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Abstract: Hyperjaponol H (1), a new filicinic acid-based meroterpenoid, with a 6/6/10 ring system
trans-fused by hetero-Diels–Alder cycloaddition between a germacrane sesquiterpenoid and a filicinic
acid moiety, was isolated from aerial parts of Hypericum japonicum. The elucidation of its structure
and absolute configuration were accomplished by the analyses of extensive spectroscopic data and
the comparison of Cotton effects of electron circular dichroism (ECD) with previously reported ones.
The bioactivity assay showed that hyperjaponol H exhibited a moderate inhibitory efficacy on lytic
Epstein-Barr virus (EBV) DNA replication in B95-8 cells.
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1. Introduction

Natural products are widely known to be a considerable resource of biologically active compounds
that involve manifold and unusual scaffolds. Most secondary metabolites from plants of Guttiferae are
mainly found to be phloroglucinol derivatives with complex architectures and appealing therapeutical
properties [1–3]. Hypericum japonicum Thunb. ex Murray, as a member of Guttiferae family, also termed
as Tianjihuang in China, is widespread chiefly in temperate regions of North America, Oceania, and
Asia [4,5]. Also as a type of traditional Chinese medicine, H. japonicum has been extensively utilized
for the medical treatment of the hemostasis, detumescence, dysentery, and hepatitis [4]. In recent
years, literatures reported that various ranges of chemical constituents such as aliphatic compounds,
terpenoids, flavonoids, xanthonoids, lactones, and phloroglucinol derivatives had been discovered
from this herb [5–11].

In our on-going research on the genus Hypericum for structurally fascinating and biologically appealing
metabolites, we have reported some meroterpenoids of polycyclic prenylated acylphloroglucinols (PPAPs)
from H. sampsonii, H. ascyron, H. attenuatum, and H. perforatum [12–15] as well as a series of filicinic
acid-based meroterpenoids (Hyperjaponols A–G) from H. japonicum [16]. In the present study,
the isolation, structural confirmation, and anti-EBV assay of compound 1, named hyperjaponol H,
a metabolite of H. japonicum, are illustrated in detail.
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2. Results and Discussion

A crude extract (300 g) produced from the dried herbs of H. japonicum (4 kg) was subjected to
the silica gel column chromatography (silica gel CC) eluted successively with the gradient mobile
phases of petroleum ether, chloroform, and ethyl acetate. The fraction of petroleum ether was
sequentially chromatographed by MCI gel column, ODS Middle Pressure Liquid Chromatography
(MPLC), Sephadex LH-20, and High Performance Liquid Chromatography (HPLC) to give a new
filicinic acid-based meroterpenoid (1) as drawn in Figure 1, which was named as hyperjaponol H.
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Figure 1. Structure of compound 1.

Hyperjaponol H (1), white amorphous powder {[α]20
D +16.4 (c 0.06, CHCl3)}, with the molecular

formula C28H42O5, was manifested by the high-resolution electrospray ionization mass spectra
(HRESIMS) quasi-molecular peak ion at m/z 459.3119 [M + H]+, calculated for C28H43O5 459.3110
(Supplementary Materials Figure S1). The analyses of IR absorption bands (3455, 1654, and 1612 cm−1,
Supplementary Materials Figure S9) demonstrated the characteristic scaffold of an enolic 1,3-diketo
system, viz. acylated filicinic acid parent core [10,11,17,18]. Comparison of NMR data between 1
with hyperjaponols A–G [16] indicated that 1 was constructed via the incorporation of the same
sesquiterpene unit as hyperjaponol G to the same acylated filicinic acid entity as hyperjaponols A–F.
Accomplished by meticulous examination of HSQC, HMBC, and 1H-1H COSY spectra (Supplementary
Materials Figures S4–S6), all 1H- and 13C-NMR data of 1 were unequivocally assigned as shown
in Table 1. The 1H-NMR (600 MHz) spectrum (Supplementary Materials Figure S2) displayed
resonances for eight methyls [δH, 1.29 (s), 1.24 (s), 1.20 (s), 1.19 (s), 1.02 (s), 1.11 (d, J = 6.7 Hz),
1.10 (d, J = 6.7 Hz), 1.00 (d, J = 7.0 Hz)], and two olefinic methine protons [δH, 5.59 (dd, J = 16.2, 4.7 Hz),
5.47 (dd, J = 16.2, 8.0 Hz)]. The 13C-NMR (150 MHz) spectrum (Supplementary Materials Figure S3)
denoted 28 carbon resonances consisting of one quaternary carbon, one carbonyl, two oxygenated, and
five enolic or olefinic carbons, five methylenes, six methines (four aliphatic, and two olefinic carbons),
and eight methyls. Taking the aforementioned analyses and its eight indices of proton deficiency into
consideration, compound 1 contains a tricyclic system.

The planar construction of 1 was established according to the HMBC and 1H-1H COSY
experiments (Figure 2). In ring C, the 2-hydroxyisoisopropyl residue was connected at position
8 due to the HMBC correlations from Me-12/Me-13 to C-11 and C-8, while the HMBC cross-peaks
between Me-15 with C-1, C-2, and C-10 as well as the cross-peaks between Me-14 with C-4, C-5, and C-6
suggested Me-15 and Me-14 was located at positions 1 and 5, respectively. Meanwhile, the clear 1H-1H
COSY spin systems of H-2/H-3/H-4/H-5/H-6/H-7/H-8/H-9/H-10 supported the structural profile
of ring C, a germacrane unit. Regarding to the ring A, a filicinic acid core, was confirmed by the HMBC
correlations of Me-12′/Me-13′ with C-3′, C-4′, and C-5′, H-7′ with C-1′, C-5′, and C-6′ along with an
unassigned olefinic carbon (δC 104.6) referring to literatures [10,11,17,18]. In addition, the isobutyryl
functionality positioned at C-2′ was illustrated by HMBC correlations from Me-10′/Me-11′ to C-8′ and
C-9′. Definitively, the combination of the filicinic acid (ring A) and the germacrane (ring C) via C-7′

was established by the 1H-1H COSY spin system of H-2/H-7′, and ring B formed to fit the unsaturation
degrees of 1.
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Table 1. 1H-NMR (600 MHz) and 13C-NMR (150 MHz) spectral data of compound 1 in CDCl3 (δ in
ppm, J in Hz).

Position δH (J) δC Position δH (J) δC

1 84.9 14 1.00 d (7.0) 16.4
2 1.47 m 36.1 15 1.02 s 21.3
3 0.91 m 25.2 1′ 188.7

1.32 m 2′ 104.6
4 1.58 m 31.4 3′ 197.1

1.51 m 4′ 48.5
5 2.65 m 33.9 5′ 173.1
6 5.59 dd (16.2, 4.7) 136.8 6′ 101.9
7 5.47 d (16.2, 8.0) 127.5 7′ 2.74 dd (16.6, 5.2) 21.8
8 2.31 t (7.0) 50.0 1.69 dd (16.6, 11.3)
9 1.90 m 24.7 8′ 207.9

1.43 m 9′ 3.93 sept (13.5, 6.7) 35.5
10 1.79 ddd (14.7, 10.0, 4.5) 32.1 10′ 1.10 d (6.7) 19.15

2.03 dt (14.8, 3.9) 11′ 1.11 d (6.7) 19.24
11 73.0 12′ 1.24 s 24.1
12 1.19 s 27.9 13′ 1.29 s 25.4
13 1.20 s 28.7
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According to the 2D NOESY spectrum (Supplementary Materials Figure S7) and 1H-1H coupling
constant, the relative configurations of the chiral centers of 1 were revealed. In light of a large coupling
constant value of H-6/H-7 (J = 16.2 Hz), an E geometry of the olefinic bond (∆6,7) was ascertained.
NOE correlations between Me-14/H-7, H-7/H-10b (δH 2.03), H-10b/Me-15, and Me-15/H-7′b (δH 1.69)
suggested that these protons should be assigned as the same side named β orientation. Analogously,
the observed NOE cross-peaks between H-7′a (δH 2.74)/H-2, H-6/H-5, and H-6/H-8 as well as the
absence of a key NOESY correlation between H-2/Me-15, indicated H-2, H-5, H-6, and H-8 should be
placed at α orientation (Figure 2). Furthermore, the value of 3JH-7′b−H-2 (J 11.3 Hz) suggested that a
dihedral angle 180 between H-7′b and H-2 assigned these two protons as trans-stereochemistry. Thus,
a 6/6/10 ring system was incorporated by the sesquiterpenoid germacrane entity trans-fused into the
acylfilicinic acid motif, which possessed a 1R*,2S*,5S*,8R* relative configuration.

As confirmation, the absolute stereocenters of C-1, C-2, C-5, and C-8 in 1 were assigned by means
of the cautious comparison of electronic circular dichroism (ECD) data between 1 and its homologues,
i.e., hyperjaponols D–G, with the identical sesquiterpenoid germacrane. The ECD spectra exhibited
positive Cotton effects at 226–231 nm (ECD (CH3OH) λ (∆ε): 1, 231 (+10.34) (Figure 3); hyperjaponol D,
227 (+3.23); hyperjaponol E, 227 (+5.28); hyperjaponol F, 229 (+4.48); hyperjaponol G, 226 (+13.74)]
together with the dextrorotatory optical activities of compound 1 and hyperjaponols D–G, which
designated the stereochemistry of 1 as 1R,2S,5S,8R.
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Figure 3. Experimental ECD spectrum of 1 (in CH3OH).

Epstein-Barr virus (EBV, Lymphocryptovirus), a large DNA virus of the γ-herpes virus family,
preferentially infects human B cells of at least 90% of the worldwide population in a latent state [19].
EBV is generally linked to a group of autoimmune ailments, such as systemic lupus erythematosus [20],
multiple sclerosis [21], and rheumatoid arthritis [22]. Currently, anti-EBV drugs like ganciclovir and
aciclovir, have efficacy against EBV lytic infections, while the increasing emergence of drug-related
toxicity, cross-resistance, and side effects also limit their clinical application [23–25]. As a successive
biochemical research on this herb, compound 1 was carried out an inhibition assay on lytic DNA
replication of EBV in B95-8 cells in terms of our previous procedure [16]. Comparing the results with
the reported compounds (hyperjaponols A–G), 1 exhibited a moderate effect with EC50 25.00 µM, and
the value of a CC50 higher than 50 µM (Figure 4 and Table 2).
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Figure 4. Effects on B95-8 cells viabilities and inhibition on lytic EBV replication of compound 1
was measured using GCV as positive control in vitro. B95-8 cells (5 × 105/well) were cultivated
with designated concentrations of compounds in present of 12-O-tetradecanoyl-phorbol-13-acetate
(TPA). The 50% cytotoxic concentration (CC50) of 1 was calculated from the dose-response curve
by Graphpad5.0 Prism. The 50% effective concentration (EC50) value correspond to compound
concentrations required to reduce quantitative expression of the copy number of intracellular viral
genomic DNA by 50%. Both values of CC50 and EC50 were obtained as mean values with standard
deviations (n = 3).
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Table 2. Anti-EBV activities of positive control ganciclovir (GCV), 1, and the reported compounds
(hyperjaponols A–G) (µM).

Compounds CC50
a EC50

b Selectivity Index (CC50/EC50)

GCV >300 2.86 >104.50
1 >50 25.00 >2

(+)-hyperjaponol A >41.35 10.33 >4.00
(−)-hyperjaponol A >300 119.4 >2.50
(+)-hyperjaponol B >30 0.57 >52.63
(−)-hyperjaponol B >120 6.60 >18.18
(+)-hyperjaponol C 31.75 − −
(−)-hyperjaponol C 17.78 − −

hyperjaponol D 48.05 0.49 106.78
hyperjaponol E 60.49 17.53 3.45
hyperjaponol F 41.62 14.47 2.87
hyperjaponol G >300 >300 −

a: 50% cytotoxic concentration; b: 50% effective concentration.

3. Materials and Methods

3.1. General Experiments

Optical rotation was recorded on a JASCO P-2200 digital polarimeter (JASCO, Tokyo, Japan). IR,
UV, and ECD spectra were measured by Bruker Vertex 70 (Brucker Co., Karlsruhe, Germany), Varian
Cary 50 (Varian Medical Systems, Salt Lake City, UT, USA), and JASCO J-1700 (JASCO, Tokyo, Japan)
apparatuses, respectively. HRESIMS was carried out on Agilent 6530 Accurate-Mass Q-TOF LC/MS
spectrometer (Agilent Technologies, California, CA, USA) employed with positive ion mode with
nebulizer pressure at 2.0 bar, dry gas temperature at 593 K, and assembled with Agilent Extend-C18

column (50 mm × 2.1 mm, 1.8 µm) under the mobile phase (MeOH/H2O, 90/10 (V/V)) with a
flow rate of 0.5 mL/min. NMR spectra were run on a Bruker AM-600 spectrometer (Brucker Co.,
Karlsruhe, Germany), 1H-NMR (600 MHz), 13C-NMR (150 MHz), using TMS as the internal standard.
Chemical shifts of 1H and 13C-NMR were reported in ppm relative to the solvent peaks of CDCl3
(δH 7.24 ppm; δC 77.23 ppm). DEPT 135, HSQC (acquired size 512, 256; spectral size 1024, 1024),
HMBC (acquired size 1024, 128; spectral size 2048, 1024), 1H-1H COSY (acquired size 1024, 128;
spectral size 1024, 1024), NOESY (acquired size 1024, 128; spectral size 1024, 1024) experiments
were performed. Silica gel (0.12–0.2 and 0.2–0.3 mm, Yantai Chemical Co. Ltd., Yantai, China),
MCI gel (Mitsubishi Chemical Co., Tokyo, Japan), ODS (YMC Co., Tokyo, Japan), and Sephadex
LH-20 (Mitsubishi Chemical Co., Tokyo, Japan) were used for column chromatography. Thin-layer
chromatography (GF 254, Yantai Chemical Co. Ltd., Yantai, China) was performed for monitoring
isolates under an ultraviolet-visible detector with λ 254 nm. Semi-preparative high performance liquid
chromatography (HPLC) was carried out by a LC 3050 analysis of HPLC system (CXTH, Beijing,
China) with a RP-C18 column (5 µm, 10 × 250 mm, Welchrom®, Shanghai, China).

3.2. Plant Material

The aerial parts of herbs (H. japonicum) were collected from Da-Bie Mountain area, Qichun County,
Hubei Province, P. R. China, in October 2016, and were authenticated by Professor Jianping Wang,
Huazhong University of Science and Technology. A voucher specimen (no. 2016-1011) was deposited
at the Herbarium of Hubei Key Laboratory of Biotechnology of Chinese Traditional Medicine, School
of Life Science, Hubei University, Wuhan, P. R. China.

3.3. Extraction and Isolation

The air-dried aerial parts of herbs (H. japonicum) (4 kg) were percolated with 95% aqueous EtOH
(10 L) at 40 ◦C for 72 h to produce a crude extract (300 g), which was subjected to silica gel column
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(silica gel, 0.12–0.2 mm, 1.5 kg; column, 10× 75 cm) chromatography (silica gel CC) eluted successively
with the gradient mobile phases of petroleum ether (12 L), chloroform (8 L), and ethyl acetate
(8 L). The petroleum ether fraction was subjected to silica gel column chromatography (petroleum
ether/acetone, 100:1 to 5:1) to produce seven fractions (Fractions 1–7). With the aid of TLC analyses,
fraction 3 was chosen and subjected on silica gel column (petroleum ether/acetone, 50:1 to 5:1) to yield
four subfractions (fractions 3.1–3.4). Fraction 3.2 was purified using an ODS column with a gradient
elution (MeOH–H2O (50:50 to 100:0), to produce four subfractions (fractions 3.2.1–3.2.4). Fraction
3.2.3 was further repurified by semi-preparative HPLC (MeOH–H2O, 85:15; flow rate, 2.0 mL/min; tR,
37.5 min) to afford 1 (2.1 mg).

Hyperjaponol H (1): white amorphous powder; [α]20
D +16.4 (c 0.06, CHCl3); UV (CH3OH) λmax

(log ε) 243 (3.71) (Supplementary Materials Figure S8), 329 (3.90) nm; IR (KBr) νmax 3455, 2966, 2932,
2874, 1654, 1612, 1523, 1464 cm−1; ECD λmax (∆ε) 231 (+10.34), 352 (−0.79) nm; 1H and 13C-NMR data,
see Table 1; HRESIMS: m/z 459.3119 [M + H]+ (calcd for C28H43O5 459.3110) (Supplementary Materials
Figure S1).

3.4. Anti-EBV Assay

Regarding the pathogenicity of EBV infection, viral replication plays a critical role, and the
inhibition of viral replication is a crucial parameter used to assess anti-virus activity of drugs. Hence
the inhibitory activity on EBV DNA replication of compound 1 was investigated using previous
procedures [26–29]. The cytotoxicity of compound 1 towards B95-8 cells was assessed by the
AlamarBlue® cell viability assay (Thermo Fisher Scientific, Waltham, MA, USA) according to the
manufacturer′s protocol. Thereupon, the antiviral activity of compound 1 against the lytic replication of
EBV in B95-8 cells was measured using a qPCR assay to assess the intracellular viral DNA copy number,
an accurate and rapid assessment of the efficacy of EBV DNA inhibitors as reported [26]. Extraction
of the EBV genomic DNA, determination of the viral DNA copy number, and evaluation of the
intracellular viral genomic DNA were undertaken referring to our previously described method [16].

4. Conclusions

Hyperjaponols H (1), a new filicinic acid-based meroterpenoid, with a 6/6/10 ring system
trans-fused by hetero-Diels–Alder cycloaddition between a germacrane sesquiterpenoid and a filicinic
acid moiety, was discovered from Hypericum japonicum. The structure and absolute stereocenters were
attributed to the analyses of extensive spectroscopic data and the Cotton effect of ECD undergoing
a comparison with previously reported ones. Primary bioactivity screening suggested that 1 had
a moderate inhibitory effect on lytic EBV DNA replication with the EC50 value of 25.00 µM.

Supplementary Materials: HRESIMS, NMR, UV, and IR spectra of compound 1 are available online.
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