good potential as a traffic volume predictor within pollutant
concentration modelling. Three models showed the best results when using acoustic input data, four
when using traffic input data and three when using time input data. Consequently, neither sound,
traffic, nor time can be recommended as the best option for predicting all air pollutant concentrations.
Future applications of the ANN approach presented in this study can thus use information that is
accessible as input variables representing the traffic volume.
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