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Abstract. Genome editing techniques are considered to be 
one of the most challenging yet efficient tools for assisting 
therapeutic approaches. Several studies have focused on the 
development of novel methods to improve the efficiency of 
gene editing, as well as minimise their off-target effects. 
clustered regularly interspaced short palindromic repeats 
(cRISPR)-associated protein (cas9) is a tool that has revo-
lutionised genome editing technologies. New applications 
of cRISPR/cas9 in a broad range of diseases have demon-
strated its efficiency and have been used in ex vivo models 
of somatic and pluripotent stem cells, as well as in in vivo 
animal models, and may eventually be used to correct defec-
tive genes. The focus of the present review was the recent 
applications of cRISPR/cas9 and its contribution to the 
treatment of challenging human diseases, such as various 
types of cancer, neurodegenerative diseases and a broad 
spectrum of other disorders. cRISPR technology is a novel 
method for disease treatment, enhancing the effectiveness 
of drugs and improving the development of personalised 
medicine.
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1. Introduction

Since the discovery of the clustered regularly interspaced short 
palindromic repeats (cRISPR) system in 1987 (1), there have 
been significant advances in the field of gene therapy. The 
cRISPR system is an adaptive prokaryotic immune system, 
which serves as a bacterial defence mechanism against inser-
tion of foreign genomic material and prevents the destructive 
impacts of mobile genetic elements delivered by phages and 
plasmids (2). cRISPR/cas9 has been shown to boost the host 
immune system using the invading organisms' genetic material 
in order to protect the host from further invasion. The protec-
tive mechanism is completed with the acquisition of spacer 
sequences by cRISPR-associated spacer (cas) proteins (3). 
cas proteins are guided to the exogenous spacer sequences of 
foreign nucleic acids by cRISPR-associated RNA (crRNA) (4). 
The mechanism involves spacer identification and anchoring 
by cas proteins, providing protection against further inva-
sion. The existence of cRISPR was discovered in 1987 by 
Ishino et al (1), who cloned a portion of the cRISPR sequence 
together with the inhibitor of apoptosis gene (1). This discovery 
resulted in a novel method for gene-based therapeutics for the 
treatment of challenging disorders (5). Further analysis of 
prokaryotes, such as Archaeoglobus fulgidus, revealed other 
constituents of the cRISPR system, including non-messenger 
RNA sequencing, transcription of dNA repeats loci (target 
dNA sequences that are acquired and preserved in cRISPR 
loci) to small RNAs (Fig. 1) (6), and the cas gene family (which 
is associated with cRISPR loci during immune processes) (7). 
Furthermore, identification of specific spacer sequences from 
the viral genome revealed how bacterial systems exhibited 
phenotypic resistance against the phage (7).

The aim of the present review was to describe the chal-
lenges and achievements of cRISPR customisation, taking 
into consideration various factors that may affect therapeutic 
outcomes in vitro and in vivo.

2. DNA repair systems

As a therapeutic method, cRISPR is used for both gene 
knockout and gene knock-in to correct a specific gene. 
Generation of double-strand breaks (dSBs) in the target 
gene results in the initiation of two endogenous dNA repair 
mechanisms: Non-homologous end joining (NHEJ) and 
homology-directed repair (HdR).
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NHEJ joins a dSB without the use of a homologous dNA 
template (8,9), resulting in mutations, deletions and insertion 
of potentially nonsensical genetic material (Fig. 2) (10). Given 
the functional characteristics of NHEJ, it is considered an 
error-prone repair pathway, as it may result in the introduc-
tion of random indels and frameshifts in the sequence of a 
gene causing gene knockout, insertion or deletion of an amino 
acid, incomplete truncation and, ultimately, deactivation of the 
coded protein (Fig. 2). NHEJ is not limited to a specific cell 
cycle phase, whereas HdR occurs in the S or G phase and uses 
the sister chromatid as a template for homologous repair (11). 
HdR is a more precise dNA repair mechanism, the function of 
which has become a focus of attention along with site‑specific 
gene editing tools in gene editing technology (9,12-16).

3. Overview of other gene editing tools

Various tools have been developed to perform knock-in and 
knockout in target genes to improve gene editing, and these 
have been used as therapeutic tools to treat certain diseases.

Zinc‑finger nucleases (ZFNs) and transcription activator‑like 
effector nucleases (TALENs). ZFNs are sequence-specific 
nucleases that are frequently found in eukaryotes and were 
first discovered as repetitive zinc‑binding domains in Xenopus 
oocytes (17), which are currently known as zinc finger 
motifs. Analysis of the ZFN crystal structure revealed the 
presence of 30 cysteine and histidine residues (each in pair; 
cys2-His2) bound to zinc ions that provide stability to their 
ββα structure (18). ZFNs also contain a non‑specific Fok‑1 
restriction enzyme, which is bound to the dNA-binding 
domain of eukaryotic transcription factors known as zinc 
finger proteins (ZFPs) containing Cys2‑His2 fingers. Each 
finger identifies almost three base pairs of DNA sequences of 
target dNA and assists the binding of the ZFN to a particular 
sequence (17,19). However, there are difficulties in assembling 
ZFP fingers to bind to specific extended dNA sequences. 
Maeder et al (20,21) designed and assembled ZPFs that could 
bind to a specific 200‑bp DNA sequence. However, binding 
may occur at random sites of the genome and, thus, may 
complicate gene correction. Furthermore, frequent off-target 
effects in the number of loci is another concern (22,23). 
Researchers successfully addressed this issue by designing 
ZFN pairs where one ZFN binds to the forward strand and 
the other to the reverse strand. Each pair contains distinct 
heterodimer Fok-1 domains with opposite charges, assisting 
in the formation of dSBs (Fig. 3) (24-26).

Subsequently, another method for gene editing, termed 
TALENs, was developed, which is considered more efficient, 
and has more advanced potential gene therapy applica-
tions (27,28). TALENs are fusion proteins composed of TALE 
and Fok-1 nucleases. The proteins, 33-35 amino acids in length, 
contain repeat variable di-residues, which are central binding 
protein regions that may be customized (29,30). compared 
with ZFNs, TALENs are more suitable for therapeutic use due 
to the 1:1 TALE‑DNA binding affinity (31) and lower rates 
of cytotoxicity (32). However, TALENs delivery is dependent 
on vectors, and developing suitable vectors has proved chal-
lenging, as the size of the cdNA that encodes TALENs is 
larger than the cdNA which encodes ZFNs (Fig. 3) (33).

CRISPR. To design a customized cRISPR system, a 
single-guide (sg)RNA must be designed (34). Jinek et al (35) 
and cong et al (5) used the cRISPR/cas system as a genome 
editing tool and, since then, it has been extensively studied by 
researchers to identify other characteristics of the cIRSPR 
system, which may be used for eukaryotic genome editing 
and, thus, treatment of various diseases. Liang et al (36) used 
this system to correct a mutation in the haemoglobin subunit β 
(HBB) gene whilst working on the haemoglobin subunit δ 
(HBd) gene (which is homologous to the HBB gene) (36).

CRISPR classification. The CRISPR/Cas system is classified 
into two types, with each type comprising various subtypes 
(I‑V) based on their flanking Cas genes and location of the 
target on foreign dNA (37), which have improved our under-
standing of and ability to develop phage-resistant strains and the 
phylogenetic classification of bacteria. During phage/plasmid 
invasion, cRISPR/cas functions in three phases: Adaptation, 
expression and interference. Each stage is associated with 
specific characteristics that result in antiplasmid or antiviral 
immunity (38). Adaptation consists of an integration process 
by which the invader-derived spacers (known as the spacer 
sequence) merge with the cRISPR array. In the next step, the 
cRISPR loci are transcribed into cRISPR-associated RNA 
(crRNA), which contains the spacer sequence. Subsequently, 
an endonuclease is produced and uses the spacer sequences as 
a guide to cleave the invader genome (Fig. 4) (39).

The functional characteristics of the cRISPR/cas system 
are defined by the properties of the cas1 and cas2 genes. 
Taxonomic studies initially classified the CRISPR/Cas system 

Figure 1. Schematic representation of the cRISPR immune system in the 
acquisition of foreign genetic material. The cRISPR system consists of a cas 
operon containing cas genes, and a cRISPR array that contains identical 
repeat sequences and spacers. In the case of viral or plasmid-based invasion, 
cRISPR acquires the protospacer sequence (red) of the viral dNA, which 
is achieved via a cas1-cas2 complex and integrated into the cRISPR array, 
which is further transcribed to pre-crRNA. cRISPR, clustered regularly 
interspaced short palindromic repeats.
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into three types based on the particular marker proteins: 
cas3 (type I), cas9 (type II) and csm/cmr (type III) (40). 
Subsequently, classes IV and V of the cRISPR editing system 
were added (41). The general classification of the CRISPR 
system is based on the genes that encode the functional 
proteins and factors (cascade, csm, cmr complex or cas9). 
class 1 cRISPR systems functions consist of multi-subunit 
crRNA-effector complexes, and includes type I, III and puta-
tive type IV (41). class 2 only consists of cas9 as a single 
protein, which performs all the functions of the cRISPR 
system, a feature also observed in putative class V (40).

Type I cRISPR is defined by the significance of the 
cascade complex followed by the cas3 nuclease (42). 
Pre-crRNA, which is the product of a transcribed cRISPR 
array, is cleaved by cas6e, resulting in the production of 
crRNA (43). crRNA, which is associated with cascade, is 
responsible for locating the protospacer in the target dNA. 
Furthermore, another subunit of Cascade, Cas8, identifies and 
locates protospacer adjacent motif (PAM), which is a short 
sequence located near the target sequence (44). The PAM 
sequence is the crucial factor for type I cascade-cas immune 
defence mechanisms; its dysfunction results in an inability of 

crRNA to recognise the spacers in target dNA by cascade 
proteins (45,46), and inhibits R-loop formation between 
crRNA and target dNA, a process which eventually results 
in viral evasion from cRISPR screening (47,48). In the pres-
ence of a fully functional cRISPR system, recognition leads 
to activation of the cas3 nuclease, which creates nicks on the 
single-stranded dNA of the target (virus or plasmid), resulting 
in its degradation (Fig. 4) (49).

Unlike type I, type II relies on cas9 as the sole cas protein, 
two types of RNAs, RNase III and tracer RNA (13), and a PAM, 
which is located downstream of the protospacer sequence in 
target dNA and recognised by the cas9 protein (50). A dSB 
is introduced by HNH nuclease domain cleaving one strand, 
and Ruvc nuclease domain cleaving another (51). However, 
cleavage requires identification of a PAM sequence by Cas9, 
which results in dissociation of dsdNA and the formation 
of an R-loop between the crRNA and dNA. This structural 
change results in the binding of the tracer RNA to the cleavage 
target sequence (52,53).

Type III is unique to cas6, whose endoribonuclease mech-
anism produces crRNA by cleaving pre-crRNA (5). Unlike 
previous models of the cRISPR system, this type introduces 

Figure 3. Comparison of ZFNs and TALENs, non‑specific nucleases designed to cleave the genome at a specific site. ZFNs, zinc finger nucleases; TALENs, 
transcription activator-like effector nucleases.

Figure 2. dNA repair mechanisms used for gene editing. Formation of double-stranded breaks to initiate endogenous dNA repair by NHEJ, resulting in acci-
dental insertions/deletions, or by HdR, which uses a template dNA strand for repair. NHEJ, non-homologous end joining; HdR, homology directed repair.
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8-nucleotide repeat sequences, known as crRNA tags, as a 
result of crRNA cleavage by cas6. The crRNA tag, which is 
located downstream of the spacer sequence (54-56), undergoes 
maturation and is modified into six nucleotides (53). The 
size of the crRNA complex increases and forms cas10-csm 
in type III-A and cas10-cmr complex III-B systems (54). In 
contrast to type I and type II, type III targets both dNA and 
RNA, producing co-transcriptional crRNA-guided cleavage 
of the target dNA (57,58). The palm domain of cas10 cleaves 
dNA strands (58) and csm3 (type III-A), and cmr4 (type III-B) 
cleave RNA transcripts (59,60). Another notable difference of 
type III is that the PAM is not necessarily essential for the 
system to initiate immune mechanisms (Fig. 4).

4. Overview of therapeutic approaches

The identification of the CRISPR system allowed for improve-
ments to gene editing technologies, and may improve current 
therapeutic techniques in the field of medicine, genetics, 
embryology, bioinformatics and pathology. compared with 
the other genome editing techniques, cRISPR/cas9 is more 
cost-effective, easier to use and can be used to perform 
specific gene knockdown, or base insertions and substitutions 
with lower rates of mutations with the known mechanism of 
cRISPR system.

Neurodegenerative diseases. Neurodegenerative diseases are 
characterised by disruption of neuronal function or loss of 
neurons that cause progressive central nervous system dysfunc-
tion and, thus, are frequently difficult to treat (61). There are 
numerous pathological neurodegenerative disorders, including 
Alzheimer's disease (Ad), which is a fatal form of progres-
sive dementia, and Parkinson's disease, which is a progressive 

movement disorder. These neurodegenerative diseases are 
relatively common (62). Familial Ad, which may be caused 
by point mutations or deletions in the genes encoding amyloid 
precursor protein (APP), presenilin (PSEN)1 or PSEN2 (62), 
accounts for <5% of Ad cases. Sporadic Ad, which develops 
due to environmental factors, such as ageing or injury following 
brain ischemia, accounts for >90% of Ad cases (63). In vitro 
analyses of induced pluripotent stem cells (iPScs) that have 
been treated with cRISPR/cas9 provide future perspectives in 
the treatment of neurodegenerative diseases, such as Ad (64). 
Several studies have used the cRISPR/cas9 system to identify 
defective and upregulated genes in early- and late-onset Ad. 
Analysis of chromosome 1q31-42 in early-onset familial Ad 
revealed a point mutation in PSEN2 (65), which was found to be 
correlated with a significant increase in the β-amyloid peptide 
ratio (Aβ42-43/40) (66), a change in voltage-gated potassium 
channel expression (67), and an increase in the concentration 
of calcium in the endoplasmic reticulum of neurons (68), 
which leads to neurotoxicity, cognitive deterioration and 
short-term memory loss in patients with Ad, primarily due 
to basal forebrain cholinergic neuron (BFcN) damage. When 
healthy BFcNs were transplanted into an Ad mouse model, a 
significant improvement in learning ability was observed (69). 
These findings led to further analyses of BFCNs, which were 
established from in vitro development of iPScs obtained from 
the fibroblasts of humans with a PSEN2 mutation (70). The 
PSEN2N141 iPSc-derived BFcNs, characterised by a lack of 
electrophysiological properties, were observed to exhibit an 
improvement in neural activity and amyloid ratio following 
correction of the PSEN2 gene using cRISPR/cas9 (71). Other 
studies performing similar analyses confirmed the effect of 
the cRISPR/cas9 genome editing system on cells, the damage 
of which was associated with Ad.

Figure 4. comparison of type I, II and III cRISPR systems in crRNA maturation and interference. Upon transcription of cRISPR following the acquisition 
stage, pre-crRNA undergoes a maturation stage, which is processed by cas6 in type I and III. In type II, the maturation step is performed by cas9 accompanied 
by tracer RNA and RNase III. The interference step varies notably between the different types. cRISPR, clustered regularly interspaced short palindromic 
repeats; crRNA, cRISPR-associated RNA; cas, cRISPR-associated protein; pre-crRNA, precursor crRNA; PAM, protospacer adjacent motif.
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Scientists from the New York Stem cell Foundation 
Research Institute expanded their studies on PSEN1 and 
PSEN2 point mutations in familial Ad (72). They demon-
strated a correlation between the inflammasome (a component 
of an innate immune system in a myeloid cell) and PSEN2 
mutations using cRISPR/cas9 (71). A correction of the point 
mutation on the PSEN2 gene in iPScs derived from Ad 
patients was performed using cRISPR/cas9 and template 
sgRNA, as well as single-stranded oligonucleotides (ssOdNs) 
that could edit the sequence in exon 5 of the PSEN2 gene 
located on chromosome 1 (1q42.13) (73). In vitro gene editing 
using the cRISPR/cas9 system reversed the effect of the 
mutated PSEN2 gene on the increase of amyloid plaques 
(Aβ42/40) in iPSC‑derived BFCNs in the cerebrospinal fluid, 
which was directly associated with the onset of Ad (71). The 
in vivo effect of cRISPR/cas9 on the mutated APP gene 
shows the system's ability to reduce neurotoxicity in Ad 
patients. The APPsw allele in the fibroblasts of human patients' 
with an APPsw mutation was transfected using cRISPR/cas9 
with a gRNA designed to specifically mutate the allele. There 
was a considerable decrease in heterozygous APP alleles 
(APPsw/WT) and in the β-amyloid ratio (73). Additionally, 
the S. pyogenes cRISPR system has been shown to target 
specific desired genes or alleles (e.g., the APPsw allele) 
without disruption or indel formation in the other alleles, such 
as APPWT (73). However, in vivo analysis in a Tg2576 mouse 
model (mice with an age‑deficient cognitive ability that over-
express mutant APP) using exosome-adeno-associated virus 
(AAV)1 with cRISPR/cas9 and gRNA, showed indel forma-
tion and dNA frameshifts in the APPsw alleles (73). Although 
cRISPR/cas9 may successfully alter the APPsw allele and 
reduce the β-amyloid ratio in brain cells, further investigations 
and clinical trials are required to improve the system and to 
reduce or ideally nullify indel formation.

Cancer therapy and drug discovery. Before the discovery of 
gene editing tools, several complications in cancer therapy 
could not be efficiently addressed, as drug resistance had 
not been effectively identified as a possible cause (74-76). 
CRISPR/Cas9 has facilitated the identification of genes asso-
ciated with drug resistance by exposing drug-resistant cells to 
cRISPR/cas9 gRNAs, each of which individually knock out 
a single gene at a time in each cell (77), and the results may be 
used to introduce alternative drugs with increased efficacy for 
improved outcomes (77).

For drug design, animal models and human cell lines are 
the optimal platforms for testing specific drug toxicity and 
efficacy prior to its use in humans. However, animal models, 
as well as in vitro analysis of human cell lines, may not provide 
representative and conclusive results regarding the effective-
ness of a particular drug. cRISPR/cas9 has provided a means 
to modify cells to allow them to more accurately represent 
human models for different types of cancer. Id8 (mouse 
ovarian surface epithelium) cells, which were obtained from 
Id8 mice with ovarian cancer with the TP53 and BRcA2 
genes knocked out using cRISPR/cas9, displayed characteris-
tics of a high-grade serous carcinoma (78). High-grade serous 
ovarian carcinomas (HGScs) exhibit reduced activity of TP53 
and BRcA genes, loss of ability to form Rad51 foci (associ-
ated with dSB repair), and sensitivity to poly(AdP-ribose) 

polymerase inhibition (79). cRISPR/cas9 has assisted in the 
development of more representative models of cancer that are 
likely to be increasingly used for evaluating drug safety and 
eliminating drug resistance in human diseases.

In addition to drug design, cRISPR/cas9 has been 
proposed as a promising gene editing tool in cancer therapy. 
The dcas9 (mutated cas9 without endonuclease activity, with 
added transcriptional activators on dcas9 or gRNA) is used 
to target specific genes by either activating or knocking them 
out, when combined with transcriptional activation or inhibi-
tion (80). Epigenome editing is another approach to cancer 
treatment, in which dCas9 is tethered to histone modifiers 
involved in dNA methylation to disturb processes associated 
with cancer progression, as dNA methylation is observed in 
the majority of cancers (81).

To determine the effects of the cRISPR/cas9 system 
on different malignancies, such as leukaemia, K562 human 
myeloid leukaemia cells, which do not normally harbour a 
mutation in the isocitrate dehydrogenase (IdH2) gene, under-
went a dSB and point mutation on the IdH2 R140Q locus 
following transfection with a plasmid which contained a sgRNA 
and cRISPR/cas9. Following the mutation, gene repair was 
performed using another transfection with a pBS-SK+ vector 
with a CRISPR/Cas9 and fluorescent‑template DNA followed 
by sgRNA to check gene correction rate on point-mutated 
cells (82). The results revealed high levels of H3K9me2, 
H3K27me2 and H3K4me3 expression, which indicated hyper-
methylation of chromatin in mutated cells (83). In other studies, 
cRISPR/cas9 was used as a tracking device to determine 
the effect of IL (interleukin)4-induced signal transducer and 
activator of transcription (Stat)6 activation on the elimination 
of leukaemia cells by using lentiviral vectors containing cas9 
and sgRNA for Stat6 (84). The results indicated that IL4 and 
its antileukemic effects were dependent on the ability of acute 
myeloid leukaemia cells to activate Stat6 (84), highlighting 
the potential of the cRISPR/cas9 system as a therapeutic and 
diagnostic tool in various diseases. Several studies have been 
performed to assess the therapeutic potential of the cRISPR 
system for treating different types of cancer. 2cT-cRISPR 
assay is used to identify the genes causing resistance to 
immune cells (85). The test consists of two types of target 
cells and effector cells, such as melanoma cells and cd8+ 
T cells, respectively. The aim of the assay is to identify factors 
mediating the growth of melanoma cells following an immune 
system response, and to design efficient therapeutic methods 
to augment immunotherapy against cancer cells. These assays 
were performed in vivo on c57BL/6J mice (85). Other studies 
focused on modifying chimeric antigen receptor (cAR) T cells 
in order to target cancer cells, and showed that cRISPR/cas9 
was more effective compared with RNA interference, which is 
only partially effective (86). Thus, scientists improved the effi-
ciency of the technique by using cRISPR/cas9, TALENs and 
ZFN, which reduced the off-target effects (87-93). However, 
the possibility of recurrence following treatment is considered 
to be a notable disadvantage that should be taken into account 
when designing the most effective therapy to decrease the 
possibility of the need for repeated treatments (88). Recent 
studies have demonstrated that cAR T-cell therapy may a 
promising treatment for various diseases, including cancer. 
cRISPR is a system that may be used for improving cAR 
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T cells. cAR permanent tonic signalling has been shown to 
reduce antitumor activity (89-93). Human cAR T cells modi-
fied with CRISPR/Cas9 gene editing, which contained 4‑1BB 
and cd3z intracellular signalling domains, eliminated tumour 
cells by targeting the cd19+ B cells that are associated with 
increased tumorigenesis (89).

Duchenne muscular dystrophy (DMD). dMd is an X-linked 
recessive muscular disorder caused by certain mutations of the 
dMd gene, which is located on chromosome 21. The mutation 
leads to a decrease in the levels of dystrophin, which is the 
protein responsible for normal muscular integrity (94). Men 
are more prone to this disease, as they carry one X chromo-
some (95). Of all the mutations identified in the DMD gene, 
~86% are deletions and are present in an exon (96). In an attempt 
to regenerate muscle tissues to replace damaged tissue, haema-
topoietic therapy using haematopoietic stem cells obtained 
using ex vivo expansion of myoblasts from satellite cells has 
been developed. However, this technique was not found to be 
beneficial for patients with DMD (97), as myoblasts lose their 
ability to engraft into muscle tissues (98). iPScS and embry-
onic stem cells (EScs) are capable of producing a vast quantity 
of skeletal myogenic progenitors, exhibit in vivo regenerative 
capacity, as well the ability to synthesize dystrophin (99,100); 
therefore, EScs are the optimal cells for performing genome 
editing to reduce dMd symptoms (99). different therapies 
have been developed to replace dystrophin deficiency, such as 
anti‑inflammatory‑based techniques, or to restore DMD gene 
expression, such as cell-based therapies (101). Genome editing 
techniques, including the ZFN, TALENs and cRISPR systems, 
are the most efficient of these techniques. In vitro, TALENs 
and cRISPR function by restoring dystrophin synthesis via 
gene knock-in (insertion of exon 44 in the dMd gene), and 
has been demonstrated to be effective, with minimal off-target 
effects. iPScs that were collected from dMd fibroblasts 
of a specific patient with DMD with exon 44 missing were 
transfected with TALENs and cRISPR separately to insert 
exon 44 by creating indels in adjacent exons (101). In vitro 
removal of exons 45-55, instead of a single exon in the dMd 
gene in the patient's iPSc-derived cardiomyocytes and skeletal 
myotubes using sgRNA and cRISPR/cas9 system, resulted in 
restoration of dystrophin protein synthesis and, consequently, 
creatine kinase levels, whose linkage causes muscle instability 
and disintegration (102). Such a deletion was observed to 
normalise miR32 (miRNA32) (102), which reduces dystrophin 
levels in muscular dystrophies, including Becker muscular 
dystrophy (103). These results indicate the potential benefits of 
larger deletions, which rectify the dysfunction of other factors 
affecting the function of dystrophin. In vivo, cRISPR/cas9 
has been used to correct mutations of the dMd gene, in mdx 
mice (mice with a point mutation in the dMd gene and lacking 
dystrophin expression). sgRNA vector plasmids were used to 
target exon 23 of the dMd gene and ssOdN to activate HdR 
repair mechanisms and repair the lesions of the dMd gene. 
However, the results indicated a higher rate of NHEJ-based 
repair, which resulted in the formation of indels (12).

AIDS. The HIV-1 virus invades host immune cells through 
the cd4 receptor and interaction with cc chemokine 
receptor 5 (ccR5) and cXc chemokine receptor 4. Although 

developmental treatment for HIV-1 with combinational retroviral 
therapy has improved the quality of life of the patients, it fails to 
eradicate the HIV-1 virus from the body, resulting in high rates 
of morbidity and mortality (104). A 32-bp deletion in the ccR5 
allele results in the deactivation of the ccR5 gene, which results 
in a high degree of resistance to HIV-1 infection (104,105). 
In 2000, a patient with acute myeloid leukaemia and HIV-1 
infection underwent bone marrow transplantation (using allo-
geneic stem cells) from a donor carrying CCR5∆32/∆32 cells, 
which resulted in abrogation of HIV replication, and the HIV-1 
virus was not detected in the body (106). Research has focused 
on the development of homozygous cells using gene editing 
technologies, such as zinc‑finger nuclease (107‑109). Human 
cd34+ hematopoietic stem/progenitor cells (HSPcs) from 
umbilical cord blood were transfected with ZFNs to knock 
out the ccR5 locus on chromosome 3 to establish a ccR5−/− 
clone (108-110). These cells were grafted into non-obese 
diabetic/severe combined immunodeficient/interleukin 2Rγnull 
(NOd/ScId/IL2Rγnull; NSG) mice, an ideal rodent model for 
examining HIV-1 infections (111) and haematopoiesis (112). 
The results of the experiment revealed HIV-1 replication 
control (110). Similar studies on cd34+ HSPcs using adeno-
viral vectors carrying ccR5-ZFN resulted in a more effective 
knockdown of ccR5−/− and fewer off-target effects compared 
with plasmid dNA ZFNs (109). These studies were extended to 
human patients with HIV infection who received cd4 T cells 
with dysfunctional ccR5 using ZFN60. The results indicated 
a high number of cd4 T cells. However, the rate of viral repli-
cation in cells with non-mutated ccR5 alleles (homozygous) 
was faster compared with cells with mutated ccR5 allele 
(heterozygous), which indicates that cells with homogenicity 
require knockout in both alleles to participate in the disease 
prognosis (107). Furthermore, using modified cells with ZFN 
does not result in permanent changes in vivo, as modified cells 
fail to control HIV-1 replication due to the presence of unmodi-
fied cells (113). Additionally, the adverse effects of adenoviral 
vectors must be considered (94). Wild-type (WT) iPScs have 
been used to generate homozygous cells that harbour mutations 
in CCR5, termed CCR5‑∆32 (114). Generation of these cells 
was performed by transfecting WT iPScs with a cRISPR/cas9 
plasmid with a specific sgRNA (115). The matured monocytes 
or macrophages from the modified iPSCs expressed resistance 
to HIV-1 infection (114-116). Another study on HIV-1-positive 
patients demonstrated that the presence of cas9 and gRNA 
together in T‑cells (specifically CD4+ T cells) that have been 
manipulated genetically by cas9/gRNA confer resistance to 
HIV-1 infection (117). The same study experimented with exci-
sion of pro-viral HIV-1 dNA from T cells using cas9/gRNA on 
the RSBN1 gene, without disrupting the normal function of the 
gene, which encodes histone demethylase, which is responsible 
for chromatin structure (117). Astrocyte cell lines were trans-
fected with cas9 protein with and without plasmids, and double 
fluorescent protein HIV‑1 reporter RGH was utilised to deter-
mine the excision sites of pro-viral HIV-1 dNA using a gRNA; 
the results demonstrated there was a reduction in fluorescent 
protein in astrocytes with no alterations to their regular function 
and morphology (118).

Sickle cell disease (SCD). In Scd, a recessive genetic disorder 
with a prevalence of 250,000 annually worldwide (119), a 
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modified CRISPR/Cas9 system was used with guide strands that 
specifically target the HBB and CCR5 genes using the pX330 
plasmid in human kidney cells (120). Off-target effects were 
found to be directly associated with the presence of adjacent 
acquisition motifs (AAMs) in the PAM sequence, which reduces 
or nullifies the cleavage of target genes via CRISPR/Cas9 (120). 
The rate of mutations due to interception of the correction of 
the genes by cas9 was directly correlated with the distance 
between sgRNA and the PAM of the specific protospacer 
recognised by the particular sgRNA (121). Furthermore, to 
correct the mutations in patients with Scd, ribonucleoprotein 
(RNP) consisting of cas9 protein and sgRNA trG10 (truncated 
sgRNA G10 that targets the first exon of the HBB gene) along 
with ssOdNs was introduced into human HSPcs collected 
from blood samples of patients with Scd (121). The results 
demonstrated that the use of CRISP/CAS9 resulted in effi-
cient gene correction with reduced off-target effects and with 
optimum activation of HdR, compared with previous studies 
that used ZFN mRNA electroporation with ssOdNs (13). The 
various diseases that have been treated using the cRISPR/cas9 
system are listed in Table I.

Haemophilia. cRISPR/cas9 using AAV vectors has been 
assessed for the development of novel therapeutic methods 
to treat X-linked genetic diseases (122), such as haemophilia, 
a challenging disease with a high mortality rate, which is 
characterised by mutation on the coagulation factor IX (FIX). 
To restore the function of the F9 gene in patients with haemo-
philia, an AAV8 vector system carrying codon-optimized 
Sacas9 cdNA and sgRNA was transfected into hepatocytes in 
an in vivo model of mice with haemophilia B to create dSBs 
in the exon near the F9 gene (exon 2-8), and insert cdNA into 
an intron of the gene (123). The results revealed a genotypic 
and phenotypic correction of haemophilia B mice by targeting 
hepatocytes without disrupting epithelial cells of the liver 
morphologically or phenotypically (123). Additional studies 
extended the therapeutic design using other vectors with 
capacity for larger constructs. A low dose of adenovirus (Adv) 
containing cas9 and specific sgRNA containing a correct 
donor template (dsdNA) was transfected into hepatocytes of 
haemophilia B mice, which resulted in F9 gene correction with 
improved efficacy compared with other vectors (14). However, 
lack of restoration in coagulation factor was an unfortunate 
outcome, as the Adv resulted in an adverse immune response 
due to the presence of vector genome immunogenicity, and 
an insignificant rate of HDR. Thus, it was hypothesized that 
recombinant Adv may be more suitable (14). However, integra-
tion of cdNA into the host genome can result in genotoxicity 
by either activating potential oncogenes or damaging func-
tional genes (124). Therefore, using iPScs compared with 
vector may be more suitable. In vitro and in vivo cRISPR 
studies using human iPScs from patients with haemophilia B 
reported interesting results. iPSc cell lines prepared from 
peripheral blood mononuclear cells from patients with haemo-
philia B were modified by inserting the complete F9 human 
cdNA using cRISPR/cas9; these cells differentiated into 
hepatocytes, and were subsequently injected into NOd/ScId 
mice. Analysis of the mice following transplantation revealed 
secretion of human FIX (125), a promising result that may 
serve as the basis for future studies.

The results of TALENs have shown promise in haemo-
philia B genome editing. In vitro analysis of canine FIX 
(cFIX) using both cRISPR and TALENs, showed that 
TALENs resulted in fewer off-target effects as they act as 
dimmers, and this may explain the lower numbers of dSBs 
compared with cRISPR (124). HdR cassettes were designed, 
which contained 471 bps of the WT coding sequence at the 
cFIX mutation locus and altered codons at the TALEN/cas9 
binding sites, which were cloned into pscAAV-cFIXWT 
to reduce off‑target effects. Using modified HDR cassettes 
improved HDR efficiency, thus reducing the off‑target effects 
of gene editing techniques (124).

Autism spectrum disorder (ASD). ASd is a primarily inherited 
neurodevelopmental condition that is characterised by diffi-
culty in social interactions, with language and communication 
abnormalities, which may be identified in children during early 
development. The symptoms have been found to be genetically 
associated with fragile X, maternal 15q11-13 duplication (83) 
and 2q37 and 22q13.3 deletion (126). AAVs, specifically 
AAV9, improves the treatment of Rett syndrome, as AAV9 
can effectively penetrate into brain cells (127). To enhance the 
ability of the vectors for gene delivery, a self-complementary 
AAV9 vector, along with a codon-optimized version of the 
major methyl cpG binding protein 2 (Mecp2) gene (a mutation 
in the Mecp2 gene causing Rett syndrome has been observed 
in almost 1% of ASd patients) (128). The function of this gene 
involves transcription regulation by activating and repressing 
neuron function, and its brain isoform, referred to as McO, 
was injected intravenously into Mecp2 knockout mice and was 
shown to improve behavioural development (22). However, 
an increased level of Mecp2 in liver cells, as a result of an 
off-target effect, was observed when a high dose was used for 
treatment (129), which disrupted liver metabolism and func-
tion (130). different types of AAV vectors, such as AAV8, 
were used to transfect enhanced green fluorescent protein in 
astrocytes, which are cells abundantly present in the mouse 
striatum. The results demonstrated a high rate of protein 
transport due to the high penetrative ability of AAV8 in brain 
cells (131), which may be used to design methods to transfer 
target genes to astrocytes in patients with ASd.

The cRISPR/cas9 genome editing system has been used in 
neural and brain cells to deliver specific genes to target cells. 
RNP induced cas9 with Simian vacuolating virus 40 nuclear 
localisation sequence in Ai9 tdTomato mouse neural progenitor 
cells in the hippocampus, striatum and cortex, and this 
demonstrated marked gene editing ability in vitro and in vivo, 
indicating successful neuron‑specific targeting for future ASD 
treatment (132). cRISPR/cas9 has been used for Huntington's 
disease to suppress mutant HTT (mHTT) gene, which is located 
on chromosome 4 and produces Huntington's disease protein 
when mutated. In vivo HTT gene targeting in Hd140Q-KI mice 
with mHTT using an AVV vector containing the cRISPR/cas9 
system with four gRNAs resulted in a significant reduction 
of mHTT expression and, thus, a reduction in the expression 
of Huntington's disease protein in Hd140Q-KI mice (133). 
Therefore, it may be possible to design an efficient gene editing 
tool to treat ASd or minimise the severity of the symptoms.

One of the most successful studies on Thy1-YFP and Ai9 
mice with X‑fragile syndrome resulted in a significant reduction 
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Table I. Strategies using the cRISPR/cas9 system for the treatment of diseases.

disease In vitro analysis In vivo analysis Result conclusion Refs.

AIDS  CRISPR/Cas9  NOD/SCID/IL2Rγnull; i)  Resistance to cRISPR appears 108-112,
 transfected WT  NSG mice were HIV-1 infection more promising than 114-116
 iPScs to generate  engrafted with In vivo animal model: ZFN due to long-term
 homozygous ccR5-/-  ccR5-/-42 generated  Suppression of HIV-1 effect and ability to
  from cd34+ HSPcs  replication mutate both ccR5
  by ZFN iii) In vivo human alleles
  HIV+ patients were  model: HIV-1
  engrafted with  replication could not
  ccR5−/− cd4 T cells  be controlled
  by ZFN  
Neurodegenerative  i) Exon 5 of PSEN2  ii) Healthy PSEN2N141 i) Reversal in Reduction in Ad 70-74
diseases  gene in iPScs derived  iPSc-derived elevated amyloid neuropathological
 from AD patients  BFCNs underwent plaques (Aβ42/40) symptoms. Further
 were corrected using  cRISPR/cas9 gene ii) Neurological analysis required
 cRISPR/cas9 correction and were  development for in vivo human
  transplanted into Ad   therapy
  mice  
dMd  i) Exon 44 knock-in  iii) Targeting exon 23 ii) Normal function Larger size deletion 101-103
 in DMD gene in  in DMD gene in mdx of miR32 by cRISPR corrected
 iPScs of dMd  mice iii) Gene correction, errors on factors
 patients using   however causing affecting dystrophin
 TALENs and   indels due to function. However,
 cRISPR  more NHEJ repair due to off-target
 ii) 45-55 exon   compared to HdR effects, further
 removal of DMD    analysis to modify
 gene in iPSc-derived    cRISPR/cas9 is
 cardiomyocytes   necessary to reduce
    off-target effects
Haemophilia i) iPScs of HB  iii) AAV8 using ii) Enhance HdR Improvements in 122-125
 patient were  cRISPR-Sacas9 in activation leading to reduction of off-target
 transfected with  hepatocytes of HB decrease in off0target effects caused by
 cRISPR/cas9 and  mice to restore F9 repair cRISPR, which is
 differentiated into  gene creating dSB iii) Genotypic promising for further
 hepatocytes and inserting cdNA correction and analysis of cRISPR
 ii) Modified HDR  to intron phenotypic for treatment in
 cassette containing  iv) Injection of improvement humans
 coding sequence of in vitro generated iv) Secretion of
 WT at cFIX mutation hepatocytes into human FIX in mice
 locus and modified NOD/SCID mice
 codon at TALEN/cas9
 binding site 
ASd  i) RNP-induced cas9  ii) AAV9 with McO ii) Behavioural High dose of Mecp2 129-134
 on NPcs of Ai9  was injected into development in liver cells causing
 tdTomato mouse Mecp2 KO mice i and iii) Significant liver metabolism
  iii) RNP-induced  genome editing dysfunction However,
  cas9 in NPcs of  iv) Reduction in XFS cRISPR-Gold
  Ai9 tdTomato mouse   showed minimal
  from hippocampus,   off-target effects and
  striatum and cortex  no effects on immune
  iv) cRISPR-Gold with  system98

  cas9 or cpf1 on Thy1- 
  YFP and Ai9 mice
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in repetitive symptoms of X-fragile syndrome (XFS) by using 
cRISPR-Gold (cRISPR designed with gold nanoparticles) 
to deliver cas9 or cpf1 to the striatum via local intracranial 
injection. cRISPR system side effects included minimal 
off-target effects and no impact on the immune system, unlike 
AAVs. Additionally, the metabotropic glutamate receptor 
subtype 5 gene was selected as an editing target (134,135), 
since its signalling was found to be overactivated in XFS and 
other ASd syndromes (136,137). The study reported minimal 
side effects, indicating successful cas9 or cpf1 delivery and 
gene editing. The same study used cRSPR-Gold effect for 
gene editing of other cell types, such as glial cells, dysfunc-
tion of which is observed in numerous neurological and brain 
disorders (137,138). Such accomplishments have provided 
novel insights into cRISPR genome editing technology, and 
may be used to treat other rare diseases.

5. Factors affecting the use of the CRISPR/Cas9 system

Although the abilities of cRISPR/cas9 system are clearly 
established and have been used in various applications, there 
are concerns regarding off-target mutations, which may limit 
its future perspectives. data from several studies indicate that 
the off-target effects of the cRISPR/cas9 system are among 
the most important consequences of this method, regardless 
of the cell type and target genes (5,14,16,33,36,43). Hybrid 
R-loop formation between sgRNA and the target dNA may 
result in double-stranded cleavage of dNA due to RNA-guided 
nucleases, the recognition of PAM sequences and the presence 
of adjacent AAMs (139). Additionally, it was demonstrated 
that such activity results in an increased degree and a high 
volume of off-target effects by cRISPR/cas9 during gene 
treatment, specifically due to dsdNA break and NHEJ 
function (140). Various techniques and protocols have been 
designed to optimise the low specificity of CRISPR/Cas9 and 
to promote HdR-based repair over NHEJ, in order to reduce 

the mutation rate. Exposure of mini circle-iPScs to cold 
shock or low temperatures after treatment with cRISPR/cas 
system resulted in increased HdR function and, thus, reduced 
off-target effects. However, the rate of indel formation was 
not significantly affected (15). Another study designed to 
reduce the off-target effects investigated changing the ratio of 
sgRNA to cas9 protein, and demonstrated that a higher ratio 
of sgRNA to cas9 resulted in reduced incidence of off-target 
effects (139).

Selection of bacteria for harvesting cas9 markedly affects 
the performance of cRISPR/cas9. For example, several studies 
investigated the impact of the cRISPR/cas9 system using 
three different species of bacteria; Streptococcus pyogenes 
cas9 (Spcas9), S. thermophilus cas9 (St1cas9) and 
Sacas9 (139,141). The analysis of human cells transfected with 
cas9 plasmids from bacteria exhibited increased activity, as 
well as reduced mutation rates, compared with Spcas9 and 
SaCas9 (124). In addition to the findings mentioned above, the 
base sequence of the AAM upstream of PAM plays a key role 
in sgRNA binding with protospacers on the target dNA (142). 
sgRNAs with a higher ratio of guanine and a lower ratio of 
adenine are more stable in binding with target dNA compared 
with sgRNAs with a higher ratio of cytosine (143).

Other challenges include plasmids with low specificity 
and random integration into the target dNA, which creates 
tracking obstacles (139).

6. Discussion

Limitations of previous genome editing tools led scientists to 
develop the cRISPR system, which has reduced the undesired 
effects whilst increasing efficiency compared with previous 
methods. cRISPR was designed to reduce off-target effects 
caused by mutations as a result of dNA breaks, thus resulting 
in a reduction of unwanted errors. Cpf I endonuclease was 
introduced into the cRISPR system (class II) to overcome 

Table I. continued.

disease In vitro analysis In vivo analysis Result conclusion Refs.

 SCD Using pX330  ‑ Highly efficient CRISPR showed 120‑123
 plasmid with   gene correction and fewer off-target
 cRISPR/cas9 that   reduction in mortality effects and better
 contains truncated    HdR function
 sgRNA G10 to    compared with
 target first exon in    genome editing by
 HBB gene in human    ZFN
 HSPcs from Scd 
 patients   

CRISPR, clustered regularly interspaced short palindromic repeats; Cas9, CRISPR‑associated protein; AIDS, acquired immune deficiency 
syndrome; HIV, human immunodeficiency virus; DMD, Duchenne muscular dystrophy; ASD, autism spectrum disorder; SCD, sickle cell 
disease; WT, wild‑type; iPSCs, induced pluripotent stem cells; CCR5, CXC chemokine receptor 5; NOD/SCID/IL2Rγnull, non-obese diabetic/
severe combined immunodeficient/interleukin 2Rγnull (NSG); PSEN2, presenilin 2; AD, Alzheimer's disease; ZFN, zinc‑finger nucleases; 
BFcNs, basal forebrain cholinergic neurons; TALENs, transcription activator-like effector nucleases; NHEJ, non-homologous end joining; 
HdR, homology-directed repair; FIX, coagulation factor IX; cFIX, canine FIX; AAV, adeno-associated virus; dSB, double-strand break; 
RNP, ribonucleoprotein; Mecp2, methyl CpG binding protein 2 gene; MCO, brain isoform of Mecp2; HBB, haemoglobin subunit β; HSPCs, 
hematopoietic stem/progenitor cells.
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the challenges mentioned above. CfpI is a single RNA-guided 
endonuclease that does not require tracer RNA, and studies 
using cpf1 of Francisella novicida bacterium showed inac-
tivation of Ruvc-like domain avoiding dsdNA cleavage (16). 
In addition to the findings mentioned above, Cpf1 creates 5' 
overhangs, which can efficiently add a DNA sequence during 
genome editing via a non-HdR system, in contrast to cas9, 
which forms blunt end cuts on target dNA (16).

Furthermore, other studies reported fewer or no off-target 
effects using Cpf1 compared with cas9 by analysing 
on-target activity of Acidaminococcus sp. BV3L6 Cpf1 and 
Lachnospiraceae bacterium ND2006 Cpf1 in human cells, 
compared with Spcas9 (144). The effect of R-loops and their 
stability on the occurrence rates of an off-target impact are 
other factors to be considered in designing the most efficient 
cRISPR system and potential target sequences in gene 
editing techniques (145). However, other studies reported 
that TALENs was more efficient compared with the CRISPR 
system (29,30,32,33).

cRPSR has helped overcome the challenges of disease 
therapies by locating target genes that are the causes of drug 
resistance (88). Techniques, such as 2cT-cRISPR and dcas9, 
have increased the efficacy of drug therapy. Several factors, 
such as vector/plasmid and cRISPR selection based on size, 
have exerted a notable effect on the efficacy and delivery of 
cRISPR endonucleases to target genes (37,45). Therefore, 
selecting the most suitable vector with good penetration and 
a low rate of host immune activation for cRISPR delivery is 
required to carefully address the treatment of various diseases, 
such as AIdS, haemophilia, ASd and Scd.

Scientists at the University of Washington used 
vectors with cRISPR/cas9 components from either 
Streptococcus pyogenes or Staphylococcus aureus to treat 
dMd (146). The results demonstrated that the expression of 
dystrophin using dual vectors exhibited increased efficiency 
compared with a single vector. Furthermore, they achieved a 
higher yield with Spcas9 compared with Sacas9, as demon-
strated by the reduction in the off-target effects in both dMd 
and Scd (146,147). In addition, certain factors, such as size 
and PAM sequence recognition, further improve the effi-
ciency of Spcas9 compared with Sacas9 for cRISPR/cas9 
therapy (147). The impact of the cRISPR/cas9 system on 
other diseases has been shown to involve off-target effects and, 
eventually, the formation of indels due to the involvement of 
NHEJ-based repair, which is associated with an increased risk 
of mutations (148).

7. Conclusion

The effects of cRISPR/cas9 on humans requires further 
investigation, as human iPScs and mouse iPScs vary in 
response based on the specific type of CRISPR system used. 
Furthermore, the issue of indels as a result of NHEJ-based 
repair must be reduced in order to reduce the off-target effects 
caused by indels. Therefore, studies are focusing on designing 
a cRISPR/cas system for gene editing with a lower risk of 
mutations utilizing HdR.

Numerous studies have demonstrated the use of cRISPR, 
ZFNs and TALENS as powerful gene editing tools. Although 
ZFNs and TALENS represent important advances in gene 

editing, their capacity is currently limited for effective use. The 
discovery of CRISPR, which exhibits higher efficiency and fewer 
off-target effects, has provided opportunities for scientists to use 
this technique widely and develop cRISPR-based gene therapy. 
However, the issue of off-target effects must be addressed and, 
thus, should be the focus of future studies, with the aim of further 
developing this technology for use in human gene therapy.
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