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Radiation therapy is received by over half of all cancer patients. However, radiation

doses may be constricted due to normal tissue side effects. In thoracic cancers,

including breast and lung cancers, cardiac radiation is a major concern in treatment

planning. There are currently no biomarkers of radiation-induced cardiotoxicity. Complex

genetic modifiers can contribute to the risk of radiation-induced cardiotoxicities, yet

these modifiers are largely unknown and poorly understood. We have previously

reported the SS (Dahl salt-sensitive/Mcwi) rat strain is a highly sensitized model of

radiation-induced cardiotoxicity compared to the more resistant Brown Norway (BN)

rat strain. When rat chromosome 3 from the resistant BN rat strain is substituted into

the SS background (SS.BN3 consomic), it significantly attenuates radiation-induced

cardiotoxicity, demonstrating inherited genetic variants on rat chromosome 3 modify

radiation sensitivity. Genes involved with mitochondrial function were differentially

expressed in the hearts of SS and SS.BN3 rats 1 week after radiation. Here we

further assessed differences in mitochondria-related genes between the sensitive SS

and resistant SS.BN3 rats. We found mitochondrial-related gene expression differed in

untreated hearts, while no differences in mitochondrial morphology were seen 1 week

after localized heart radiation. At 12 weeks after localized cardiac radiation, differences

in mitochondrial complex protein expression in the left ventricles were seen between

the SS and SS.BN3 rats. These studies suggest that differences in mitochondrial

gene expression caused by inherited genetic variants may contribute to differences in

sensitivity to cardiac radiation.
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INTRODUCTION

Radiation therapy (RT) is used in over half of all cancer patients
to treat malignancies and improve patient survival (1). RT can
be administered to the thoracic region in treating chest tumors
including Hodgkin lymphoma and breast and lung cancers.
Despite advances in planning and delivering techniques (2–5),
these techniques are not universally available and/or utilized
by all providers (6), and RT to the thoracic region even with
these techniques can still result in some exposure of the heart
that can lead to cardiotoxicity (7, 8). Irradiation to the heart
and surrounding vasculature may lead to toxicities including
pericarditis, ischemic heart disease, myocardial fibrosis,
cardiomyopathy, arrhythmias, and/or valvular abnormalities,
collectively referred to as radiation-induced heart dysfunction
(RIHD) (9–11). These normal tissue side effects may arise
months to decades after RT, potentially leading to increased
morbidity and mortality (12–14).

Cardiomyocytes are the most abundant cell type in the heart
occupying roughly 70–85% total volume, and ∼30% of the heart
volume consists of cardiomyocyte mitochondria (15–17). The
heart demands very high levels of adenosine triphosphate (ATP)
for healthy function (18), and therefore mitochondrial function
is crucial in maintaining heart health by coupling respiration
with oxidative phosphorylation to generate ATP (7, 19, 20).
Mitochondria are known to have roles in metabolism, cell death,
and stress responses including combating reactive oxygen species
(ROS). In addition to causing direct effects to DNA that may lead
to cell death, radiation also causes indirect effects including the
production of ROS. Themitochondria function to protect against
ROS-induced cellular damage, and therefore, mitochondria play
a role in protecting the normal heart tissue against radiation
induced toxicity (21).

We previously reported that the inbred Dahl salt-
sensitive/Mcwi (SS) rat strain was more sensitive to localized
image-guided cardiac radiation than the Brown Norway (BN)
strain, and that substitution of chromosome 3 from the BN
strain into the SS background (SS.BN3 consomic rats) confers
dramatic resistance to radiation-induced cardiac dysfunction
when compared to the SS strain (22). Consomic chromosome
substitution studies can be used to map complex genetic
modifiers of pathophysiologic phenotypes (23–26). In our
previous consomic rat study with the SS strain that was relatively
sensitive to localized cardiac radiation when compared to the
SS.BN3 consomic strain, the top genetic pathways differentially
expressed between SS and SS.BN3 consomic rat ventricles 1
week after radiation included mitochondrial-related genes (22).
However, expression of mitochondrial genes was not measured
in unirradiated SS and SS.BN3 rat hearts, and protein expression
of mitochondrial complexes was not examined. There is a
need to better understand the mechanisms of mitochondrial
dysfunction that may lead to RIHD. Here we examined changes
in gene expression of all mitochondria-encoded genes and
nuclear-encoded mitochondria oxidative phosphorylation
complex genes between the sensitive SS and comparatively
resistant SS.BN3 rat hearts that were not treated with radiation
(sham treated). We also examined mitochondrial morphology

using transmission electron microscopy, as well as the protein
levels of mitochondrial oxidative phosphorylation complexes in
isolated mitochondria from the left ventricles of SS and SS.BN3
rats after localized cardiac radiation. These results suggest that
genetic changes can lead to altered expression of mitochondrial
oxidative phosphorylation complexes that may contribute to
differences in responses to localized cardiac irradiation. Better
understanding of the role of mitochondrial dysfunction in RIHD
may lead to targeted therapeutics to protect and/or mitigate
RIHD while maintaining therapeutic effects of radiation therapy.

MATERIALS AND METHODS

Rats and Irradiation Procedure
The rat cardiac irradiation procedure has been reported
elsewhere (22). In brief, female SS and SS.BN3 rats [Medical
College of Wisconsin (23)] aged 10–12 weeks were randomized
into different treatment groups. Animals were anesthetized
with 3% isoflurane and given localized heart irradiation using
a the high-precision image-guided X-RAD SmART irradiator
(Precision X-Ray, North Branford, CT). A 24Gy× 1 fraction was
given to the isocenter of the heart, with equally weighted anterior-
posterior and 2 lateral beams (1:1:1, 225 kVp, 13mA, 0.32mm
Cu, 2.69 Gy/min) using a 1.5 cm collimator. Pilot V1.8 Imaging
Software (University Health Network, Toronto, Canada) was
used to create two-dimensional projections over 360◦ to provide
CT scans in sagittal, coronal, and axial views, with each projection
on the heart centered to fit into the collimator. Monte Carlo-
based treatment planning was utilized to calculate radiation dose
(MAASTRO Radiotherapy Clinic, Netherlands). Age-matched
sham-irradiated animals were included in the study. Animals
were irradiated and housed in pathogen-free conditions with a
12:12 light:dark cycle and access to a standard diet (0.4% salt) and
water. All procedures were performed according to the American
Guidelines for the Ethical Care of Animals and approved by our
Institutional Animal Care and Use Committee.

Echocardiography
The echocardiogram procedure for rats has been reported
elsewhere (22). In brief, echocardiography with M-mode was
used to assess cardiac function on irradiated and sham treated
rats at baseline, 3- and 5- months post-RT. An echocardiograph
Vivid 7 with an 11-MHz M12L linear-array transducer and
EchoPac software (General Electric, Wauwatosa, WI) was used to
perform the examinations. Imaging was conducted in the short-
axis view at mid-level of the left ventricle, by a sonographer with
three consecutive heartbeats measured where the average was
utilized for analyses (27, 28). For strain analysis, images were
processed with EchoPac Q analysis software (General Electric,
Wauwatosa, WI). A cardiac cycle was defined from peak one R
wave to the peak of the following wave. The endocardial border
was traced during an end-systolic frame in the short-axis view at
mid-ventricle to calculate radial and circumferential strain. The
computer produced a profile of radial (myocardial deformation
toward the center) and circumferential (myocardial deformation
along the curvature) strain percentage over time.
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RNA-Sequencing
The RNA-sequencing protocol was previously reported (22,
23). Briefly, total RNA was extracted by TRIzol (Thermo
Fisher Scientific, Waltham, MA) from the left ventricle tissue
of 11–13 weeks old female mock-treated SS and SS.BN3
rats (N = 4–5/group) from a group of rats matched to 1
week post-radiation rats (not reported here, but previously
reported). For RNA-seq, a library preparation was made for
each sample, indexed for multiplexing, and sequenced using
an Illumina HiSeq2500 (Illumina, San Diego, CA). The Trim
Galore program (v0.4.1) was used to trim bases with a Phred
quality score <20 [https://www.bioinformatics.babraham.ac.uk/
projects/trim_galore/]. The RSEM program function “rsem-
prepare-reference” (v1.3.0) was used to extract the transcript
sequences from the Rat genome (Rnor6.0, Ensembl release 98)
(30) and to generate Bowtie2 indices (Bowtie2 v2.2.8) (31),
followed by read alignment and expression quantification using
the “rsem-calculate-expression” function. Differential expression
(DE) analysis was performed using the Bioconductor package
DESeq2 version 1.12.4 (29) to compute log2 fold changes and
FDR-adjusted p-values. Statistical significance was determined
at an FDR threshold of 0.05. Data were analyzed for molecular
and functional pathway enrichment using the IPA tool (Qiagen).
All raw sequencing data can be accessed from the Sequence
Read Archive, BioProject ID PRJNA525087 (https://www.ncbi.
nlm.nih.gov/bioproject/PRJNA525087).

Transmission Electron Microscopy (TEM)
Rat left ventricle was harvested 1 week after 1 × 24Gy cardiac
RT or sham from adult female SS and SS.BN3 rats (N = 2–
5/group) and fixed in 2.5% glutaraldehyde in 100mM sodium
cacodylate buffer pH 7.2. The samples were then post-fixed in
1% OsO4 on ice for 1 h, followed by dehydration in a graded
methanol series, and an embedding in EPON 812 (EMS, Hatfield,
PA). Ultra-thin sections (60 nm) were cut, stained with uranyl
acetate and Reynolds lead citrate, and examined with a Hitachi
H600 Transmission Electron Microscope (TEM) (Hitachi High
Technologies America Inc., Pleasanton, CA). Representative
images to assess cardiac mitochondrial morphology were
captured at 20,000X magnification.

Mitochondrial Isolation and Western Blot
Analyses
Rat hearts were harvested 12 weeks after either 1 × 24Gy
localized cardiac radiation or sham treatment (22). Heart
mitochondria isolation has previously been reported (32, 33). In
brief, fresh heart tissue was minced in ice cold isolation buffer
[200mM mannitol, 50mM sucrose, 5mM KH2PO4, 5mM 3-
(N-morpholino) propanesulfonic acid, and 1mM EGTA, with
0.1% bovine serum albumin, pH 7.15]. The minced tissue
was homogenized in the presence of 5 U/ml protease (P5459,
Sigma Life Science, St. Louis, MO) followed by differential
centrifugation at 4◦C. The final pellet was resuspended in
isolation buffer and protein concentration was determined
by the Bradford method. For Western blot analysis, isolated
mitochondria were lysed using a RIPA buffer containing
protease and phosphatase inhibitors, centrifugated, and the

supernatant was collected. Total protein was assessed using a
BCA Protein Assay Kit (23225, Thermo Scientific, Rockford,
IL). Mitochondrial protein lysates were loaded and separated
using SDS-PAGE and then transferred onto a PVDF membrane.
The following antibodies were used in the present study using
mitochondrial lysates: total OXPHOS rodent WB antibody
cocktail (1:2500; ab110413; Abcam) and anti-COX IV antibody
Mitochondrial Loading Control (1:5000; ab16056; Abcam).

Statistical Analysis
Analyses of the western blotting were evaluated by a Student’s
t-test. Blots were imaged on ImageQuant LAS 4000 (GE
Healthcare Life Sciences, Marlborough, MA), and analyzed using
ImageQuant TL software (version 8.1.0.0). All western blotting
results reported are representative of 3 technical replicates. The
criterion for significance was P < 0.05. Data are reported as
means ± SE. For our RNA-sequencing studies (22), power
analysis was determined using a combination of simulated
and experimental data approach previously described (34). We
performed 100 simulations based on a RNAseq count data from
our previous study (35). This analysis suggested that 4 replicates
per group in a 2-group comparison would provide more than
90% power to detect genes differentially expressed at FDR 0.05
level. All power calculations and animal numbers for our studies
were also performed by a non-biased statistician (S.-W.T.).

RESULTS AND DISCUSSION

Previously, we have demonstrated that the SS rat strain is more
sensitive to localized image-guided cardiac radiation that the
SS.BN3 consomic rat strain, which differs only in substitution
of chromosome 3 from the BN strain, as measured by pleural
effusions, echocardiogram indices of left-sided heart failure and
strain, as well as mortality. We also demonstrated that the SS and
SS.BN3 strains had differentially expressed mitochondria-related
genes in the left ventricle 1 week after radiation, as measured with
RNA-sequencing (22). In this study, we examined the differential
expression of oxidative phosphorylation genes from both the
mitochondrial and nuclear genomes between SS and SS.BN3 left
ventricles in rats 1 week after sham radiation treatment, at 11–13
weeks of age (N = 4/condition), which is the same time period
reported previously after radiation (22). Of the mitochondrial-
encoded genes coding for oxidative phosphorylation complexes,
13 of 13 genes are differentially expressed between SS and
SS.BN3 rats at FDR< 0.05 (Figure 1A, Supplemental Table 1B).
Expression of these genes was significantly higher in the
protected SS.BN3 rats in comparison to the more sensitive SS
rats. In addition, of the 80 nuclear encoded rat genes involved
in encoding mitochondrial complexes I–V, 74 of 80 genes were
differentially expressed between SS and SS.BN3 rats at FDR <

0.05 (Figure 1B, Supplemental Table 1A). Interestingly, these
genes had higher expression in SS rats compared to the SS.BN3
rats. We subsequently examined whether there were changes
in mitochondrial morphology between the SS and SS.BN3 rat
left ventricles. TEM was performed on mitochondria isolated
from rat hearts at 1 week post-radiation or sham treatment.
Longitudinal views of tissue were examined for each condition,
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FIGURE 1 | RNA-seq analysis of control SS and SS.BN3 hearts. Total RNA was extracted and RNA-seq was performed on RNA from the left ventricle tissue of adult

10–12 week old female SS and SS.BN3 rats harvested 1 week after mock treatment (N = 4/group). Differential expression analysis was performed, followed by

generation of heat maps of (A) 13 mitochondrial encoded genes and (B) 74 nuclear encoded genes differentially expressed at FDR < 0.05 and involved in the

mitochondrial complexes that drive oxidative phosphorylation.

FIGURE 2 | Representative TEM images revealed SS and SS.BN3 have no

observed changes in mitochondrial morphology at 1 week post-radiation

therapy (RT). Transmission electron microscopy (TEM) was performed on SS

and SS.BN3 rat left ventricle tissue harvested 1 week after either 24Gy RT or

mock treatment (N = 2–5/group). No gross changes in mitochondria were

seen between groups. Representative images from each condition are shown.

Scale bar = 500 nm.

where total mitochondria and irregular shaped mitochondria
were counted. This revealed no morphological differences
between SS and SS.BN3, with representative images shown in
Figure 2.

Our data in Figure 1, along with previously published data
(22), demonstrate that changes in gene expression of oxidative

phosphorylation complex genes are differentially expressed in the
left ventricles of both the non-irradiated rats and rats irradiated
with a single dose of 24Gy to the whole heart. However, the
functional consequences of these changes at later time points
had not been examined. We isolated mitochondria from SS and
SS.BN3 rats (N of 3–4 per group) 12 weeks post-treatment with
24Gy of localized heart radiation or sham (no radiation). We
then performed Western blotting on the isolated mitochondria
to examine protein expression of mitochondrial complexes I–
V. This revealed no significantly significant changes between
complex I–V in the unirradiated SS vs. SS.BN3 heart, but
significant increases were seen in complexes I, III, and V in
the SS.BN3 vs. SS hearts (Figures 3A–F, Supplemental Figure 1).
Figure 3 shows representative results from 3 technical replicates
of each Western blot. Protein expression levels were assess using
NADH: Ubiquinone Oxidoreductase Subunit B8 (NDUFB8;
complex I) (Figure 3A), Succinate dehydrogenase ubiquinone
iron-sulfur subunit (SDHB; complex II) (Figure 3B), Ubiquinol
Cytochrome CReductase Core Protein 2 (UQCRC2; complex III)
(Figure 3C), Mitochondrial Cytochrome C Oxidase I (MT-CO1;
complex IV) (Figure 3D), and Mitochondrial ATP Synthase 5A
(ATP5A; complex V) (Figure 3E). Representative Western blots
of the mitochondrial lysates are shown in Figure 3F, N = 3–
4/group. complexes I, III, and V showed increased expressions
in the SS.BN3 vs. SS with RT lysates (complex I: P = 0.004,
2/3 blots significant; complex III: P = 0.02, all 3 blots were
significant; CV: P= 0.004, all 3 blots were significant). There was
also a trend in complex IV with increased expression in SS.BN3
vs. SS with RT (1/3 blots significant). Although the OXPHOS
antibody cocktail consists of a mixture of five antibodies to
detect the five different complex subunits, different subunits
were quantified at different exposure times to be in the linear
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FIGURE 3 | Oxidative phosphorylation complex expression in rat cardiac mitochondria. Subunits of the mitochondrial complex expression was visualized via Western

blotting and quantified. These included (A) Nuclear-coded NDUFB8 Complex I-subunit, (B) Nuclear-coded SDHB Complex II-subunit, (C) Nuclear-coded UQCR2

Complex III-subunit, (D) Mitochondrial-coded MTCO1 Complex IV-subunit, and (E) Nuclear-coded ATP5A Complex V-subunit. All were measured and quantified from

a Western blot from mitochondria lysates of rat hearts 12 weeks post-RT or sham treatment (F). Representative blots are originated from different exposure times of

the same blot using an antibody cocktail, and technical replicates of the Western blot were run 3 times total, with a representative blot and quantifications from one

experiment shown. Values are expressed as means ± SEM normalized to their respective COX IV loading control, and then expressed as fold change relative to the

SS sham treated; n = 3–4/ group; *P < 0.05, #P < 0.01. A Student’s t-test was used to determine significance in SS vs. SS.BN3 control (lanes 1–3 and 4–6,

respectively) and SS vs. SS.BN3 with RT (lanes 7–10 and 11–14, respectively).

detection range, as shown in Figure 3F. The full blots at different
exposure times are shown in Supplemental Figure 1. These
results indicate that genetic changes in rat chromosome 3 can
lead to significant changes in mitochondrial complex expression
several weeks after high-dose cardiac radiation exposure, at
a time when echocardiogram changes are seen demonstrating
differences in left ventricular heart function between the SS and
SS.BN3 rats (22). M-mode echocardiogram imaging, performed
previously (22) demonstrated cardiac dysfunction in SS rats
compared to SS.BN3 rats displaying hyperdynamic systolic
function (Figure 4A). Analysis of both radial and circumferential
strain at 3 and 5 months post-RT revealed the SS rat hearts
had significantly decreased myocardium deformation, consistent
with decreased systolic dysfunction (Figures 4B,C).

A number of studies have implicated mitochondrial changes
in the development of cardiac dysfunction following radiation,
both in pre-clinical models and in human studies (7, 36–39).
In C57BL/6N mice that received sham, 0.2Gy, or 2Gy of heart
radiation, functional and proteomic alterations were seen 4 weeks
following irradiation. This included changes in proteins related
to oxidative phosphorylation (36, 40–42). Functionally, partial
deactivation of complexes I and III were observed in mice
receiving 2Gy of cardiac radiation. In a separate publication, this
group also examined the long-term effects of cardiac radiation,
finding that respiratory capacity was still reduced 40 weeks after

2Gy of cardiac radiation (38). In separate studies, C57BL/6
mice treated with 8 or 16Gy of cardiac radiation demonstrated
increased free fatty acids and reduced levels of complexes I, III,
and V (39). Studies of mitochondrial-related proteins in the left
ventricles of decreased nuclear workers exposed to varying levels
of radiation (external exposure ranges from 100 mcGy to >5Gy)
revealed dose-dependent reductions in complexes I, III, and V,
and changes in complexes II and IV in those with the highest
radiation exposures (42).

There are limitations from this study that should be
acknowledged. We examined the effects of RIHD with the
treatment dose of 1 × 24Gy cardiac RT. We have previously
reported similar cardiac trends by using a fractionated regimen
of 9Gy × 5 (22). The dosing regimen was determined based
on previous studies of studying RIHD from cardiac RT in
rats (7, 43–47). To better mimic cancer patient thoracic RT,
future studies are needed with both partial heart irradiation
and increased fractions of smaller daily radiation dose to more
closely resemble the radiation exposure observed. In addition to
cancer patients receiving thoracic RT, recent studies report the
using 25Gy cardiac RT in a single fraction to treat ventricular
tachycardia (48, 49). Our rat model of cardiac RT is very relevant
to this clinical model of treatment and could be further used
to study side effects and biologic changes that occur from this
high dose cardiac RT. Additional considerations include how
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FIGURE 4 | Echocardiograms indicated SS rats have decreased heart function compared with SS.BN3 rats after 24Gy localized heart RT. (A) M-mode

echocardiogram images of SS and SS.BN3 rats that received 24Gy RT at baseline, 3 months, and 5 months post -RT. (B) Radial strain was lower in the SS rats at 3

and 5 months post-RT shown via decreased thickening of myocardium. (C) Circumferential strain also showed decreased function in SS vs. SS.BN3 at 3 and 5

months post-RT via decreased ability to contract, indicated by a smaller negative percentage. Values are means ± SEM. *P < 0.01, #P < 0.001.

these findings can be translated into future applications. Other
than the 13 mitochondrial encoded genes, many genes involved
in mitochondrial dysfunction, sirtuin signaling and cardiac
hypertrophy were also found to be differentially expressed
between SS and SS.BN3 rats (22). Candidates involved in these
pathways as well asmitochondrial gene transcription, translation,
and regulation could be further tested to investigate their roles
in radiation-induced cardiotoxicity. The use of pharmacologic
modulators of these pathways and transgenic models could
also be pursued to further elucidate mechanisms of RIHD to
prevent and/or mitigate effects observed in patients receiving
radiation therapy.

In this current study, we demonstrate changes in the levels of
oxidative phosphorylation complexes between genetically similar
rats, differing only in the single nucleotide polymorphisms on
chromosome 3, that demonstrate dramatic differences in
the development of radiation-induced cardiotoxicity after
localized radiation exposure to the heart (22). These results
demonstrate that there are differences in gene expression of
both mitochondrial-encoded and nuclear-encoded genes for
the oxidative phosphorylation complexes in the left ventricles
of unirradiated SS and SS.BN3 rats (Figure 1), as well as the
left ventricles of SS and SS.BN3 rats 1 week after 24Gy of
localized cardiac irradiation (22). It is unclear why there are
differences in the direction of differential expression of oxidative

phosphorylation complex genes encoded by mitochondrial
vs. nuclear genomes. In general, the mitochondrial genome
is more likely to experience DNA damage than nuclear DNA
following radiation due to the lack of protective effect from
histones (50), as well as less efficient DNA repair (51, 52).
However, as our results here demonstrate, differences in
mitochondrial-encoded genes are seen between SS and SS.BN3
left ventricles even without radiation treatment (Figure 1).
Although large numbers of mitochondrial genes are differentially
expressed in SS vs. SS.BN3 rats in unirradiated and irradiated
left ventricles, no gross changes in mitochondrial morphology
were seen in the left ventricles 1 week after radiation or sham
treatments (Figure 2). However, at a later timepoint of 12 weeks
following 24Gy of localized cardiac radiation, differences in
expression of complex I, III, and V proteins were seen in isolated
mitochondrial in the SS vs. SS.BN3 samples. Taken together,
these results indicate that inherited genetic variants can lead
to differences in oxidative phosphorylation gene expression
that may contribute to differences in radiation-induced
cardiac dysfunction.
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Supplemental Table 1B | Expression of Mitochondrial-Encoded Genes in

SS.BN3 vs. SS Left Ventricles 1 Week After 24Gy of Localized Heart Radiation

and Differentially Expressed Mitochondrial Genes in SS versus SS-BN3 Left

Ventricles Mitochondrial-Encoded Genes.
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