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ABSTRACT
Background. The genus Pachypodium contains 21 species of succulent, generally
spinescent shrubs and trees found in southern Africa and Madagascar. Pachypodium
has diversified mostly into arid and semi-arid habitats of Madagascar, and has been
cited as an example of a plant group that links the highly diverse arid-adapted floras
of Africa and Madagascar. However, a lack of knowledge about phylogenetic relation-
ships within the genus has prevented testing of this and other hypotheses about the
group.
Methodology/Principal Findings. We use DNA sequence data from the nuclear
ribosomal ITS and chloroplast trnL-F region for all 21 Pachypodium species to re-
construct evolutionary relationships within the genus. We compare phylogenetic
results to previous taxonomic classifications and geography. Results support three
infrageneric taxa from the most recent classification of Pachypodium, and suggest that
a group of African species (P. namaquanum, P. succulentum and P. bispinosum) may
deserve taxonomic recognition as an infrageneric taxon. However, our results do not
resolve relationships among major African and Malagasy lineages of the genus.
Conclusions/Significance. We present the first molecular phylogenetic analysis of
Pachypodium. Our work has revealed five distinct lineages, most of which correspond
to groups recognized in past taxonomic classifications. Our work also suggests that
there is a complex biogeographic relationship between Pachypodium of Africa and
Madagascar.

Subjects Biodiversity, Biogeography, Evolutionary Studies, Taxonomy
Keywords Pachypodium, Apocynaceae, Biogeography, Madagascar, Phylogeny, Africa, ITS,
trnL-F, Flower color, Taxonomy

INTRODUCTION
Pachypodium (Apocynaceae) comprises 21 species of spinescent, succulent, xerophytic

shrubs and small trees distributed in Madagascar and southern Africa (Table 1).

Pachypodium is well known for its diverse array of growth forms, from dwarf shrubs

to tall monopodial ‘bottle trees’, as well as its showy insect-pollinated flowers (Fig. 1;

Table 1; Vorster & Vorster, 1973; Rauh, 1985; Lavranos & Röösli, 1996; Lavranos & Röösli,

1999; Rapanarivo et al., 1999; Lüthy, 2004). The center of diversity for Pachypodium

is Madagascar, with 16 endemic species; the remaining five species are restricted to
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Table 1 Pachypodium species, sampling, geography, and traits.

Taxon Sampled Geography Form Corolla

Pachypodium ambongense H.Poiss. 1 Madagascar Shrub White

P. baronii Constantin and Bois 2 Madagascar Shrub Red

P. bispinosum (L.f.) A.DC. 1 Southern Africa Shrub Pink

P. brevicaule Baker subsp. brevicaule 3 Madagascar Shrub Yellow

P. brevicaule Baker subsp. leucoxanthum Lüthy 1 Madagascar Shrub White

P. decaryi H.Poiss. 3 Madagascar Shrub White

P. densiflorum Baker 8 Madagascar Shrub Yellow

P. eburneum Lavranos and Rapan. 2 Madagascar Shrub White

P. geayi Costantin and Bois 1 Madagascar Tree White

P. horombense H.Poiss. 3 Madagascar Shrub Yellow

P. inopinatum Lavranos 1 Madagascar Shrub White

P. lamerei Drake 7 Madagascar Tree White

P. lealii Welw. 1 Southern Africa Tree White

P. menabeum Leandri 3 Madagascar Tree White

P. mikea Lüthy 1 Madagascar Tree White

P. namaquanum (Wyley ex Harv.) Welw. 1 Southern Africa Shrub Red

P. rosulatum Baker subsp. bemarahense Lüthy and Lavranos 1 Madagascar Shrub Yellow

P. rosulatum Baker subsp. bicolor (Lavranos and Rapan.) Lüthy 1 Madagascar Shrub Yellow

P. rosulatum Baker subsp. cactipes (K.Schum.) Lüthy 1 Madagascar Shrub Yellow

P. rosulatum Baker subsp. gracilius (H.Perrier) Lüthy 2 Madagascar Shrub Yellow

P. rosulatum Baker subsp. makayense (Lavranos) Lüthy 1 Madagascar Shrub Yellow

P. rosulatum Baker subsp. rosulatum 5 Madagascar Shrub Yellow

P. rutenbergianum Vatke 1 Madagascar Tree White

P. saundersii N.E.Br. 1 Southern Africa Shrub White

P. sofiense (H.Poiss.) H.Perrier 1 Madagascar Tree White

P. succulentum (L.f.) A.DC. 1 Southern Africa Shrub Pink

P. windsorii H. Poiss. 2 Madagascar Shrub Red

Notes.
Taxon, according to revision of Lüthy (2004); Sampled, number of individuals sampled for genetic analysis; Geography,
indicates whether the species is endemic to Madagascar or southern Africa; Corolla, indicates the overall color of the
corolla (Rapanarivo et al., 1999; Lüthy, 2006).

southern Africa (Fig. 1; Table 1). Most Pachypodium species are narrowly distributed, with

specialized ecology (Vorster & Vorster, 1973; Lüthy, 2004; Rapanarivo et al., 1999); habitats

vary from desert to subhumid grassland, although most species are restricted to extremely

arid environments (i.e., 8–34 cm annual precipitation; Rapanarivo et al., 1999). Those

species that occur in more mesic habitats (up to 200 cm annual precipitation; Rapanarivo

et al., 1999) tend to occupy rocky outcrops that are probably edaphically arid.

The showy flowers and unusual growth forms of Pachypodium have made them

a favorite of horticulturists, leading to the exploitation of wild plants (Lüthy, 2006).

Over-collecting combined with habitat destruction (Goodman & Benstead, 2003) has

led to international trade restrictions, highlighting the need for improved systematic

understanding of Pachypodium.
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Figure 1 Geographic distribution of Pachypodium. Inset is sampling of Pachypodium in Madagascar
(Appendix 1). Sampling in Africa not mapped. Data for distributions is approximate, adapted from Lüthy
(2006) and Vorster & Vorster (1973).

In Madagascar, Pachypodium forms a component of the strongly endemic xerophytic

flora (Rapanarivo et al., 1999). These high levels of endemism in the xerophytic flora

of Madagascar are attributed to the great antiquity of arid conditions on the island
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(Koechlin, 1972); a climate suitable for the growth of xerophytic plants is thought to have

prevailed in at least part of Madagascar throughout the Cenozoic (0–65 Ma; Wells, 2003).

In addition, Pachypodium is part of a large group of arid-adapted plants—including many

other succulents, such as Euphorbia and Aloe—with representatives in both Africa and

Madagascar (Leroy, 1978; Jürgens, 1997); these plants provide evidence for a biogeographic

link between arid regions of Africa and Madagascar, many of which are widely disjunct

from one-another or isolated by intervening mesic habitats (Leroy, 1978). However,

without an explicit phylogenetic framework, it is impossible to decipher the history of

Pachypodium diversification in the Afro-Malagasy region.

Several taxonomic classifications of Malagasy Pachypodium have been proposed on

the basis of morphological characteristics (Table 2). However, the African species of

Pachypodium have been inconsistently treated, leading to a lack of knowledge on their

relationship to Malagasy species. Some workers have assumed that the long temporal

and wide geographic separation between Madagascar and Africa (Yoder & Nowak, 2006)

corresponds to a deep genetic divergence between Pachypodium species from the two

regions (Perrier de la Bâthie, 1934; Lüthy, 2004). Indeed, Perrier de la Bâthie (1934)

suggested that the two groups might not be one-another’s closest relatives. Nevertheless,

the implied divergence is not strongly reflected by morphology; Lüthy (2004) cited only

one trait—the presence of brachyblasts in African species—to separate the two groups.

Overall, the monophyly of African and Malagasy Pachypodium, proposed infrageneric taxa,

and Pachypodium itself, has never been tested.

We reconstruct the evolutionary history of Pachypodium using nuclear ribosomal ITS

and chloroplast trnL-F DNA sequence data. Two additional chloroplast loci were included

in the project design (trnS-G intergenic spacer and rpL16; Shaw et al., 2005), but proved

insufficiently variable to justify further development. However, both ITS and trnL-F have

proven utility for species-level phylogenetic reconstruction in plants (Baldwin et al.,

1995; Shaw et al., 2005). Our specific aims were to (1) test infrageneric classifications of

Pachypodium and (2) determine relationships between the African and Malagasy members

of Pachypodium, including patterns of diversification between the two landmasses.

MATERIALS AND METHODS
Taxon sampling
We generated new ITS and trnL-F sequences from 56 Pachypodium samples representing all

27 minimum-rank taxa (species and subspecies) in the most recent revision of the genus

(Lüthy, 2004; Tables 1 and 2). An additional ITS sequence was generated for Funtumia

africana—a close relative of Pachypodium (Livshultz et al., 2007)—for use in rooting the

ITS tree. Pachypodium and Funtumia tissues for DNA analysis were taken from greenhouse

or garden plants (Appendix 1). Tissues were obtained by D. Burge, Walter Röösli, Nicholas

Plummer, and Anurag Agrawal. Specimens were identified by W. Röösli, N. Plummer,

or D. Burge according to the taxonomic revision of Lüthy (2004) and subsequent

descriptions of new taxa (Lüthy, 2005; Lüthy & Lavranos, 2005). Plants were selected

based on geographic distribution, with a larger amount of sampling for widespread taxa.
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Table 2 Summary of Pachypodium classification.

Subgenus Section Series Species or subspecies

Nesopodium Gymnopus Ramosa P. brevicaule subsp. brevicaule

P. brevicaule subsp. leucoxanthum

P. rosulatum subsp. bemarahense

P. rosulatum subsp. bicolor

P. rosulatum subsp. cactipes

P. rosulatum subsp. gracilius

P. rosulatum subsp. makayense

P. rosulatum subsp. rosulatum

Densiflora P. densiflorum

P. eburneum

P. horombense

P. inopinatum

Leucopodium Contorta P. decaryi

P. rutenbergianum

P. sofiense

Ternata P. geayi

P. lamerei

P. mikea

Pseudoternata P. ambongense

P. menabeum

Porphyropodium P. baronii

P. windsorii

Pachypodium P. bispinosum

P. lealii

P. namaquanum

P. saundersii

P. succulentum

Notes.
See Table 1 for taxon authorities; table includes later descriptions of new Pachypodium species by Lüthy (2005; P. mikea),
Lüthy & Lavranos (2005; P. rosulatum subsp. bemarahense), and Lüthy (2008; P. brevicaule subsp. leucoxanthum).

Between one and eight populations of each taxon were used (Tables 1 and 2). Additional

non-Pachypodium trnL-F sequences, for rooting trees, were obtained from GenBank

(F. africana [EF456206], Holarrhena curtisii [EF456122], Kibatalia macrophylla

[EF456119], Malouetia bequaertiana [EF456243], and Mascarenhasia lisianthiflora

[EF456174]). These taxa were selected on the basis of their close relationship with

Pachypodium (Livshultz et al., 2007).

Molecular methods
Total genomic DNA was extracted from silica-dried leaves or seeds using the DNeasy

Plant Mini Kit (Qiagen, Germantown, MD) according to the manufacturer’s instructions.

For seeds, up to three excised embryos from a single parent plant were pooled prior to

DNA extraction (Burge & Barker, 2010). DNA was extracted from seeds when silica-dried

material for the same plant was not available, or proved recalcitrant to extraction of
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high quality DNA. All polymerase chain reactions were performed using Qiagen Taq

DNA Polymerase. Amplifications were performed using an initial incubation at 94◦C

for 10 min and 30 cycles of three-step PCR (1 min at 94◦C, 30 s at 45◦C, and 2 min at

72◦C), followed by final extension at 72◦C for 7 min. PCR was performed on a Perkin

Elmer GeneAmp thermocycler. The primers ITS4 (White et al., 1990) and ITSA (Blattner

& Kadereit, 1999) were used to amplify the ITS1-5.8S-ITS2 region of the nuclear ribosomal

DNA. Primers ‘c’ and ‘f ’ (Taberlet et al., 1991) or a combination of these with internal

primers ‘d’ and ‘e’ were used to amplify the trnL-F chloroplast region. For some plants,

sequencing of ITS was problematic as a result of variation in length among ITS copies

present in individual plants. Consequently, cloning of the ITS region was required for some

plants. Cloning was carried out using the pGEM-T Easy Vector kit (ProMega, Madison,

WI) according to the manufacturer’s instructions. NIA inserts were amplified directly

from up to four positive colonies using the PCR protocol described above. For all PCR

reactions, excess primer and dNTPs were removed using exonuclease I (New England

Biolabs, Ipswich, MA [NEB]; 0.2 units/µl PCR product) and antarctic phosphatase (NEB;

1.0 unit/ µl PCR product) incubated for 15 min at 37◦C followed by 15 min at 80◦C. For

sequencing we used Big Dye chemistry (Applied Biosystems, Foster City, CA) according to

the manufacturer’s instructions. Sequences were determined bidirectionally on an Applied

Biosystems 3100 Genetic Analyzer at the Duke University Institute for Genome Science and

Policy Sequencing Core Facility.

Sequence editing and alignment
All sequences were assembled and edited in Sequencher 4.1 (Gene Codes Corporation).

In the case of the five plants for which ITS was cloned, we assessed sequence variation

using an alignment of cloned sequences (hereafter ‘isolates’). Two plants yielded pools

of identical isolates (P011 and P021, Appendix 1), one yielded four different types of

isolate (P053), and two were represented by a single successfully cloned isolate (P046 and

P048). For the plant with more than one isolate type (P053), we included all four isolates

in the phylogenetic analyses of ITS; for the plants with identical isolates, we selected a

single isolate to represent each plant. New ITS and trnL-F sequences for Pachypodium were

deposited in GenBank (Appendix 1).

The 60 new ITS and 55 new trnL-F sequences, along with additional outgroup sequences

from GenBank, were used to create separate alignments for the two regions (Table 3;

Alignments S2 and S3). Sequences were aligned in MUSCLE (Edgar, 2004) under default

settings. For ITS, several indel- and repeat-rich regions (54 bp total) were excluded due to

alignment ambiguity. A portion of trnL-F not available for some taxa (the 3′ trnL intron)

was recoded as missing data. Indels were not recoded for analysis.

Following individual alignment of ITS and trnL-F, we endeavored to create a combined

alignment. Preliminary analyses showed that for the single Pachypodium sample repre-

sented by more than one cloned ITS sequence (P053; Table 1), the four sequences formed

a monophyletic group. Thus, a single sequence from this group was selected at random.

For the final combined alignment (Alignment S2), the entire trnL-F region was coded
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Table 3 Summary statistics for DNA alignments.

Name Region Terminals Total length Included length G + C Variable PIC

Alignment S1 ITS 60 658 604 53.7% 156 (226) 110 (116)

Alignment S2 trnL-F 59 961 961 36.4% 33 (64) 18 (36)

Alignment S3 ITS and trnL-F 61 1619 1565 43.1% 184 (285) 114 (140)

Notes.
Total Length, the length of the complete alignment, counting portions excluded from analysis; Included length, the total number of characters included in the phylogenetic
analysis. G+C, the G + C content of the complete (total length) alignment; Variable, the number of variable characters in the ingroup, followed by the number of variable
characters in the full alignment (in parentheses); PIC, the number of parsimony-informative characters in the ingroup, followed by the number of parsimony informative
characters in the full alignment (in parentheses).

as missing data for the two Pachypodium samples from which trnL-F was not obtained

(P. bispinosum A049 and P. brevicaule subsp. leucoxanthum, P066). To test for conflict

between the nuclear (ITS) and chloroplast (trnL-F) portions of the alignment, we used

the incongruence length difference test (Farris et al., 1995), implemented in PAUP* v 4.0

(Swofford, 2002) as the partition homogeneity test. The test used 1000 random repetitions

of the parsimony analysis described below (see Phylogenetic analyses). Results showed

significant disagreement between ITS and trnL-F (P = 0.047; 953/1000 trees). To account

for this conflict, we ran all of our phylogenetic analyses on the separate trnL-F and ITS

alignments, noting any well-supported conflicts between the results, and compared these

to results from the combined alignment (see Discussion).

Phylogenetic analyses
Trees were reconstructed using Bayesian, maximum likelihood (ML), and maximum

parsimony (MP) techniques. Bayesian analyses were carried out based on the best fit

model of evolution from jModelTest 2, under default parameters (Posada & Crandall,

1998; Guindon & Gascuel, 2003; Darriba et al., 2012; ITS: GTR + I + G; trnL-F: GTR + I).

Bayesian sampling was performed in MrBayes v 3.2.1 (Ronquist & Huelsenbeck, 2003),

using the models of sequence evolution identified by jModelTest 2; all other parameters of

MrBayes were left at default values; for the combined tree, no rate or model constraints

were imposed between the two partitions. Analyses were carried out as follows: (1)

three separate runs of 1× 107 MCMC generations, sampling every 1000 generations,

(2) examination of run output for convergence (standard deviation of split frequencies

nearing 0.001) (3) removal of the first 1000 samples (10%) as burnin after visual inspection

of likelihood score plots, (4) comparison of consensus trees for each run, and (5)

combination of post-burnin samples from all three runs to compute a 50% majority-rule

consensus tree (conducted in PAUP* v 4.0 (Swofford, 2002)). A partitioned model of

sequence evolution was used for the analysis of the combined data.

Maximum likelihood analyses were carried out in GARLI v 2.0 (Zwickl, 2006). For each

alignment, two search replicates were performed in a single execution. Models of evolution

were the same as those described for Bayesian analyses, with a partitioned model applied

to the combined alignment. Other parameters were kept at default. Statistical support was

inferred with 100 replicates of bootstrap reweighting (Felsenstein, 1985), implemented as in

the tree search.
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Maximum parsimony analysis was conducted in PAUP* v 4.0 (Swofford, 2002). An

initial heuristic search of 100 random taxon addition replicates was conducted with

tree-bisection-reconnection branch swapping (TBR) and MULPARS in effect, retaining

only ten trees from each replicate. A strict consensus of these trees was then used as a

constraint tree in a second heuristic search using the similar parameters as above, but with

1000 random sequence addition replicates, and retaining 100 trees per addition replicate.

We used this method due to the excessive number of trees generated by unconstrained

searches. This strategy checks for shorter trees than those found by the initial search,

demonstrating that the final consensus tree reflects all of the most parsimonious trees

(Catalán, Kellogg & Olmstead, 1997). We also ran searches on the three alignments using an

unconstrained search with the nearest neighbor interchange (NNI) swapping algorithm,

which produced trees of exactly the same length as the constrained searches. In the interest

of brevity, we present results only for the constrained searches. We estimated Bootstrap

support (Felsenstein, 1985) for our parsimony trees using 100 pseudoreplicates and the

same search setting as described above, including use of a constraint tree. We treated gaps

as missing data for all phylogenetic analyses.

Topology testing
We used Templeton’s nonparametric test (1983), as implemented in PAUP* v 4.0 (Swofford,

2002), to evaluate several key phylogenetic relationships. Templeton’s test compares pairs

of topologies, measuring relative statistical support for the trees within a sequence dataset

(alignment). For these tests, we compared the best tree from the original parsimony

tree search (see above) to the best tree from a search using a constraint (e.g., African

Pachypodium constrained as monophyletic). For more on these tests, see below (Results).

RESULTS
Alignments
The ITS region had an aligned length of 658 bp (Alignment S1). Of the 156 (included)

variable positions within the ingroup, 110 were parsimony informative (Table 3). The

trnL-F region had an aligned length of 961 bp (Alignment S2). Of the 33 variable positions

within the ingroup, 18 were parsimony-informative (Table 3). The combined alignment

contained 61 terminals, with an aligned length of 1619 bp (Alignment S3). Of the 184

(included) variable positions in the ingroup, 114 were parsimony informative.

Phylogenetic trees
The Bayesian 50% majority-rule consensus tree for ITS contained 13 internal nodes with

a posterior probability (PP) of 1.0 (Treefile S4A; Fig. 2). By contrast, the trnL-F-based

Bayesian tree contained only five internal nodes with a PP of 1.0 (Treefile S5A; Fig. 2). The

combined ITS and trnL-F tree contained 17 internal nodes with a PP of 1.0 (Treefile S6A;

Fig. 3).

Maximum parsimony searches based on ITS data alone resulted in 4851 trees of 324

steps (Table 4; Treefile S4B); a total of 12 internal nodes had bootstrap (BS) support greater

than or equal to 95% (Treefile S4C). Searches using trnL-F data alone resulted in 8 trees
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Figure 2 Bayesian consensus phylograms for individual genetic regions. Left, ITS; right, trnL-F. Num-
bers above branches are Bayesian posterior probability (PP) from the 50% majority rule consensus tree;
thickened branches have PP of 1.0. Taxon names are abbreviated (see Table 1). ITS tree is midpoint rooted.
Zigzag line indicates that the branch connecting the outgroup to Pachypodium is not shown to scale (see
Treefiles S4 and S5).

of 71 steps (Table 4; Treefile S5B); only one internal node had BS support greater than or

equal to 95% (Treefile S5C). Searches on the combined ITS and trnL-F data resulted in

4582 trees of 394 steps (Table 4; Treefile S6B); a total of 8 internal nodes had BS support

greater than or equal to 95% (Treefile S6C; Fig. 3). In all cases, use of a constraint tree failed

to find any trees of equal or shorter length that contradicted the respective consensus trees.
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Figure 3 Bayesian consensus phylogram for combined data. Numbers above branches are (from left to
right) (1) Bayesian posterior probability (PP) from the 50% majority rule consensus tree, (2) maximum
parsimony bootstrap support, and (3) maximum likelihood bootstrap support; thickened branches have
PP of 1.0. Selected subgeneric taxa are from of Lüthy (2004); colored bars indicate predominant color of
corolla lobes (Table 1). Dashed line indicates a branch not shown to scale (see Treefile S6).

Maximum likelihood (ML) analyses support similar relationships to those indicated by

maximum parsimony and Bayesian analyses. The best ML tree for ITS alone contained 14

internal nodes with BS support greater than or equal to 95% (Treefiles S4D and S4E). By

contrast, the trnL-F-based ML tree contained only one internal node with BS greater than

or equal to 95% (Treefiles S5D and S5E). The best ML tree based on ITS combined with
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Table 4 Summary statistics for maximum parsimony tree searches.

Tree Region Total MP trees Steps CI RI

Treefile S4B ITS 4851 324 0.82 0.95

Treefile S5B trnL-F 8 71 0.93 0.97

Treefile S6B ITS and trnL-F 4582 394 0.83 0.92

Notes.
CI, consistency index; RI, retention index.

trnL-F contained 10 internal nodes with BS support greater than or equal to 95% (Treefiles

S6D and S6E; Fig. 3).

Pachypodium is recovered as monophyletic in the trnL-F tree (Fig. 2A), but lack of

broad outgroup sampling for ITS prevents assessment of Pachypodium monophyly based

on nuclear DNA; support for Pachypodium monophyly in the combined tree is driven

by trnL-F. Six of the 11 minimum-rank Pachypodium taxa (species and subspecies)

represented by more than one sampled plant (Table 1) are monophyletic in the combined

tree, four with strong support (PP 1.0; MP bootstrap ≥ 95%; P. baronii, P. decaryi,

P. rosulatum subsp. rosulatum, and P. windsorii; Fig. 3). The following multi-taxon clades

are also recovered with high levels of support in the combined tree (PP = 1.0; MP BS

≥ 95%): (1) the Malagasy P. decaryi, P. rutenbergianum, and P. sofiense, (2) the African

P. lealii and P. saundersii, (3) the African P. namaquanum, P. succulentum, and

P. bispinosum, (4) an 11-taxon group corresponding to section Gymnopus (Table 2), and

(5) a smaller group nested within Gymnopus comprising P. brevicaule subsp. brevicaule,

P. densiflorum, P. eburneum, P. inopinatum, and P. rosulatum subsp. bicolor.

Topology test results
Based on the results from our initial tree searches (Figs. 2 and 3), we were interested

to know whether the data could reject (1) monophyly of African Pachypodium, (2)

monophyly of Malagasy Pachypodium, and (3) reciprocal monophyly of African and

Malagasy Pachypodium. These tests were done by comparing the most parsimonious

tree from the original heuristic tree search to the most parsimonious tree from a search

in which one of the above groups was used as a constraint. We carried out these analyses

for ITS and for the combined data. Because the trnL-F region was not sampled for one

of the African species (P. bispinosum), we were not able to evaluate these hypotheses on

the basis of chloroplast DNA alone. For ITS, the shortest tree compatible with the first

constraint (monophyletic African Pachypodium) was four steps longer (328 steps) than

the unconstrained tree (324 steps), which was judged not to be significant based on a

Templeton test (P = 0.25). A similar result was obtained for the combined data (396 steps

in the constrained tree versus 394 steps in the unconstrained tree; P = 0.64). For the

second constraint (monophyletic Malagasy Pachypodium), the shortest ITS tree compatible

with the constraint was only one step longer than the unconstrained tree, which was also

not significant based on a Templeton test (P = 0.71); again, the combined data were in

agreement (both trees 394 steps; P = 1.0). Finally, for the third constraint (reciprocal

monophyly of African and Malagasy Pachypodium), the shortest ITS tree compatible with
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the constraint was five steps longer than the unconstrained tree, which was not a significant

difference (P = 0.1); the combined data support this result 398 steps in the constrained tree

versus 394 steps in the unconstrained tree; P = 0.29.

DISCUSSION
Conflict
Our study identified significant conflict between the nuclear and chloroplast datasets,

based on the incongruence length difference test (see Materials and Methods). However,

we elected to combine the datasets for further analysis. Our choice to unite the conflicting

datasets is a conditional combination approach (Bull et al., 1993; Huelsenbeck, Bull &

Cunningham, 1996), based on the lack of conflict between well-supported internal nodes

(also called “hard conflict”) in the trnL-F and ITS trees (Fig. 2). Our combined approach

should be treated as tentative, despite the lack of clearly conflicting internal nodes in ITS

versus trnL-F trees.

Phylogenetic relationships
Our trnL-F trees suggest that Pachypodium is monophyletic, based on sampling of closely

related genera. However, because of a lack of appropriate outgroups for the nuclear

region (ITS), we were unable to evaluate the hypothesis of Pachypodium monophyly on

the basis of both genomes. Nevertheless, the monophyly of Pachypodium is generally

uncontroversial, and is supported by other molecular phylogenetic research (Livshultz et

al., 2007), as well as a suite of morphological characters, including alternate phyllotaxy

(most Apocynaceae have opposite leaf arrangement), a horseshoe-shaped retinacle (the

connection between the anther and the style head), loss of colleters associated with the

calyx, and stem succulence (Sennblad, Endress & Bremer, 1998).

Overall, our data do not provide sufficient phylogenetic resolution to draw conclusions

concerning the monophyly or non-monophyly of African and Malagasy Pachypodium.

Despite the recovery of several well-supported lineages in both African and Malagasy

Pachypodium, the basal branching relationships among these lineages is not well resolved

by ITS, trnL-F, or the combined data (Figs. 2 and 3). However, it should be noted that

trnL-F provides some evidence for the cohesiveness of African Pachypodium (Fig. 2B);

lack of ITS data for reliably vouchered P. bispinosum makes it impossible to test this

hypothesis using trnL-F, although sequence data for samples of P. bispinosum of unknown

wild origin (horticultural strains) do group with other African species in trnL-F trees (D.

Burge and A. Agrawal, unpublished data). In general, there are four mutually exclusive

hypotheses on the relationship between African and Malagasy Pachypodium, each of

which may represent a valid interpretation of our results: (1) reciprocally monophyletic

African and Malagasy Pachypodium, (2) monophyletic Malagasy Pachypodium derived

from within a basal grade of African Pachypodium, rendering African Pachypodium

paraphyletic, (3) monophyletic African Pachypodium arising from a basal grade of

Malagasy Pachypodium, with Malagasy Pachypodium paraphyletic, and (4) neither African

nor Malagasy Pachypodium monophyletic. Topology tests could not reject any of these

hypotheses.
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A recent estimate of 37–64 Ma for the divergence of stem Apocynaceae from its

closest relatives among the Gentianales (Bell, Soltis & Soltis, 2010) implies that the

crown age of Pachypodium is probably more recent than the ∼80 Ma timing for the

isolation of Madagascar from Africa (Yoder & Nowak, 2006). In fact, a recent review of

Madagascar biogeography suggests that most of Madagascar’s biotic connections are best

explained by long-distance dispersal during the Cenozoic, rather than ancient Gondwanan

vicariance (Yoder & Nowak, 2006). Thus, if Pachypodium did not originate in Madagascar,

it must have arrived on the island via long-distance dispersal. However, the lack of

phylogenetic resolution among major African and Malagasy lineages of Pachypodium

prevents preventing reliable reconstruction of geographic range evolution, including

dispersal-vicariance scenarios between Africa and Madagascar.

Additional molecular phylogenetic work will be required to obtain better support for

basal-branching relationships in Pachypodium, particularly the relationship between

African and Malagasy species. This work will likely require the sequencing of additional

loci, from both the chloroplast and nuclear genome. Resolution of relationships among

species from Lüthy’s (2004) section Gymnopus will also require additional work. In

Gymnopus, a number of widespread species (e.g., P. densiflorum and P. brevicaule) are

non-monophyletic. The lack of phylogenetic cohesiveness among populations in such

species is consistent with both hybridization following initial divergence, as well as

incomplete lineage sorting (retention of ancestral polymorphisms; Pamilo & Nei, 1988;

Maddison & Knowles, 2006), a phenomenon that often occurs during rapid diversification).

For future studies on section Gymnopus, rapidly evolving genetic markers such as low-copy

nuclear genes may help to discern species-trees from gene-trees, while population

genetic markers such as AFLPs and microsatellites might also help to decipher complex

relationships, especially in regions of geographic overlap among species.

Testing classification
Our exhaustive sampling of Pachypodium species and subspecies (Table 1) has provided the

opportunity to test existing morphology-based hypotheses on infrageneric relationships.

Our results support the most recent infrageneric classification of Pachypodium proposed

by Lüthy (2004; Table 2). Lüthy’s (2004) shrubby, predominantly yellow-flowered section

Gymnopus is clearly monophyletic (Fig. 3, PP 1.0; MP & ML BS 100%), as is the shrubby,

red-flowered section Porphyropodium (Fig. 3, PP 0.98; MP and ML 98%). Our results

also indicate a very close relationship between Porphyropodium and Gymnopus (Fig. 3,

PP 0.96; MP and ML BS >86%), a relationship not emphasized by past classifications.

Finally, the third section recognized in Lüthy’s (2004) classification, the mostly arborescent,

white-flowered Leucopodium, is marginally supported in the combined phylogenetic tree

(Fig. 3, PP 0.94; ML BS 71%). Overall, our results also support the tradition of using

corolla color as a basis for circumscription of taxa within Pachypodium (Fig. 3; Poisson,

1924; Pichon, 1949; Perrier de la Bâthie, 1934; Lüthy, 2004). Nonetheless, we agree with

Lüthy (2004) that an ideal infrageneric classification should use multiple morphological

characteristics to define groups.
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Below the section level, previous classifications of Pachypodium are not well supported

by our molecular phylogenetic results. One clear exception is Lüthy’s (2004) series Contorta

(Table 2), which was defined on the basis of seed morphology to include the arborescent

P. rutenbergianum and P. sofiense, as well as the limestone-endemic P. decaryi. Our results

show that this group is strongly monophyletic (Fig. 3, PP 1.0; MP and ML BS 100%),

confirming the detailed work of Lüthy (2004). However, this contrasts with most previous

opinions. Pichon (1949), for example, allied P. decaryi with another limestone endemic, P.

ambongense.

Within section Gymnopus, Lüthy’s (2004) series Densiflora (Table 2) roughly corre-

sponds to a clade that we recover nested inside Gymnopus (Fig. 3, Clade A, PP 1.0; MP

BS 76%). However, Clade A includes P. rosulatum subsp. bicolor and P. brevicaule subsp.

brevicaule, both considered members of series Ramosa by Lüthy (2004). Our results

indicate that the floral characters used by Lüthy (2004) and others to define groups within

Gymnopus (Table 2) are homoplasious.

Most past classifications of Pachypodium have dealt in very sparse detail, if at all,

with the distinctive and morphologically heterogeneous African members of the genus.

As discussed above (see Phylogenetic relationships), our results suggest that African

Pachypodium comprises two distinctive lineages, one containing the morphologically

similar P. lealii and P. saundersii (Rapanarivo et al., 1999), and a second containing the

bizarre monopodial tree P. namaquanum and the tuberous shrubs P. bispinosum and P.

succulentum. The close relationship between P. lealii and P. saundersii (Fig. 3, PP 1.0; MP

BS 95%) has been noted for some time, as indicated by a reduction to synonymy under P.

saundersii that was undertaken by Rowley (1973). The close relationship of P. namaquanum

to P. bispinosum and P. succulentum was less expected (Fig. 3, PP 1.0; MP and ML BS

100%). Vorster & Vorster (1973) did propose a close relationship between P. namaquanum

and P. bispinosum based on corolla shape. However, these authors also proposed that the

asymmetrical flowers of P. succulentum linked this species to P. lealii and P. saundersii more

than to P. bispinosum. Our results clearly show that P. bispinosum and P. succulentum are

one another’s closest relatives, sister to P. namaquanum.

Conservation
Conservation planning for threatened flora and fauna must take into consideration the

evolutionary potential of populations and taxa (Forest et al., 2007). Ignoring evolutionary

potential will lead to losses of diversity that compromise the ability of these groups to

adapt and survive in the long-term. In the case of Pachypodium, phylogenetic results

presented here show that several species and groups of species are strongly divergent from

other Pachypodium (e.g., P. decaryi and most African Pachypodium; Fig. 3). These groups

represent important islands of phylogenetic diversity within Pachypodium, the loss of

which would drastically reduce the overall diversity of the genus. Many members of the

Gymnopus section of Pachypodium, by contrast, are very shallowly divergent based on our

results (Fig. 3). The members of Gymnopus are adapted to a great variety of habitats, and

therefore may contain much ecological diversity in terms of local adaptation (Lüthy, 2004).
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However, in comparison to highly divergent taxa such as P. decaryi, each individual

Gymnopus taxon represents a very small proportion of the total phylogenetic diversity

of Pachypodium. In light of the always-limited resources available for conservation, an

effort should be made to prioritize the protection of phylogenetically divergent lineages of

Pachypodium as well as the overall genetic diversity of the genus. We recommend stronger

conservation measures—including greater restrictions on the trade of wild-collected

plants—for very narrowly distributed species having Bayesian PP of 1.0 in the combined

ITS and trnL-F tree (Fig. 3). This includes the Malagasy P. baronii, P. windsorii, and

P. decaryi. The highly divergent African species are not included in this list due to their

relatively wide geographic distributions.
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Appendix 1
Sampled plants and DNA sequences. For each plant the within-study code is in brackets,

followed by collector and collector number, herbarium or living collection for deposition

of voucher specimen (in parentheses; ZSS indicates living collection of Sukkulenten-

Sammlung Zürich), provenance, and GenBank numbers for ITS and trnL-F; Abbreviation

‘s.n.’ indicates no collection number.

Funtumia africana—[OG1] National Botanic Garden of Belgium 19514728 (BR),

cultivated Plant; ITS: KC189049.

Pachypodium ambongense—[P003] W. Röösli, R. Hoffman, & M. Grubenmann, s.n.,

collected 25.xi.1989 (P, ZSS), Namoroka, Madagascar; ITS: HQ847410; trnL-F: HQ847465.

P. baronii—[P004] A. Razafindratsira, s.n., collected 3.i.1988 (ZSS), Befandriana Nord,

Madagascar; ITS: HQ847411; trnL-F: HQ847466. [P005] W. Röösli & B. Rechberger, s.n.,

collected xii.1990 (ZSS), Mandritsara, Madagascar; ITS: HQ847412; trnL-F: HQ847467.

P. bispinosum—[A049] A. Agrawal, s.n. (DUKE), cultivated plant; ITS: JN256214. P.

brevicaule subsp. brevicaule—[P006] W. Röösli & R. Hoffman 92/98 (ZSS), Mount

Ibity, Madagascar; ITS: HQ847414; trnL-F: HQ847469. [P007] W. Röösli & R. Hoffman

43/01 (Z), Ranomainty, Madagascar; ITS: HQ847415; trnL-F: HQ847470. [P008] J.

Lüthy, s.n., collected 1.vi.2006 (ZSS), Andrembesoa, Madagascar; ITS: HQ847416; trnL-F:

HQ847471. P. brevicaule subsp. leucoxanthum—[P066] J. Lüthy, s.n., collected 6.i.2006

(ZSS), undisclosed locality, Madagascar; ITS: KC189050. P. decaryi—[P009] W. Rauh

72255 (HEID), Montagne des Francais, Madagascar; ITS: HQ847417; trnL-F: HQ847472.

[P010] W. Röösli & R. Hoffman 22/99 (ZSS), Montagne des Francais, Madagascar; ITS:

HQ847418; trnL-F: HQ847473. [P011] W. Röösli & R. Hoffman 22/00 (ZSS), Ankarana,

Madagascar; ITS: HQ847419; trnL-F: HQ847474. P. densiflorum—[P012] W. Röösli &

R. Hoffman 01/94 (ZSS), Mount Ibity, Madagascar; ITS: HQ847420; trnL-F: HQ847475.
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[P013] W. Röösli & R. Hoffman 42/01 (ZSS), Ranomainty, Madagascar; ITS: HQ847421;

trnL-F: HQ847476. [P014] W. Röösli & R. Hoffman, s.n., collected 1.xii.1992 (ZSS),

Ambatofinandrahana, Madagascar; ITS: HQ847422; trnL-F: HQ847477. [P015] W.

Röösli & B. Rechberger, s.n., collected 20.i.1989 (ZSS), Fianarantsoa, Madagascar; ITS:

HQ847423; trnL-F: HQ847478. [P016] W. Röösli & R. Hoffman 57/98 (K, P, WAG),

Plateaux Horombe, Madagascar; ITS: HQ847424; trnL-F: HQ847479. [P017] W. Röösli

& R. Hoffman 45/93 (ZSS), 107 km W Antsirabe, Madagascar; ITS: HQ847425; trnL-F:

HQ847480. [P018] W. Röösli & R. Hoffman 31/03 (ZSS), Mahatsinjo, Madagascar; ITS:

HQ847426; trnL-F: HQ847481. [P049] A. Razafindratsira, s.n., collected xii.2006 (ZSS),

Ambodiriana, Madagascar; ITS: HQ847427; trnL-F: HQ847482. P. eburneum—[P019]

W. Röösli & R. Hoffman 01/96 (P, MO, TAN, WAG, ZSS), Mount Ibity, Madagascar;

ITS: HQ847428; trnL-F: HQ847483. [P020] J. Lüthy, s.n., collected 1.vi.2006 (ZSS),

Andrembesoa, Madagascar; ITS: HQ847429; trnL-F: HQ847484. P. geayi—[P021] W.

Röösli & R. Hoffman 29/04 (ZSS), Ifaty, Madagascar; ITS: HQ847430; trnL-F: HQ847485.

P. horombense—[P022] W. Röösli & B. Rechberger, s.n., collected 21.xii.1990 (ZSS),

Betroka, Madagascar; ITS: HQ847431; trnL-F: HQ847486. [P023] W. Röösli & R.

Hoffman 34/01 (ZSS), Beraketa, Madagascar; ITS: HQ847432; trnL-F: HQ847487. [P024]

W. Röösli & R. Hoffman 73/96 (WAG), Andalatanosy, Madagascar; ITS: HQ847433;

trnL-F: HQ847488. P. inopinatum—[P025] W. Röösli & R. Hoffman 46/93 (P, TAN,

HEID, WAG, ZSS), Manakana, Madagascar; ITS: HQ847434; trnL-F: HQ847489. P.

lamerei—[P001] W. Röösli & R. Hoffman 18/06 (ZSS), Fiherenana River, Madagascar;

ITS: HQ847435; trnL-F: HQ847490. [P026] W. Röösli & R. Hoffman 20/02 (ZSS),

Fiherenana River, Madagascar; ITS: HQ847436; trnL-F: HQ847491. [P027] W. Röösli &

R. Hoffman, s.n., collected 26.i.1994 (WAG, ZSS), Ihosy, Madagascar; ITS: HQ847437;

trnL-F: HQ847492. [P028] W. Röösli & R. Hoffman, s.n., collected 24.i.1994 (ZSS),

Beraketa, Madagascar; ITS: HQ847438; trnL-F: HQ847493. [P029] W. Röösli & R.

Hoffman 31/01 (WAG, ZSS), Andalatanosy, Madagascar; ITS: HQ847439; trnL-F:

HQ847494. [P030] W. Röösli & R. Hoffman 19/01 (ZSS), Lac Anony, Madagascar; ITS:

HQ847440; trnL-F: HQ847495. [P031] W. Röösli & R. Hoffman 79/96 (P, WAG, ZSS), Fort

Dauphin, Madagascar; ITS: HQ847441; trnL-F: HQ847496. P. lealii—[P053] Huntington

Botanic Garden 85642 (DUKE), cultivated Plant; ITS: HQ847442; JN256217; JN256216;

JN256215; trnL-F: HQ847497. P. menabeum—[P032] W. Röösli & B. Rechberger,

s.n., collected 10.xii.1991 (ZSS), Antsalova, Madagascar; ITS: HQ847443; trnL-F:

HQ847498. [P033] W. Röösli & R. Hoffman 07/03 (ZSS), Antsalova, Madagascar; ITS:

HQ847444; trnL-F: HQ847499. [P034] W. Röösli & R. Hoffman 03/02 (ZSS), Bekopaka,

Madagascar; ITS: HQ847445; trnL-F: HQ847500. P. mikea—[P002] W. Röösli & R.

Hoffman 26/05 (P, TAN), South of Morombe, Madagascar; ITS: HQ847446; trnL-F:

HQ847501. P. namaquanum—[P054] J. Lüthy, s.n. (University of Bern Institute of

Plant Sciences, living collection), cultivated Plant; ITS: HQ847447; trnL-F: HQ847502.

P. rosulatum subsp. bemarahense—[P035] W. Röösli & R. Hoffman 08/03 (TAN),

Antsalova, Madagascar; ITS: HQ847448; trnL-F: HQ847503. P. rosulatum subsp.

bicolor—[P036] W. Röösli & R. Hoffman 42/93 (P, MO, TAN, WAG, ZSS), Berevo,
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Madagascar; ITS: HQ847449; trnL-F: HQ847504. P. rosulatum subsp. cactipes—[P037]

W. Röösli & R. Hoffman 77/96 (BR, K, MO, P, TAN, WAG, ZSS), Fort Dauphin,

Madagascar; ITS: HQ847450; trnL-F: HQ847505. P. rosulatum subsp. gracilius—[P038]

W. Röösli & R. Hoffman 36/01 (ZSS), Isalo, Madagascar; ITS: HQ847451; trnL-F:

HQ847506. [P039] W. Röösli & R. Hoffman 42/05 (K, MO, WAG), Bezaha, Madagascar;

ITS: HQ847452; trnL-F: HQ847507. P. rosulatum subsp. makayense—[P040] W. Röösli

& R. Hoffman 08/02 (MO, P, TAN), Makay, Madagascar; ITS: HQ847453; trnL-F:

HQ847508. P. rosulatum subsp. rosulatum—[P041] W. Röösli & R. Hoffman 26/96

(WAG, ZSS), Antsakabary, Madagascar; ITS: HQ847454; trnL-F: HQ847509. [P042]

W. Röösli & R. Hoffman 21/95 (MO, P, WAG, ZSS), Mandritsara, Madagascar; ITS:

HQ847455; trnL-F: HQ847510. [P043] A. Razafindratsira, s.n., collected 30.xii.1991

(ZSS), Bealanana, Madagascar; ITS: HQ847456; trnL-F: HQ847511. [P044] W. Röösli

& R. Hoffman 29/95 (ZSS), Ananalava, Madagascar; ITS: HQ847457; trnL-F: HQ847512.

[P045] W. Röösli & R. Hoffman 23/03 (ZSS), Benetsy, Madagascar; ITS: HQ847458;

trnL-F: HQ847513. P. rutenbergianum—[P046] W. Röösli & R. Hoffman 19a/95 (ZSS),

Anjohibe, Madagascar; ITS: HQ847459; trnL-F: HQ847514. P. saundersii—[P055]

M. Lehmann, s.n. (plants grown by N. Plummer) (DUKE), Karongwe Game Reserve,

South Africa; ITS: HQ847460; trnL-F: HQ847515. P. sofiense—[P048] W. Röösli & R.

Hoffman 14/96 (P, WAG), Mandritsara, Madagascar; ITS: HQ847461; trnL-F: HQ847516.

P. succulentum—[P056] J. Lavranos, s.n. (University of Bern Institute of Plant Sciences,

living collection), Grahamstoon, South Africa; ITS: HQ847462; trnL-F: HQ847517.

P. windsorii—[P050] A. Razafindratsira, s.n., collected 22.xii.1989 (ZSS), Windsor Castle,

Madagascar; ITS: HQ847463; trnL-F: HQ847518. [P051] W. Röösli & R. Hoffman 17/00

(ZSS), Montagne des Francais, Madagascar; ITS: HQ847464; trnL-F: HQ847519.
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Farris JS, Källersjö M, Kluge AG, Bult C. 1995. Testing significance of incongruence. Cladistics
10:315–319 DOI ./j.-..tb.x.

Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution
39:783–791 DOI ./.

Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, Faith DP, Balmford A, Manning JC,
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