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Abstract: Underwater acoustic signal separation is a key technique for underwater communications.
The existing methods are mostly model-based, and cannot accurately characterize the practical
underwater acoustic communication environment. They are only suitable for binary signal separation
and cannot handle multivariate signal separation. However, recurrent neural networks (RNNs)
show a powerful ability to extract the features of temporal sequences. Inspired by this, in this
paper, we present a data-driven approach for underwater acoustic signal separation using deep
learning technology. We use a bidirectional long short-term memory (Bi-LSTM) approach to explore
the features of a time–frequency (T-F) mask, and propose a T-F-mask-aware Bi-LSTM for signal
separation. Taking advantage of the sparseness of the T-F image, the designed Bi-LSTM network
is able to extract the discriminative features for separation, which further improves the separation
performance. In particular, this method breaks through the limitations of the existing methods and
not only achieves good results in multivariate separation but also effectively separates signals when
they are mixed with 40 dB Gaussian noise signals. The experimental results show that this method
can achieve a 97% guarantee ratio (PSR), and the average similarity coefficient of the multivariate
signal separation is stable above 0.8 under high noise conditions. It should be noted that our model
can only handle known signals such as test signals for calibration.

Keywords: blind source separation; binary mask; deep learning; underwater acoustic signal

1. Introduction

At present, underwater acoustic communication [1] mainly uses sonar technology
to detect, locate and identify underwater targets. However, sonar technology has to
overcome effects from noise such as ship noise and ocean noise [2–4]. Therefore, a method
of reducing the impact of noise is the most critical part of underwater communication.
Source separation technology is a good method of reducing noise [5–8] that has attracted
a great deal of attention from researchers in both academia and industry. Among these
source separation methods, non-negative matrix factorization (NMF) [9] is one method
that can be used to separate source signals. This method converts complex and sensitive
feature extraction problems into non-negative matrix dimensionality reduction problems by
extracting a set of basis vectors describing the underlying features of the target. However,
the correlation of its features causes more similar-feature redundancy in the basis matrix
and weakens the feature coefficients in the linear representation, which is not conducive
to target recognition. Blind source separation (BSS) is also a classical method [10–12],
consisting of a mathematical model, an objective function, a separation algorithm and
evaluation criteria [13,14]. In research into the BSS algorithm, two approaches are always
studied and employed. One is based on independent component analysis (ICA) [15], which
works well when the number of sources N is less than or equal to the number of sensors
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M. The use of ICA is not limited to linear instantaneous mixing; it is also used to solve
the separation problem for convolutional mixing and even nonlinear mixing. The other
relies on the sparseness of source signals, which works well when N is greater than M,
e.g., the binary T-F mask approach [16]. The binary T-F mask approach extracts a signal
by calculating the binary masking matrix of the signal. It has the advantage of real-time
operation, and in recent years it has also been applied to underwater acoustic separation in
combination with underwater sound characteristics.

In view of the underdetermination in underwater acoustic communication, this study
considers the binary time–frequency mask method based on sparsity. The traditional
binary T-F mask method chooses features which are performed manually by using the
observation signals. Due to the outliers and distribution of anisotropic variance, the
traditional feature extraction method has certain limitations. It can only be used in binary
signal separation, as the effect is poor in multiple signal separation and it cannot meet
the requirements of separation accuracy. At present, the improvement of the binary T-F
masking method remains a matter of feature design [17–19]. However, it is not easy for
human experts to design good features. These artificial features are easily affected by
outlier problems and have strict requirements regarding the selection of source location.
As an alternative, in addition to traditional binary T-F masking, the method of extracting
the original features of the underwater acoustic source using a deep neural network has
shown good performance. This method has been used to solve image recognition, natural
language processing (NLP) and even communication problems [20]. The deep learning
approach [21–23] also represents a breakthrough in the separation of signals. Therefore,
we extract the features of the underwater acoustic signals by means of a deep learning
approach. The main contributions of this work are as follows:

(1) We propose a deep learning method based on Bi-LSTM. This method uses the power-
ful feature extraction capability of RNN and not only improves the performance in
separating binary signals but also achieves good results in ternary or multivariate sig-
nal separation experiments. This overcomes the limitations of the previous separation
of single targets from deep learning sources.

(2) We improved the training sample using the idea of embedding, i.e., embedding each
T-F point into a high-dimensional space so that each T-F point can be represented as a
vector, and then adding energy-based reference labels to the training sample. This
makes the T-F points of different sources more distinct and makes clustering easier in
the process of neural network learning.

(3) We carried out many experiments on the separation performance of this method by
using unknown randomly generated noise and the marine noise actually collected.
The experimental results show that with an increase in the number of clusters K, the
effect of this method in separating noise improves further. It was proved that this
method has the ability to reduce the noise impact of passive sonar platforms and to
improve the recognition rate of underwater targets, which is significant for improving
the performance of sonar positioning, detection and identification.

The rest of the paper is organized as follows. In Section 2, we introduce a traditional
system model for underwater acoustic source separation. Then, in Section 3, we present
a description of the proposed approach, including offline training and online testing.
Section 4 presents the experiments. Finally, conclusions are drawn in Section 5.

2. Mainstream Method: Binary Time–Frequency Masking Method

The binary T-F mask approach separates the underwater acoustic signals according
to the auditory masking, using the underwater acoustic source that dominates the energy
in a certain T-F domain. Although the target signals received by the system have varying
degrees of frequency-band overlap, the main energy of different target signals is usually
hidden in different frequency bands. Hence, the binary mask approach can use this property
to realize underwater acoustic signal separation by clustering the T-F bins. To cluster the
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T-F bins, the traditional method uses the observation signals and calculates manually to
obtain the features.

2.1. Restrictions on Using Existing Methods

The use of binary T-F masking techniques must satisfy the sparsity condition. Since
the sound signal is generally not sparse in the time domain, it must be transformed
into the T-F domain by some transformation [24,25]. However, in the actual separation
process of underwater acoustic signals, it is found that the energy of different underwater
acoustic radiation signals is usually concentrated in different frequency bands, and the
target radiation signals received by the system will show different frequency-band aliasing
phenomena. The study found that as long as the underwater acoustic signal can satisfy the
absolute dominant condition for the energy, the binary T-F masking algorithm can be used
to achieve separation. This condition is written as:

|Xi(t, f )| � |Xj(t, f )|, i 6= j, ∀t, f , (1)

where Xi(t, f ) is the short-time Fourier transform (STFT) of signal xi(t). Using STFT, signals
in the time domain can be transformed to the T-F domain, which can satisfy the property of
sparsity. Geometric features for clustering are calculated based on this constraint.

This condition can also be understood as representing the fact that the overlap of the
T-F domain is a relatively small portion of one of the underwater acoustic signals, so that
ignoring the information in this part does not affect the recovery of the entire signal.

2.2. Signal Separation Steps in Underdetermined Case

This approach is summarized in Figure 1. Based on the sparsity condition of absolute
dominance of the energy, in the underdetermined case, the idea of using the binary T-F
masking method for water acoustic blind separation is as follows:

Figure 1. Example of T-F mask approach.

(1) STFT. Let the sampling frequency of the observation signal be fs and convert
the time domain signal x(t) into the T-F domain representation by using the T-point
STFT transform:

X(t, f ) =
T/2−1

∑
r=−T/2

x(r + tL)win(r)e−j2π f r, (2)

where t is the time in seconds, f is the frequency in Hertz, T is the length of the window
and L is the moving length of the window. Here, win(r) represents the window function.
Commonly used functions are the rectangular window, Hanning window and Hamming
window. In the subsequent inverse short-time Fourier transform (ISTFT), we used the
Hanning window for the transformation, to ensure consistent parameters.

(2) Feature extraction. The source signal X(t, f ) satisfying the sparse condition is
obtained using the STFT transform, and the feature vector Θ(t, f ) is calculated therefrom.
In this eigenvector, there are differences between different sources which can be measured
by distance. The eigenvector Θ(t, f ) is generally composed of the geometric characteristic
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magnitude α(t, f ) and the phase difference φ(t, f ) between the observed signals. Tak-
ing two observation signals X1(t, f ) X2(t, f ) as an example, the eigenvector Θ(t, f ), the
order of magnitude α(t, f ) and the phase difference φ(t, f ) can be calculated using the
following equations:

Θ(t, f ) = [α(t, f ), φ(t, f )], (3)

α(t, f ) =
|X2(t, f )|
|X1(t, f )| , (4)

φ(t, f ) = arg
(

X2(t, f )
X1(t, f )

)
. (5)

The phase difference is usually normalized to avoid frequency sequencing problems,
and the above equation can be written as:

φ(t, f ) =
1

2π f
arg
(

X2(t, f )
X1(t, f )

)
. (6)

Expanded to the case where there are multiple observation signals, the order of
magnitude α(t, f ) and the phase difference φ(t, f ) are expressed as:

α(t, f ) =
[
|X1(t, f )|

A(t, f )
, . . .
|Xn(t, f )|

A(t, f )

]
, (7)

A(t, f ) =

√√√√ n

∑
j=1

∣∣Xj(t, f )
∣∣2, (8)

φ(t, f ) =
[

1
β1 f

arg
(

X1(t, f )
XB(t, f )

)
, . . . ,

1
βn f

arg
(

Xn(t, f )
XB(t, f )

)]
, (9)

where, A(t, f ) is the normalization coefficient of the order of magnitude; β j = β =
4πdmax/c, j = 1, . . . , n is the weight coefficient of the phase difference, subscript B rep-
resents the label of the reference observation signal, c represents the sound propagation
speed and dmax represents the maximum distance between the reference observation signal
and other observation signals.

We express Θ(t, f ) as a plural form with the following equation:

Θ̃i(t, f ) = |Xi(t, f )| exp
[

j
arg(Xi(t, f )/XB(t, f ))

βi f

]
. (10)

Normalization of the above equation yields a eigenvector representation of the ob-
served multiple signal:

Θi(t, f ) = Θ̃i(t, f )/
∥∥Θ̃i(t, f )

∥∥, (11)

Θ(t, f ) = [Θ1(t, f ), . . . Θn(t, f )]T. (12)

From Equations (10)–(12), we know that Θ(t, f ) is influenced by |Xi(t, f )|, XB(t, f ), βi
and f .

(3) Cluster analysis. Clustering the feature vector Θ(t, f ) can result in m clusters
C1, . . . , Cm corresponding to m source signals. Past clustering methods include manual
clustering [16], kernel density estimation [26] and the maximum likelihood (ML)-based
gradient search method [27]. Because K-means clustering has the characteristic of simple,
convenient and fast convergence, it has become the most commonly used method for
cluster analysis. K-means can minimize the sum Υ of the Euclidean distances (EDs) of each
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source signal and the corresponding cluster center ck, and can automatically divide the
samples into m clusters. The equation is expressed as:

Υ =
m

∑
k=1

Υk, (13)

Υk = ∑
Θ(t, f )∈Ck

‖Θ(t, f )− ck‖2. (14)

First, m cluster centers c1, c2, . . . , cm are randomly initialized, and each feature vector
is assigned by iterating Equation (15). Then, the feature vector Θ(t, f ) closest to the mean
vector ck is found and assigned as a cluster:

Ck = {Θ(t, f )|k = argmin
k
‖Θ(t, f )− ck‖2}, (15)

Then, we calculate the mean of all feature vectors belonging to ck and correct the
cluster center:

ck ← E[Θ(t, f )]Θ∈Ck , (16)

Substituting the updated mean vector into Equations (13) and (14) enables calculation
of the objective function Υ. If Υ converges, then the set Ck, k = 1, 2, . . . , m corresponding to
each source is obtained after the iteration ends.

(4) Binary T-F masking. Using the results obtained by clustering, a binary T-F masking
matrix is constructed. The binary T-F masking matrix is a matrix consisting of values 0 and
1, whose size is consistent with the T-F matrix. This is similar to the binary test in spectrum
sensing [28–31]. The matrix sets the mask value to 1 or 0 according to whether each T-F
point belongs to the target signal, indicating whether the T-F-point information belongs to
the source signal.

Mk(t, f ) =

{
1, Θ(t, f) ∈ Ck

0, others
,

Substituting into the following equation gives the spectrum of the estimated signal:

Yk(t, f ) = Mk(t, f )X(t, f ). (17)

(5) Inverse short-time Fourier transform (ISTFT). After obtaining the T-F domain
estimation, the final step must complete the recovery of the time domain signal yk(t) using
ISTFT and the overlap retention method [32]:

yk(t) =
1
A

L−1

∑
l=0

yd+l
k (t), (18)

When using ISTFT, the parameters must be the same as those of STFT using Equation (2).
If A is a constant related to the window function, A = 0.5T/L when using Hanning
window, and yd

k(t) is expressed as follows:

ym
k (t) =


∑ f∈0, 1

T fs ,..., T−1
T fs

Yk(m, f )ej2π f r

mL ≤ t ≤ mL + T − 1
0 others

,

where, r = t−mL.
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2.3. Evaluation of Separation Performance

In order to verify the separation performance of the algorithm after adding noise, we
simulated the binary time–frequency masking method. The T-F masking method requires
the signal to meet the conditions of WDO or energy dominance. Therefore, the LFM signal
was selected for the simulation to facilitate the aliasing operation of the signal for time and
frequency. The detailed experimental process is described in Section 4. The experimental
results show that when there is no noise, each signal can be recovered well, and the method
can correctly divide the T-F region of each signal. Once noise is added, the performance
deteriorates. The estimated masking matrix not only loses some of the information of the
signal itself but also receives the T-F information of other signals.

3. Proposed Method

In recent years, deep learning has been successfully applied in speech separation [33,34],
and these previous attempts have generally assumed that the numbers and types of sources
are fixed. However, in the case of underwater acoustic signal separation, we must consider
two problems: (1) the model can be used to separate arbitrary types of underwater acoustic
sources, i.e., the generalization problem and (2) the model can be used to separate arbitrary
numbers of underwater acoustic sources, i.e., the scalability problem. Unlike previous
attempts, in this article we use deep learning methods to learn a mapping for the input that
is amenable to clustering, and this is helpful in overcoming the above two shortcomings.
The architecture of the proposed method is illustrated in Figure 2.

Figure 2. Framework of proposed approach.

Based on the traditional binary T-F masking method, this scheme uses the deep neural
network to extract features from the original underwater acoustic data instead of using
artificial feature extraction. The program is divided into two stages: offline training and
online testing. (1) Offline training phase. The training of the network consists of three
parts: STFT, preprocessing and network training. The data are obtained from the measured
underwater sound database and preprocessed to obtain training samples. Then, the T-F
map of the underwater acoustic signal is obtained, mainly through STFT. Fianlly, it is
sent to the network for training. In order to ensure that the network learns from the
original underwater acoustic characteristics to obtain cluster-oriented features, this paper
sets an appropriate objective function to make the characteristics of the network output
easier to cluster. (2) Online testing phase. The artificial feature extraction method in the
traditional binary T-F masking method is replaced by the network with the previous stage’s
learning, and various mixed water acoustic signals are used to test whether the separation
performance of the scheme meets the requirements. A flow chart for the specific method is
shown in Figure 3.



Sensors 2022, 22, 5598 7 of 21

Figure 3. Flow chart of proposed method for underwater acoustic signal separation.

3.1. Feature Extraction Based on Deep Neural Network

In order to achieve good separation performance after clustering, it is required that
the clustering features have good distinguishing characteristics. In recent years, many
studies have used deep neural networks [35] to obtain powerful characterizations for
clustering [20,29,36–42]. Good results have been achieved in image recognition and NLP.
These approaches are characterized by embedding the original data features into the new
feature space, making the transformed features more suitable for clustering. In addition
to the target underwater acoustic signal, ship-radiated noise and marine environment
noise also exist in the sonar system. Due to varying degrees of decay in the ocean, the
main energy of these types of noise is concentrated at different frequencies. The main
sound-source frequencies are shown in Table 1.

Table 1. Major ocean sound-source frequencies.

Sound Source Frequency

Marine life 0.5–20 KHz
Radiated noise from ships less than 1 kHz

Surface ships 100–500 Hz
Submarines 100–500 Hz

For a communication sonar receiving transmitted signals from other sonar platforms,
the receiving bandwidth of the receiver is about 100 Hz to 3000 Hz, and the receiver
has prior knowledge of these detection signals [20]. According to the characteristics of
underwater acoustic signals, a neural network can be used to “divide” different types of
signals in the water audio frequency domain, using a Fourier transform signal processing
method to restore the signal. Finally the target signal can be separated. According to the
embedding principle, the role of the deep neural network used in this section is to map the
original features (immediate frequency features) of the measured data to the new feature
space. Each T-F point is converted into a vector. Each vector has a different position in
the new feature space, depending on the amount of energy at the T-F point. These vectors
are then “divided” into a number of reasonable ranges based on the distance between the
vectors. That is, the T-F vectors belonging to the same underwater sound source have
similarities, such that the distance is the smallest, and the T-F vectors belonging to different
underwater sound sources have a large distance. Finally, they can be easily divided using a
simple clustering algorithm.

Suppose a mixed water acoustic signal is transformed by STFT to obtain the original
T-F characteristic Xt, f ∈ RT×F, where t is the number of time frames and f is the frequency
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point. Taking the logarithmic amplitude spectrum 20log10(|Xt, f |) as the input of the
network, for convenience of description, the latter is uniformly recorded as |X|. |X| can
also be regarded as a sequence [χ1, χ2, . . . , χT ] composed of spectral information χi ∈ RF

over a plurality of consecutive times. The deep neural network is parameterized by ω, and
the features generated based on the network are expressed as:

Θ = fω(|X|). (19)

Here, Θ = [θ1, θ2, . . . , θTF]
T ∈ RTF×K is the whole amplitude information |X| of the

underwater acoustic signal, i.e., the cluster-oriented K-dimensional embedding feature
learned by neural network. During the training process, the network sequentially maps
the spectrum information χi to a new feature space at each time step and finally outputs it
as an F× K-dimensional vector. This can be considered as encoding each T-F point in the
original T-F feature χi, and each T-F point after encoding is represented by a row vector θj

of dimension K. Here θi is the unit vector, i.e., |θj|2 = 1.
The goal of training is to allow the line vector of the network output feature Θ to be

divided into different water sources. That is, θj satisfies the vector distances belonging to the
same water source, and the vectors belonging to different water sources are further away,
thus achieving the purpose of separating the underwater sounds. Assuming that there
is a mixed underwater sound in the water area, it is composed of C types of underwater
sound sources:

x(t) = α1s1(t) + α2s2(t) + . . . + αCsC(t). (20)

Before sending the mixed signals to train the network, the energy of each source
signal is compared at each time and frequency point. First, we set the reference label
Y ∈ RTF×C to divide the time and frequency points and compare the energy of these C
types of underwater sound sources at various time and frequency points. The energy-
dominated underwater sound source will mark the time and frequency points. For example,
if the energy of the c-th (c ∈ {1, 2, . . . , C}) underwater sound, dominates at the n-th
(n ∈ {1, 2, . . . , TF}) time and frequency points, then yn,c = 1. Therefore, the loss function
of the model can be set as:

lY(Θ) = ‖ΘΘT −YYT‖2
F

= ∑
i,j
(〈θi, θj〉 − 〈yi, yj〉)2

= ∑
i,j:yi=yj

(|θi − θj|2 − 1) + ∑
i,j:yi 6=yj

〈θi, θj〉2, (21)

where ‖ • ‖2
F is the squared Frobenius norm [43]. In the process of minimizing the loss

function, two vectors for the same water source will become closer and closer, and the
distance between two vectors for different water sources will increase. At the same time,
since (YP)(YP)T = YYT exists for any permutation matrix P, the method can ensure that
the label arrangement and the number of all training samples are independent.

3.2. Offline Training: Test Network Design Based on RNN, LSTM and Bi-LSTM, Respectively

Input and reference label processing: First, randomly take (2 C) underwater acoustic
audio files from the file library and mix them according to Equation (20). Each audio file
must be averaged before entering the network training stage:

s′(t) = s(t)− E[s(t)], (22)

s′′(t) =
s′(t)

max(|s′(t)|) . (23)

The mixing coefficient α is randomly taken as an arbitrary number in the 16 s interval
[3/4, 1]. According to Equation (2), the mixed signal has a window length of 32 ms and a
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time shift STFT of 8 ms, and the log amplitude spectrum X is taken. For a 16 s audio, it can
be split into 500 samples of size 706. At the same time, we take the logarithmic amplitude
spectrum of each source signal that makes up the mixed signal and compare the magnitude
of the energy at each time and frequency point, to form the reference label Y with the same
shape as X. To ensure local accuracy, each iteration consists of a sequence of time steps
from multiple input samples of X and Y, and each sequence is 50% overlapped, to form a
minimum batch-pair network for training.

In the offline training phase, in order to more clearly introduce the proposed Bi-LSTM
structure used in this paper and highlight its superiority compared with other neural
networks, we tested three structures: RNN, LSTM and Bi-LSTM. In addition, since LSTM is
closely related to Bi-LSTM, the following section will first give a brief description of the
LSTM structure, followed by a detailed introduction to Bi-LSTM.

Structure 1 (LSTM-based): RNN has long-term dependency problems. As the struc-
tural model of RNN becomes deeper, RNN must repeatedly apply the same operations
to each moment in the long-term sequence to generate a very deep computational graph.
Coupled with model parameter sharing, RNN is prone to losing the ability to learn previous
information, making optimization extremely difficult. Unlike RNN’s regular loop body
structure, LSTM uses neurons dedicated to memory storage. The neuron is a special net-
work structure with three “gate” structures, called input gates, output gates and forgetting
gates. During training, the LSTM relies on these gated operations (reset and read and write
operations) to selectively influence the state of each moment in the network. After the
investigation, we know that feature extraction can be performed using RNN. However, we
use LSTM networks in this study, which is an improvement on RNN [44].

LSTM can form a deep LSTM network by stacking, repeating the loop body at each
moment to enhance the expressive ability of the model. The parameters of the loop body of
each layer are the same, and the loop body parameters of different levels can be different. A
schematic diagram of the network structure for water acoustic separation using multilayer
LSTM is shown in Figure 4. By stacking, the neural network can learn deeper expressions
and finally embed them into the K-dimensional features.

Figure 4. LSTM underwater acoustic separation network structure.

Structure 2 (Bi-LSTM-based): The transmission of the two network structures, RNN
and LSTM, is one-way from front to back, that is, the state at time t can only capture infor-
mation from the past sequence x1, . . . , xt−1 and the current input xt. For some problems,
however, the prediction of the output may depend on the entire sequence. For example,
in speech recognition, some words currently have multiple interpretations and must be
judged in context. Therefore, the processing of the voice must refer to the pronunciation
information in the past and the future in order to produce a more accurate effect.
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It is also possible to encounter the same problem in the field of underwater sound.
For example, in underwater acoustic communication, sound waves are used instead of
radio waves, due to the serious attenuation of underwater waves. Therefore, in underwater
communication, the transmission of text, voice, images and other information needs to
be converted into an electrical signal and then converted into an acoustic signal. At this
time, in order to separate the speech signal in the water from noise such as waves, fish
and ships, the influence of the front and back states on the output should be considered.
During the collection of, and research into, marine sounds, the sound of fish as a signal for
communication between fish schools should also consider the impact of the entire sequence
on the output of the network. To this end, Bi-LSTM can be used to make full use of the
context information in the sample for training.

Bi-LSTM consists of two LSTMs of the same size and opposite starting points of the
time series. Figure 5 shows the structure of a water acoustic separation network based
on Bi-LSTM. Here, h(t) represents the state of the sub-LSTM that propagates information
from t = 1 to T (to the right) in time and h′(t) represents the state of the sub-LSTM in
which the information moves backward from t = T to 1 (to the left) and can be obtained by
substituting the reverse sequence into Equations (24)–(28). The specific operation of the
unidirectional sub-LSTM layer is as follows. Given an input sequence X = {X1, . . . , XT},
this model can be iteratively computed from t = 1 to T and is composed of the following:

Figure 5. Bi-LSTM underwater acoustic separation network model diagram.

it = σ(WXiXt + Whiht−1 + Wcict−1 + bi), (24)

ft = σ(WX f Xt + Wh f ht−1 + Wc f ct−1 + b f ), (25)

ct = ftct−1 + ittanh(WXcXt + Whcht−1 + bc), (26)

ot = σ(WXoXt + Whoht−1 + Wcoct + bo), (27)

ht = ottanh(ct), (28)

where W and b are weights and biases, and i, f , o and c are the input gate, forget gate,
output gate and cell activation vector, respectively. In addition, σ is the logistic sigmoid
function. Therefore, at each time point t, the output unit can obtain information about the
past sequence with respect to the input h′(t) and the relevant information about the future
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sequence of the input h(t). After the two sub-LSTM layers, we use a dense layer to obtain
Θt, which is the output of the Xi:

Θt = φ(Whhl
t + bΘ), (29)

where hl
t is the output of the final LSTM layer and φ is the ReLU activation function. By minimizing

the loss value, some parameters will adaptively change as the learning process advances.
In the following experiments, we extracted the characteristics of the underwater

acoustic signal using the above three networks (RNN, LSTM and Bi-LSTM) in the offline
training phase. In the online test phase, combined with STFT and binary time–frequency
masking methods, we obtained the corresponding experimental data for the three networks.
The experiments showed that the Bi-LSTM structure had the best performance. However,
the proposed scheme cannot handle the situation with unknown signal waveforms. It
should be noted that our model can only handle known signals such as test signals for
calibration; however, this is not an unreasonable constraint [45].

3.3. Online Test

Different models were trained and applied to the traditional binary T-F masking
framework. The processing flow of the method is basically the same as the processing flow
of the binary T-F masking method. The main steps are as follows:

(1) Select the underwater acoustic signal in the test set for mixing to obtain a mixed
underwater acoustic signal. The signal is de-equalized and normalized, and the signal
is subjected to STFT (the parameters of the STFT in the test phase are consistent with
the STFT parameters in the training phase). Finally, |X| is obtained as an input.

(2) Using the trained model, the original feature X of the signal is transformed into a new
embedded feature Θ. Since the new feature is just a matrix of dimension T× FK when
it is output from the network, in the actual processing, we must reshape the data,
convert their dimensions to TF× K, and facilitate the subsequent cluster analysis.

(3) Cluster analysis. The clustering analysis of feature Θ is performed using the K-means algorithm.
(4) T-F masking. According to the set Ωk obtained by clustering, the corresponding

binary T-F masking matrix Mk(t, f ) is set and substituted into Equation (17), thereby
obtaining a T-F-domain estimate of the source signal.

(5) Time-domain recovery. The source signal S̃k(t, f ) estimated in the above step is
subjected to ISTFT estimation according to Equation (18), to obtain the time-domain
waveform s̃k(t) of the source signal.

The clustering algorithm is used to classify this feature of the neural network output
such that the vectors θ belonging to the same underwater sound source can be divided into
a group. We set each “similar” vector to 1 and set the vectors that are not similar to 0. The
new array dimension is reconstructed into a T × F matrix, which is the binary masking
matrix corresponding to the water source.

4. Experiments
4.1. Experimental Conditions

For the experiments, we selected a hydroacoustic audio dataset in ShipsEar as a
data sample [46]. Since its establishment, the database has been used for research on
ship noise reduction, detection, identification, etc., especially for the application of deep
learning technology [47–49]. The hydroacoustic data in this database were collected by
the researcher David, a hydrologist from the Atlantic coast of northwestern Spain, and
others from the University of Vigo in Spain. The composition of the database is shown in
Table 2. The sonar audio, ship radiation noise and background noise form the A, B and C
signals, respectively, and each audio file was selected to be about 6 seconds in length for
testing. The sampling rate was unified to 44,100 Hz. In addition, we also simulated the
binary time–frequency masking method. By comparing the effects of binary separation and
multiple separation, the superior performance of the proposed method was proved. For
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the binary time–frequency masking method, we selected three LFM signals for simulation,
which facilitates the aliasing operation of the signals for time and frequency. For the three
LFM signals simulated, the sampling frequency was 50 kHz and the time length was 1 s.
The specific parameters are shown in Table 3.

Table 2. The composition of the database.

Category Details

Number of recordings 90 segments
Recording length 15 s to 10 min
Number of ships 11

Background noise Different depths and channel distances

Table 3. LFM signal parameters for binary time–frequency masking method simulation.

Signals Frequency Range Launch Time Duration

LFM 1 6–8 kHz 0.1 s 0.3 s
LFM 2 6.5–10 kHz 0.5 s 0.2 s
LFM 3 12–15 kHz 0.6 s 0.3 s

In the training stage, we attempted to train the model with a maximum mixture
number of three. Hence, we randomly selected two or three files from the training set to
mix in every iteration. Then, we used the model to separate each possible underwater
acoustic mixing source. We designed the network structure with two LSTM layers with
600 hidden cells and a full connection layer with 100 cells, corresponding with the embed-
ding dimension K. Stochastic gradient descent with momentum 0.9 and a fixed learning
rate of 10−5 was used for training. The ReLU function was used as the activation function
for the output layer, with order n. To prevent the network from overfitting and improve
the generalization ability of the model, the input layer and the hidden layer’s dropout
parameters were set to 0.2 and 0.5, respectively. When adding L2 regularization to the
network, the parameter was set to 10−6. The number of training iterations of the model
was 30.

In the test stage, the input feature X was the log magnitude spectrum of the mixed
underwater acoustic signal, using STFT with 32 ms frame length, 8 ms window shift and the
square root of the Hanning window. Moreover, the mixture was separated into 100 frames
with half overlap to ensure the local accuracy of the output feature Θ. The masks were
obtained by clustering the row vectors of the feature Θ. The number of clusters was set to
the number of sources in the mixture.

4.2. Metrics

To evaluate the quality of the source separation, we used three quantitative criteria:
(1) the preserved-signal ratio (PSR∈ [0, 1]), representing the quality of the mask preserving
the target source; (2) the signal-to-interference ratio (SIR∈ [0, ∞)), representing the quality
of the mask suppressing the interfering sources; and (3) the similarity coefficient ξ, which
estimates the similarity between the signal yi(t) and the source signal xj(t).

PSR: The preserved-signal ratio (PSR) is used to measure the degree of protection
of the masking matrix Mk from the target signal Xk(t, f ). The mathematical equation is
expressed as follows:

PSR =
‖Mk(t, f )Xk(t, f )‖2

‖Xk(t, f )‖2 , (30)

The PSR characterizes the amount of energy remaining after the target signal passes
through the masking matrix. In the equation, ‖·‖2 represents a double integral operation,
that is, ‖ f (x, y)‖2 =

∫∫
| f (x, y)|2dxdy. The PSR satisfies 0 ≤ PSR ≤ 1. If the estimated
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masking matrix Mk satisfies the relationship M̂k ⊆ Mk with the actual masking matrix M̂k ,
then PSR = 1.

SIR: The SIR indicates the suppression of the interference source by the masking
matrix. An interference source composed of source signals other than the source signal
xk(t) is denoted by vk(t), and the corresponding T-F domain is expressed as Vk(x, y). The
signal-to-interference ratio for the masking matrix M is defined as follows:

SIRM =
‖Mk(t, f )Xk(t, f )‖2

‖Mk(t, f )Vk(t, f )‖2 , (31)

where SIRM is a value greater than or equal to 0. The larger the value, the better the
separation performance. When the masking matrix is completely suppressed with respect
to the other source signals, SIRM = ∞. In the T-F mask separation method, good separation
performance requires that the T-F information of the source signal is preserved as much as
possible and that the interference source can be suppressed, that is, the PSR is close to 1
and SIRM is as large as possible.

ξ: The similarity coefficient ξ is given by

ξij = ξ(yi, xj) =

∣∣∑n
t=1 yi(t)xj(t)

∣∣√
∑n

t=1 y2
i (t)∑m

t=1 x2
j (t)

. (32)

If ξij = 1, this means that the i-th estimated signal is exactly the same as the j-th source
signal. If ξij = 0, this means that yi(t) and sj(t) are completely inconsistent. In an actual
situation, due to the existence of the estimated difference, the separation performance of
the similarity coefficient is generally close to 1, and the worst value is 0. Generally, these
coefficients constitute a similarity coefficient matrix. If only one similarity coefficient in
each row in the matrix tends to 1 and the others tend to 0, the separation performance
is good.

4.3. Results
4.3.1. Binary Signal Separation Using Binary Time–Frequency Masking Method

In the experiments, we first simulated three LFM signals that satisfy the energy-
dominated condition. The time-domain waveforms and time–frequency diagrams of the
simulation signals are shown in Figure 6. Figure 6a,c,e show the time-domain waveforms of
the three signals, and Figure 6b,d,f show the time–frequency diagrams for the three signals.

The randomly generated mixing matrix is linearly mixed according to Equation (33).
In Equation (33), A represents the underwater channel matrix and n(t) represents white
noise. The time-domain waveforms and time–frequency diagrams of the observed signals
are shown in Figure 7. We selected the Hamming window for the observation signal,
performed a 512-point STFT transformation and set a 25% overlap to obtain the time–
frequency characteristics. According to Equations (7) and (9), we took the magnitude of the
observation signal and the phase difference to form a feature vector, and finally obtained
an estimated signal. The time-domain waveforms and time–frequency diagrams of the
observed and estimated signals are shown in Figure 7. It can be seen from the results
that when the signal meets the sparsity condition, the binary signal can be recovered
using a binary time–frequency masking algorithm. The time-domain waveform and time–
frequency diagram for the estimated signal are shown in Figure 8. From the effect diagram
of the estimated signal, the source signal can be basically recovered using the binary time–
frequency masking method. Source signal 2 is aliased with source signals 1 and 3 in the
frequency domain and time domain, respectively, and so the information will be somewhat
affected but can basically be recovered from the mixed signal.

x(t) = As(t) + n(t). (33)
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(a) (b) (c)

(d) (e) (f)

Figure 6. Time-domain waveforms and time–frequency diagrams for source signals. (a,c,e) show the
time-domain waveforms of the three signals and (b,d,f) show the time–frequency diagrams for the
three signals.

(a) (b) (c)

(d)

Figure 7. Time-domain waveforms and time–frequency diagrams of observed signals. (a,b) are the
time-domain waveforms diagrams of the observed signals and (c,d) are the time-frequency diagrams.

The correlation coefficients ξ and the PSR and SIRM were measured under different
signal-to-noise ratios. The results are shown in Table 4. It can be seen that when there is no
noise, each signal can be recovered well. The two parameters PSR and SIR indicate that the
method can correctly divide the time–frequency region of each signal, that is, the obtained
masking matrix accurately covers the time of the signal and frequency information. Once
noise is added, the performance deteriorates. The PSR reduction is small, but the SIRM
reduction is obvious. This means that after adding noise, the estimated masking matrix
not only loses some of the information of the signal itself but also receives time–frequency
information from other signals.
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(a) (b) (c)

(d) (e) (f)

Figure 8. Time-domain waveforms and time–frequency diagrams of estimated signals. (a,b,d) show
the time-domain waveforms of estimated signals and (c,e,f) show the time–frequency diagrams.

Table 4. Separation performance at different SNRs.

SNR/dB 0 5 10 15 20 No Noise

ξ 0.60 0.62 0.74 0.81 0.89 0.98
PSR 0.71 0.72 0.82 0.85 0.90 0.98

SIRM 5.82 5.47 15.56 27.93 316.21 24,193.72

4.3.2. Binary and Multivariate Signal Separation Using the Proposed Method

Next, we separated the mixed signals with two sources. The visualization of the result
can be seen in Figure 9. We listed all possible combinations and observed the corresponding
effect on separation. Figure 9a,c,e show the spectrum of sources A, B and C separately.
Figure 9b,d,f show the separation results of the pairwise mixtures of A, B and C, respectively.
Compared with the original spectra, it can be seen that the Bi-LSTM model can clearly
separate the A, B and C signals before mixing.

(a) (b) (c)

(d) (e) (f)

Figure 9. Visualization of separation of two-source mixtures. (a,c,e) show the spectrum of sources
A, B and C separately and (b,d,f) show the separation results of the pairwise mixtures of A, B
and C, respectively.
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In Table 5, we illustrate the de-mixing performance for separating two sources using
the metrics mentioned in Equations (30) and (31). This shows that our proposed method
had better performance in separating two sources, which indicates that this approach is
different from many separation algorithms based on deep learning. SIR is infinity because
the interfering sources are suppressed sufficiently, making the denominator close to 0
according to Equation (31).

Table 5. The de-mixing performance in the experiments.

Sources SIR in (dB) SIR out (dB) SIR Gain (dB) PSR

Source A −14.28 ∞ ∞ 0.93
Source B 14.28 ∞ ∞ 0.92
Source C −13.74 ∞ ∞ 0.90

Furthermore, we separated mixed signals from three sources. Figures 10 and 11 show
an example of separating the mixtures of three sources. By comparing Figures 9 and 10, it
can be seen that the time and frequency points of each source can basically be found.
The overlap between source signal C and source signal A is relatively large in the time–
frequency domain. However, signal A dominates with respect to the energy at these
overlapped time and frequency points, so it will not be disturbed by the signals and can
basically be recovered. However, some information in signal C is lost. In fact, compared
with background noise, people are more concerned about the loss of a sonar echo signal.
Therefore, it is permissible to sacrifice part of signal C in practical applications. The
overlap between signal B and signals A and C in the frequency domain is the least, and the
separation performance is the best. However, in order to prove that using a deep learning
method to separate underwater acoustic sources can achieve a breakthrough, we also show
the results using the traditional binary T-F mask approach. In Table 6, the first example
is our approach, and the second is the traditional approach. It is clear that our proposed
method outperforms the traditional method, which cannot even separate sources C and
A very well. What is more, compared with Table 5, when we separate more sources, the
performance does not decrease too much. Therefore, the proposed model can be scaled up
to more sources. Thus, it is appropriate for real-world applications when the number of
sources is not fixed.

Figure 10. Separation results for three-source mixtures.
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Figure 11. Three sources, the mixture and three de-mixed signals.

Table 6. Comparison of the de-mixing performance in Experiment 3 (top) with that of the conventional
T-F mask approach (bottom).

Sources SIR in (dB) SIR out (dB) SIR Gain (dB) PSR

Source A −14.29 ∞ ∞ 0.94
Source B 14.10 ∞ ∞ 0.93
Source C −28.18 ∞ ∞ 0.90
Source A −14.29 13.93 28.22 0.81
Source B 14.10 ∞ ∞ 0.93
Source C −28.18 2.42 30.6 0.29

In addition, considering that the mixed signal will be subject to interference from
other unknown noises in the actual processing, Gaussian noise signals of 0–40 dB were
added to the mixed signal, to analyze the separation performance under different SNR
conditions. Meanwhile, compared with the traditional binary T-F masking method, the
similarity coefficient was used as the measurement standard. The results are shown in
Figure 12. When the noise background is relatively strong, both the deep-learning-based
separation method and the traditional separation method will be greatly affected. As the
noise is reduced, the estimated signal gradually becomes clear. Compared with the above
separation situation, this test signal has larger aliasing in both the frequency domain and
the time domain. Therefore, the traditional time–frequency masking method has a poor
separation performance, and its final average similarity coefficient is stable at about 0.6.
The deep-learning-based separation method can divide each target signal according to
the energy-dominant condition, and therefore it has better separation performance on
the whole.

Under the condition of unknown noise, the separated signal will still carry noise,
affecting the performance. It was found that the noise could be separated as long as the
number of clusters was increased when the clustering algorithm was used. Taking the case
of adding Gaussian white noise with an SNR of 0dB as an example, when the signal is
divided into three categories, each signal will carry noise. Among them, signal C suffers the
largest interference and has a very weak energy, as shown in Figure 13a. By increasing the
number of clusters to four, that is, setting the K value of the K-means clustering algorithm to
four, the proposed method could also separate noise from three source signals and recover
the basic shape of signal C, as shown in Figure 13b. It can be proved that the proposed
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method can not only perform well in the separation of multivariate signals but can also
work effectively in the presence of certain noise interference.

Figure 12. Comparison of similarity coefficients under different noise backgrounds.

(a) (b)

Figure 13. The separation results for signal C when different K values are set: (a) K = 3; (b) K = 4.

Finally, three models, RNN, LSTM and Bi-LSTM, were selected for comparison. Each
model separated the mixed signals composed of sources A, B and C. The similarity coeffi-
cient ξ, and PSR and SIRM were selected as comparison indicators, and the comparison
results are shown in Table 7.

Table 7. Comparison of RNN, LSTM and Bi-LSTM models.

A B C

ξ PSR SIRM ξ PSR SIRM ξ PSR SIRM

RNN 0.43 0.95 1.84 0.44 0.99 27.84 0.21 0.63 0.66
LSTM 0.91 0.96 91.99 0.82 0.94 205.88 0.71 0.73 8.74

Bi-LSTM 0.92 0.99 111.79 0.93 0.97 10576 0.77 0.76 8.68

According to the results of Table 7, RNN performed the worst. Although the PSR
of the A and B signals reached 0.99, SIRM is very low. This shows that although the T-F
information of the source signal was preserved, most of the T-F points that were not part of
the source signal were also classified as source signals. The recovered signal then contains
other signal components. In addition to retaining the original information well, LSTM
and Bi-LSTM can also implement interference suppression for other signals. Bi-LSTM
has a better suppression effect than LSTM. Signal B has the best recovery of the three
configurations, especially in Bi-LSTM where the SIRM reached 10,576 and the PSR reached
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0.97. Comparing the distribution of the three sources, it can be seen that signal B and
signals A and C have almost no overlap in the frequency domain, and hence they are
easily distinguished.

5. Conclusions

In this paper, a deep learning separation method for underwater acoustic signals based
on the T-F mask method was proposed. The method mainly uses Bi-LSTM to create the
features of the time–frequency mask for clustering. In this way, each T-F bin is “encoded”
directly and partitioned into a reasonable region according to its magnitude. For real-
world tasks, it is important for the proposed model to have good scalability, since the
number of target sources is not fixed. At the same time, the model should have good
generalization ability, so that it can work effectively when separating uncertain underwater
acoustic mixed sources in online applications. In order to illustrate the universality and
extensibility of the model, we conducted experiments on two unknown mixed sources
and three mixed sources, respectively, and tested the robustness of the model by adding
0–40 dB Gaussian noise. Finally, we compared and analyzed the performances of the RNN,
LSTM and Bi-LSTM networks in extracting underwater acoustic signal characteristics.
The results showed that the proposed method could obtain better performance under the
conditions of large mixed-signal uncertainty and large Gaussian noise, showing an obvious
improvement compared with the traditional T-F mask method. The most important point
is that compared with mainstream methods, this model not only has better separation
performance for binary signal separation but can also effectively separate aliased signals in
the case of multiple signal separation, which cannot be handled well by existing methods.
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