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Abstract: This review examined a collection of studies regarding the molecular properties of some
polyene antibiotic molecules as well as their properties in solution and in particular environmental
conditions. We also looked into the proposed mechanism of action of polyenes, where membrane
properties play a crucial role. Given the interest in polyene antibiotics as therapeutic agents, we looked
into alternative ways of reducing their collateral toxicity, including semi-synthesis of derivatives and
new formulations. We follow with studies on the role of membrane structure and, finally, recent
developments regarding the most important clinical applications of these compounds.
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1. Introduction

There are many examples of the involvement of cell membranes in physiological
processes. It is now clear that this molecular self-assembled structure is far more complex
than Singer and Nicholson’s original idea [1]. It is an ordered soft material with a very rich
composition which presents multiple phases simultaneously. This richness plays a role in
many processes occurring across, in or through the membrane.

The phenomenon of the interaction of polyenes with the lipid membrane has been
studied for decades. Polyenes are quite small molecules, for biological standards, but
present a wide variety of phenomena depending on concentration [2,3], solvent [4–7],
pH [8–11], oxidation [12–16], and membrane properties [17–20]. Pertinent studies have
advanced our understanding of the interaction between molecules and membranes. We
reviewed some of these works and added some results of our own. Additionally, polyenes
are very important drugs for the treatment of mycosis, parasitosis, and other illnesses,
which has increased interest in these compounds. We therefore also included an update on
their therapeutic use.

First, we address some polyene molecules and their chemical properties such as
structure, solvation, aggregation, oxidation, etc. Then, we review the membrane-based
mechanisms of action of the pharmacological activity. We also address examples of suc-
cessful semi-synthetic derivatives, lipid-based formulations for the delivery of polyenes,
and the complexity of membrane structure in relation to polyene action. We finally address
recent developments of the clinical use of polyenes.

Some examples of polyene antimycotics are filipin, amphotericin B, nystatin, and
natamycin. The latter three are in the World Health Organization’s 22nd list of essential
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medicines for 2021 [21]. Polyene antibiotics are potent antifungal agents currently used
in human therapy. Amphotericin B (AmB) 1 was isolated from Streptomyces nodosus in
1955 [3,22] and became commercially available in 1959 [23]. It is still considered the gold
standard for the treatment of serious invasive fungal infections [24]. The fermentation by
bacteria produces a compound of three forms of amphotericin (A, B, C), which leads to
purity problems, mainly in semi-synthetic derivatives. Recently, a genetically engineered
strain enhanced production of AmB exclusively, which will lead to purer forms of the
polyene and its derivatives [25]. Furthermore, a recent review addressed many other
forms of polyenes discovered through genome mining. These discoveries could lead to
development of better antifungals [26].

AmB is also employed to treat infections caused by parasitic protozoa, for example
leishmaniasis [27,28], as well as prions and viruses [29–33], but the large collateral toxicity
of the polyene has prevented a more extensive use [34]. There have therefore been many
attempts to reduce this toxicity via derivatives or formulations. The most common way
of administering AmB is intravenously in a solution containing deoxycholate to improve
AmB solubility in water [35]. Nystatin (Nys) 2 was the first macrolide polyene antimycotic
to be discovered [22]; it was first called fungicidin [36] and is synthesized by Streptomyces
noursei. Due to a slightly higher toxicity, Nys is used topically [37–40] to treat, for example,
oral candidiasis [41]. Toxicity is a major problem when it comes to the clinical use of
polyenes and remains an obstacle when addressing an increasing number of multidrug-
resistant fungal pathogens such as Candida albicans, Candida lusitaniae [42], and Candida
auris [43]. In addition to their function as therapeutic agents, polyenes have long been
studied to understand all the phenomena they display at a molecular level and their effect
on pharmacological action [44–52]. A better understanding of the mechanisms of action
involved in the antifungal activity of polyenes and its toxic side effects is needed for
the discovery and design of equally potent yet safe alternatives [53]. One major player
in the action of polyene antimycotics is the cell membrane. A particular component of
the membrane, the sterol, is crucial and, possibly, directly involved in the formation of
pores [54–57] as well as indirectly via modulation of the membrane structure [58,59], or
even as the direct target of the drug [60,61].

2. Polyene Structure and Chemical Behavior
2.1. Chemical Structure of Polyenes

The structure of polyene antibiotics consists of a macrolactone ring of polyunsaturated
carbons, where the hydroxyl groups confer the amphipathic character of the molecule.
These drugs contain a set of four to eight conjugated double bonds within the macrolactone
ring (Figure 1) [62]. The hydrophobic chain is believed to be important in one of the pro-
posed modes of action; it is considered to be responsible for the interaction of antimycotics
with sterols for the formation of transmembrane pores [11,54].
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Figure 1. General structure of polyene antibiotics.

Depending on the number of conjugated double bonds, polyenes can be classified
into trienes, tetraenes, pentaenes, hexaenes, and heptaenes [2]. These differences are
responsible for distinct behavior among the polyenes. For instance, Nys is fluorescent
because it contains a tetraene chromophore and a diene; the fluorescence present in this
molecule is used to examine its state of aggregation and its interaction with phospholipid



Membranes 2022, 12, 681 3 of 43

bilayer membranes [63]. The fluorescence intensity of Nys in methanol showed a linear
dependence with concentration (0–25 µM), showing that it is monomeric at concentrations
of 100–200 µM, whereas in aqueous solution it was shown to aggregate at a concentration of
3 µM [64]. The composition of Nystatin includes three antibiotics, namely, Nystatin A1, A2,
A3, and a small heptaene contaminant [65]. Nys consists of a 38-membered macrolactone
ring with sets of two and four conjugated double bonds separated by a saturated bond
(Figure 2). The molecule contains a mycosamine moiety linked to the macrolactone ring via
a β-glycosidic bond, and exocyclic carboxyl group, both of which appear to be important
for biological activity and toxicity [66].
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AmB is the most important polyene macrolide antibiotic; it is a heptaene and contains
a macrolactone ring that is β-glycosylated to a mycosamine group at the C19 position
(Figure 3) [62]. This macrolactone ring is an almost planar chromophore with seven double
bonds in trans conformation which make up the hydrophobic region; it also contains a
hemiketal ring at the C13 and C17 positions. Additionally, it has a more flexible polyol
subunit that is the hydrophilic section of the polyene. The amphoteric character of AmB is
determined by the presence of a carboxyl group at the C16 position and an amino group
located on the mycosamine head group [62].
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At neutral pH, AmB is a zwitterion, a state resulting from the positively charged -NH3+
and negatively charged -COO-, which has an influence on the aggregation process [67].
The acidity of the solution can influence the molecular organization of AmB in an aqueous
medium. At a concentration of 10 µM of AmB and a pH higher than 10 it remains in a
monomeric form, whereas in a pH range 3–10 shows weakly coupled aggregated structures.
Surprisingly, strongly coupled aggregated structures appeared at pH below 2 in spite of
the positive net electric charge [68]. Aggregation is also concentration dependent, so the
previous results could vary at other concentrations, or in the presence of other solutes. As
mentioned above, AmB contains well-defined hydrophobic and hydrophilic regions, which
gives it its amphipathic character. As a consequence, AmB is poorly soluble in water and
tends to aggregate in aqueous solution [69,70]. It has been suggested that aggregation in
solution might be important for the interaction with the membrane [71,72] and, recently,
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fundamental for pharmacological action [60,73–75]. From the pharmacological point of
view, the aggregation state of AmB seems to produce highly toxic side effects in mammalian
cells [72] given that such structures may directly assemble into porous structures in these
membranes, affecting the physiological transmembrane ion transport [76]. This and other
physicochemical properties of AmB have been critical in determining the proposed mode
of action.

Another polyene that has been the focus of several studies is filipin 3. The term
filipin refers to a compound that is a mixture of four isomeric forms (filipin I (4%), II
(25%), III (53%) and IV (18%) [77]) of a polyene antimycotic synthesized by Streptomyces
filipinensis [78]. The structure of filipin III was determined in 1995 by reporting its relative
and absolute stereochemistry. Filipin has a structure that differs slightly from AmB and
Nys due to a shorter polyene chain, consisting of five conjugated double bonds; it also lacks
the mycosamine sugar moiety (Figure 4) [79]. Filipin has an antifungal activity, though it is
not selective between fungal and mammalian cells [80–83].
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The thermostability of filipin in the crystalline state was investigated by Tingstad and
Garrett [84]. The half-life of filipin in air at 70 ◦C is about six hours; the molecule is 50 to
100 times more stable in the absence than in the presence of air and the loss of its biological
activity correlates directly with these characteristics. Filipin is a membrane disruptor and
is used to locate cholesterol in cell and lipid membranes [85]. However, the data must be
interpreted with care [86] as cholesterol diffusion can lead to dissociation of the complex.
It has also been used to detect Niemann–Pick type C disease [13] which is an autosomal
recessive lysosomal storage disorder due to mutations in the NPC1 or NPC2 gene that
can lead to a fatal disease in neonatal infants or chronic neurodegeneration in adults [87].
Filipin, similar to other polyenes, has been used to construct semi-synthetic derivatives
searching to increase safety [88].

Natamycin 4 (also called pimaricin) is another effective polyene antibiotic with a
large record of applications [89]. It is produced by Streptomyces natalensis and is used for
the topical treatment of fungal infections. It is effective against a broad variety of yeast,
some protozoa, and some algae [90] and it is also widely utilized in the food industry
to prevent mold contamination of cheese and other non-sterile and fermented foods due
to its selective action against yeast and mold and its inaction against bacteria [89,91,92].
Natamycin consists of a macrocyclic lactone ring with four conjugated carbon–carbon
double bonds (tetraene) and a mycosamine group that renders it amphoteric (Figure 5) [90].

The amphoteric character of natamycin is responsible for its low solubility in most
solvents [93], as is the case for AmB. Previous studies have reported that, despite being
a selective polyene like Nys or AmB, Natamycin’s mechanism of action is not linked to
membrane permeabilization despite its molecular similarities. This begs the question of
whether other polyenes have a similar activity—one not related to the membrane pores,
but simply sterol binding [92].
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2.2. Oxidation

Polyenes are readily auto oxidized. For instance, AmB reduces its chromophore chain
to a pentaene, as presented in Figure 6 following Gagos and Czernel [94].
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of double bonds in the hydrophobic chain.

Oxidation drastically modifies the absorption spectra and can lead to confusion with
the aggregation state of the polyene since this phenomenon also affects the aforementioned
absorption spectra. Aggregation is important for understanding distinct modes of action
and must be determined carefully. Oxidation also has an important effect on pharma-
cological activity. For instance, AmB oxidation reduces its antifungal properties 16-fold
against two Candida strains and affects its cytotoxic activity towards GMK cells 5-fold [95].
The pore mechanism of action assumes that the chromophore chain is essential for the
formation of the barrel-like structure; an alteration of this chain would affect the formation
of pores, and thus fungal and cytotoxic action. Oxidation occurs readily when the polyene
is in solution. For example, in Figure 7, we presented the absorption spectra of AmB as
time passes in PBS (ambient conditions in open vessels). As can be seen, oxidation in the
dark appears to be noticeable after 24 h. Furthermore, light is promoting oxidation. The
same figure shows that 96 h illumination with a LED lamp (spectrum from 400–700 nm
with peaks at 450 and 550 nm) at 2000 luxes conduces higher oxidation vis-à-vis the same
ambient conditions without light.
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2.3. Aggregation

The activity of polyene antibiotics depends on their aggregation state [96]. There
are two commonly used techniques for determining aggregation of polyenes: Circular
Dichroism (CD) and UV/vis absorption spectra. In certain solvents (methanol, propanol,
and dimethyl sulfoxide (DMSO)) polyenes exist as monomers, whereas the antibiotics are
found to aggregate in aqueous solutions, particularly in PBS. The aggregation involves
hydrophobic interactions [69]. Polyenes are mixed in deoxycholate to favor solvation for
clinical application. However, some, like AmB, lose the zwitterionic character at low pH
values of 3 and change into an ionic form which is quite soluble in water. In this case,
the profile of the absorption spectra remains unchanged with concentration, similar to
the case of solvation in methanol solution. Something similar occurs at a high pH value
10 but, at a physiological pH in PBS, the situation is quite different: the AmB absorption
spectra for concentration below 0.2 µmol show that the polyenes are at the monomeric
form [17,72]. At concentrations larger than 0.2 µmol, the profiles keep changing. Now,
the peak at 347 nm keeps increasing, indicating aggregation; it starts from dimers and
grows to larger aggregates [72,97]. Hence modification of the absorption spectra allows
for the detection of the aggregation of polyenes [98–100], but one has to be careful because
oxidation also produces changes in the same range of the spectra. To avoid oxidation,
tocopherol is added to aqueous solutions [101].

Aggregation in solutions has been considered an important factor determining the
absorption and insertion of polyenes into the membrane [71,72,102]. Even small aggregates,
such as the dimer, are seen as crucial in the adsorption (or no adsorption) into membranes
of different compositions. They are believed to be the reason for the different action in
ergosterol- or cholesterol-containing membranes. Furthermore, the threshold at which
dimerization occurs has been advanced as a reason for derivative improvement [72], which
has prompted interest in studying the dimerization of AmB and its derivatives [72,103,104].
All simulations predict ready aggregation leading to dimerization and then a continuing
aggregation, in agreement with the absorption spectra observations. The dimer geometry
has been observed with different monomer orientations, but no case showed a hydrophobic
area reduced upon aggregation, as could be expected. This suggests why aggregates
could insert better into the membrane. Understanding what sort of molecular interaction
leads to aggregation would help in derivative design. However, in this case, we have
discrepancies. Are they due to dipole–dipole interactions or to hydrophobicity? The
problem is that molecular dynamics simulations depend crucially on the force fields used,
and the existing force fields for these molecules have not been as fully tested and validated
as other molecules. For instance, the ∆G of solvation predicted by Zielińska et al. [104]
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is −7.1 kcal/mol, a value far too large for a molecule that is quite insoluble in water, less
than 1 µM. Given the very useful information MD studies could yield, a refined molecular
dynamics simulation is called for.

It has been suggested that very large aggregates of polyenes in aqueous solution
exist and occur on the surface of membranes. Milhaud et al. [105] observed, by Atomic
Force Microscopy, that very large aggregates of AmB were formed at the surface of a
L-dilauroyl phosphatidylcholine membrane and that the morphology of these aggregates
was dependent on the presence of ergosterol. Likewise, large aggregates of nystatin have
been reported on membrane surfaces [106]. A mechanism of action based on the existence
of large aggregates on the cell membrane was recently proposed [60,74,75]. It seems clear
that large aggregates can occur; what is not clear is at what concentrations and, most
importantly, at what polyene-lipid ratio they appear. It seems unlikely that they would
occur at the 1 µM concentration—that is, the therapeutic active concentration.

Given the collateral toxicity of polyenes, new ways of bypassing this problem have
been addressed, including the production of derivatives with the same effectiveness but
less collateral damage.

3. Mechanisms of Action

Polyene antibiotics are thought to act mainly at the membrane level, though some
have suggested they do so at the intracellular level, where the cell membrane is not directly
involved in cell death (for instance through oxidative damage) [107–111]. It has also been
suggested that oxidative bursts result from an AmB interaction with a membrane enzyme,
NADPH [112,113]. Mousavi and Robson [114] treated protoplasts of Aspergillus fumigatus
with hydrogen peroxide and AmB. In both cases, apoptotic-like phenotypes were detected,
in contrast to pathogens treated with itraconazole, a fungistatic agent, which did not present
these phenotypes. Blum et al. [115] found that Aspergillus terreus had a higher production
of catalase, an antioxidant agent, than did the susceptible strand Aspergillus fumigatus.
Hence, the authors hypothesized that the resistance could be due to a reduction in the
oxidative damage caused by AmB. Sharma et al. [116] found that treating Candida isolates
that presented reduced antifungal sensitivity with polyphenol curcumin I in combination
with AmB reduced the minimum inhibitory concentration and that this combination was
associated with the production of reactive oxygen species.

Another mode of action that has drawn attention is AmB’s potential effect as an
immunomodulatory drug [46,117]. This process is not yet well understood, but the existing
evidence points to AmB binding to Toll-like receptors (TLR) in the membrane. After
binding, an adaptor protein, MyD88, is recruited. This eventually leads to macrophage
activation. Moreover, the immunomodulatory effect depends on the formulation in which
AmB is delivered. For example, in a study using AmB in deoxycholate, liposomal and
colloidal dispersion formulations, and plasma of human patients, it was found that AmB in
deoxycholate and liposomal formulations increased levels of proinflammatory cytokines
while the colloidal dispersion formulation did not [118]. Another study using human
monocytes showed that AmB in deoxycholate and in colloidal dispersion up-regulates
inflammatory cytokines, while AmB in lipid complex and liposomal formulations down-
regulates or has no effect on the expression of these proinflammatory cytokines [119]. This
is a very interesting aspect of polyenes that has not been exploited at large because of the
collateral toxicity they exhibit. That said, the development of polyene derivatives with
increased safety that maintain immunomodulatory properties could have a strong impact
on health.

The idea that polyene activity is related to membrane structure is also present in the
super lattice model of sterol within the membrane. The model hypothesizes that sterols
distribute themselves in hexagonal superlattices at specific sterol mole fractions that seem
to be periodical and that Nys binding to lipid bilayers is correlated to the presence of these
structures [120–124].
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We now concentrate on more traditional models where action presumably occurs at
the membrane level. In filipin’s case, a mechanism was proposed by Kruiff and Demel in
1974 [54]; their hypothesis is that filipin forms aggregates of approximately 15–25 nm in
diameter within the membrane core. This aggregate is presumably composed of parallel
arrays of filipin, stacked one above the other. Furthermore, these aggregates can form
complexes with cholesterol that are totally embedded in and covered by the membrane;
these complexes were visualized using electron microscopy, which showed that, on the
edges of these aggregates, there is a strong curvature of the lipid layers of the membrane.
The authors hypothesized that a fragmentation of the membrane takes place in here. Us-
ing atomic force microscopy (AFM), Santos et al. [125] also observed these protrusions
in dipalmitoyl phosphatidylethanolamine (DPPE)/cholesterol-supported lipid bilayers
of mean diameter of 19 nm and height of 0.4 nm as well as doughnut-like lesions and
larger circular protrusions of mean diameter of 90 nm and 2.5 nm in height. These re-
sults showed that filipin action on DPPE bilayers is affected by cholesterol concentration.
Lawrence et al. [126] performed AFM imaging of sphingomyelin/1,2-dioleoyl-sn-glycero-
3-phosphocholine (SM/DOPC)-supported bilayers, either sterol-free or with 10 mol%
cholesterol, and observed filament-like aggregates of filipin on high-order SM-rich domains
only in the cholesterol-containing bilayer. This suggests that SM-domains are also enriched
in cholesterol. The filament-like aggregates showed a periodicity of ~4.3 nm. The lack
of lesions or aggregates on the sterol-free bilayer suggests that not only lipid physical
state (e.g., gel) but also lipid species comes into play in the interactions between filipin
and lipid bilayers. In Santos et al. [125] and Castanho and Prieto [127], for example, there
was no need for sterol. We must consider that the above studies with supported lipid
bilayers entailed high concentrations of filipin (~100 uM); the polyene lipid ratio was also
quite high.

The oldest and most accepted mode of action is that polyenes form membrane span-
ning pores that cause an electrolyte imbalance that leads to cell death [54,56,128,129]. In
1968 [18], both Nys and AmB were shown to radically reduce the lipidic membrane resis-
tance to direct current and thus alter the ion selectivity properties of cholesterol-containing
lipid membranes. This led to the hypothesis that the interaction of these polyene antibiotics
with cholesterol bound to the membrane modifies the surface properties of said membranes
and, consequently, their electrical behavior. Nys and AmB also induced permeability to
water and non-electrolytes, so it was suggested that both polyenes create aqueous pores in
lipid membranes with similar permeability [130]. These pores do not appear to be static or
permanent, they have a strong temperature dependence. Furthermore, the increase in lipid
membrane conductance due to these pores was directly related to the increase in polyene
concentration [11]. The pores were thought to be barrel-like structures composed of polyene
and sterol molecules [54,56,128,129]. A pore model based on the chemical structures of
polyenes and cholesterol was proposed, and consisted of a circular arrangement of 4 to
12 polyene molecules interdigitated with cholesterol. The interior was hydrophilic due
to the presence of hydroxyl groups, and the exterior was hydrophobic [54,56,129], where
the apolar backbones of the polyene and sterol were oriented parallel to the fatty acid
chains of the phospholipid. The total length of this complex was approximately equal to
the length of the fatty acid and glycerol moiety of the phospholipid molecules in such a
way that a single complex was a half-pore through the lipid bilayer. Two such half-pores
were thought to be needed on each side of the lipid bilayer to obtain a complete conducting
pore [54,131]. It was recently revealed using solid state nuclear magnetic resonance (NMR)
that the AmB-Erg complex is able to span the whole bilayer via thinning of the membrane.
The authors complemented these experiments with a molecular dynamics simulation to
show the thinning of the bilayer [132]. It can be assumed that transmembrane pores are
created in two different ways: either by a polyene-induced conformational thinning effect
in the lipid bilayer, or by the union of two half pores without the need for changes in mem-
brane conformation. It has been shown that these two structures (single and double pore)
exist and present different ion selectivity [133]. Kruijff and Demel [54] determined that the
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diameter of AmB’s pore is about 8 Å by observing the largest molecules that permeated
the membrane (glucose). In the case of Nys, the pore is slightly smaller in size, which
could be explained by the bending of the hydrophobic backbone of the nystatin molecule.
The size of the pore radius depends mainly on the structure of the polyene, the number
of monomers (between 4 and 12 molecules), and the participation of other membrane
molecules, such as sterols [17,63,134,135]. All the previous studies were indirect, and it was
not until the advent of single-channel electrophysiology experiments of polyene action
on lipid membranes that the existence of the pore was confirmed. Early single-channel
electrophysiology studies of AmB and Nys studied conductance changes in planar lipid
bilayers related to single pore formation [136], where stepwise changes in conductance were
observed as a result of the formation of single channels, each with two states, one open and
one closed. Single-channel electrophysiological experiments also allow for the description
of channel kinetics. After its formation, the channel exhibits many transitions between open
and closed states. The average dwell time in each state does not depend on the membrane
potential, but on the concentration and type of salt present. The channel kinetics of Nys
and AmB were shown to be similar, with the only difference being smaller jumps and
somewhat longer dwell times for open channels in the case of Nys. Furthermore, more
recent studies have shown that the pore is a supramolecular structure [137] with differing
channel size depending on polyene concentration and, thus, the number of monomers
present in the structure.

As previously explained, sterols play an important role in the pore formation model.
Sterols are thought to be responsible for pore stability, with ergosterol providing more
and thus allowing for larger pore size [138] and longer open dwell times [137]. The pore-
forming model has been modified and enriched over the years. For instance, it has been
used following the alternative idea that membrane selectivity (i.e., the polyene being
more effective in fungal membranes containing ergosterol than in mammal membranes
containing cholesterol) is due to the membrane structure differences produced by sterols,
rather than a polyene–sterol direct interaction.

The fact that AmB channels can be formed in lipid bilayers that do not contain sterol
provides experimental evidence supporting the idea that sterol is not an absolute require-
ment for pore formation [135]. For this to occur, however, larger concentrations of AmB
were needed. It has been suggested that sterol-free structures correspond to non-aqueous
pores that will not evolve into aqueous ones, and are therefore not pharmacologically
relevant [139]. However, it has been shown that the molecular properties of the sterol-free
single channels suggest supramolecular structures similar to those found in the presence
of sterol [135]. Evidence supporting the idea that membrane structure differences are
the reason behind selectivity was presented in a study of Nys channel activity [58] along
a previously reported phase diagram for POPC/ergosterol and POPC/cholesterol lipid
mixtures [140,141]. Nys was found to present higher activity in conditions where there is
phase coexistence—that is, liquid ordered and liquid disordered phases. Recently, further
evidence that polyene activity can occur in membranes without sterols but in particularly
ordered conditions was presented [59].

There are still many ongoing studies looking into the properties of these pores by
electrophysiological techniques as well as other approaches. For instance, there are studies
of the properties of POPC giant unilamellar vesicles (GUVs) under osmotic stress produced
by Nys in the presence of cholesterol, ergosterol, or sterol free [142]. This work makes
clear that, even in large Nys concentrations, the GUVs with ergosterol do not resemble
the properties of the sterol-free GUVs, as would occur if the polyene was extracting the
sterol. On the other hand, ergosterol-containing GUVs present an osmotic effect that
indicates a larger amount of Nys pores. In a recent study combining NMR and MD [132],
it was suggested that only the classic pore model of AmB and ergosterol could explain
the observations in a POPC membrane. Another recent work [143] using polarization-
sensitive stimulated Raman scattering found that AmB resides inside the cell membrane
and is highly ordered, with an orientation primarily parallel to phospholipid acyl chains,
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supporting the channel model. Recent electrophysiological studies of channels in lipid
bilayers have been performed for different compositions and conditions and have shown a
variety of behaviors. For instance, bilayers of 1,2-diphytanoyl-sn-glycero-3-phosphocholine
with a large content of cholesterol have presented large conductance channels of AmB [61].
These conductances can reach very high values (~400 pS) when the bilayer is formed on a
nanoporous solid support made of silicone dioxide, highlighting the strong dependence
of channel architecture on environmental conditions. Similarly, the addition of dipole
modifiers to a bilayer presenting AmB channels [144] considerably modifies the single
channel conductance and opening times of AmB channels.

Polyene activity in the absence of sterol was also found to be produced by osmotic
pressure [145]. These authors found that AmB activity, resulting in increased membrane
permeability, is observed in sterol-free LUVs. They found a relation between activity
and osmotic pressure changes that produce higher curvature. It is worth mentioning,
however, that the study was not able to determine whether such activity was linked to
channel formation or to membrane disruption. Still, it is stated that polyenes have a
differentiated action due to structural differences in the lipid bilayer. In this study Wolf
and Hartsel [145] advanced the idea that polyene membrane penetration is the critical
factor determining membrane selectivity. They suggested that polyenes may act as what is
called Molecular Harpoon (MH) [146]. This concept is used to describe certain amphipathic
compounds that are easily inserted into lipid membranes. These molecules, once inserted,
induce instability of the membrane, leading to the permeation of ions, but not necessarily
leading to membrane rupture. The insertion of MHs is strongly related to the state of
oligomerization of these compounds [145]. Permeation induced by MHs is enhanced when
the bilayer is subject to osmotic stress. In this case, lower concentrations of MH were
required [146,147]. The hypothesis was that the greater ease of insertion is due to the
formation of crevasses in the external monolayer, exposing the hydrophobic core [146–149].

We know that the activity of MHs can be affected by the physicochemical properties
of the membrane. For instance, the activity of triton X-100 and other synthesized wedge-
shaped surfactants is affected by cholesterol content and osmotic stress [147]. Both are
presumed to affect the lipid packing of the membrane, which in turn favors or not the
insertion of MHs. Wolf and Hartsel [145] observe that AmB and Nys at 5 µM do not
present appreciable ion permeation in LUVs without sterols, but the activity takes place
when these LUVs are subjected to osmotic pressure. This activity is dependent on osmotic
pressure magnitude. This model is related to one of the processes involved in the polyene
mechanism of action—insertion into the membrane—and thus would be worth revisiting.
For instance, many of the previously mentioned phenomena could be explained by a
difference in membrane insertion that is affected either by composition or physicochemical
properties of the membrane.

To finally elucidate the mechanism by which AmB and other polyenes form pores
or other structures in the membrane would require observation at a molecular level. In
this regard, molecular dynamics simulations could prove a very important tool and the
literature includes studies using this technique [138,150–156]. For example, molecular
dynamics simulations of the pore suggest that ergosterol better stabilizes it, allowing for
larger pore dimensions [138]. This stabilization is thought to be due to a direct interaction
between ergosterol and AmB, which was observed via 2H NMR spectra of deuterated sterols
in a palmitoyl-oleoyl-phosphatidylcholine bilayer [157]. However, there is no standardized
potential for AmB and other polyenes [104,153], which posits a problem and renders the
results somewhat unreliable. This becomes more problematic because ergosterol itself has
a force field potential that is still under constant refinement [158]. Furthermore, in the
studies that look into the dynamics of AmB structures on the membrane surface, the initial
conditions presume particular constructions that would not dissociate because of large
potential barriers that have been overcome by hand. The ideal simulation would need
validated potentials for both polyenes and lipids, and the stepwise addition of polyene
monomers to the aqueous phase of the membrane system. This latter case was considered
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in a recent article [159] where the pore was not constructed as an initial condition of the
simulation. Polyene monomers became aggregated in the membrane, showing for the first
time the spontaneous formation of the pore. However, this study was performed using
coarse-grained molecular dynamics and we therefore lack a total atomic description of
the system.

Finally, a model of action that has gained much recent popularity is the so-called
sponge model [60,73–75,160], according to which AmB molecules are adsorbed on the
membrane surface in the form of large aggregates, where the polyene molecules are in a
perpendicular orientation to the normal of the lipid bilayer. This aggregate acts as a sponge
that draws ergosterol from the lipid membrane, keeping it inside the polyene aggregate due
to the high binding affinity between AmB and ergosterol, causing interference in crucial
functions for fungal cells [60]. However, this model is still under intense scrutiny. A recent
study using polarization-sensitive stimulated Raman scattering from the C=C stretching
vibration of the fingerprint to image AmB found that, in 16 different fungal cell types, the
orientation of AmB paralleled the orientation of the lipids [143]. Another study using solid-
state nuclear magnetic resonance found further evidence for parallel orientation of an AmB
derivative within the lipid membrane [161]. Both results support the barrel ion channel
model. Kaminski [44] pointed out that the ergosterol–lipid ratios used in two of the main
works supporting the sponge model [60,75] are significantly lower than those present in real
cell systems like Saccharomyces cerevisiae, namely 1:10 and 1:40 in the studies in comparison
to 3:7 in S. cerevisiae [162]. Kaminski also pointed out that in an environment where
cholesterol is available in larger amounts than ergosterol, as in a human host infected with
a fungal pathogen, the balance between AmB–ergosterol and AmB–cholesterol interactions
will favor the latter, meaning that ergosterol extraction from the fungal cells will be greatly
diminished. Finally, Kaminski made an argument that the fungal cell wall is made up
of hydrophilic chitin, which poses a serious obstacle in transporting ergosterol from the
cell membrane and into the polyene aggregates. Additionally, there is evidence that not
only is the affinity lower for cholesterol, but that AmB does not extract it from POPC
membranes [163]. The authors used neutron reflectometry and found that AmB is not
capable of extracting cholesterol from a POPC-cholesterol lipid bilayer, but it does extract
ergosterol from a POPC-ergosterol lipid bilayer.

Polyene selectivity towards sterol type is at the basis of their therapeutic use. This
selectivity, however, is not as marked as to prevent large collateral toxicity, therefore limiting
the extended application of polyenes in a variety of pathologies. This has led to intensive
research on how to make polyene use safer, either via derivatives or new formulations.

4. Alternatives to Reduce Polyene Host-Toxicity
4.1. Polyene Semi-Synthetic Derivatives

AmB, along with other polyene antibiotics, has an excellent antimycotic effect as
well as broad antifungal spectrum; unfortunately, it is highly toxic, which often limits its
effective use as a last line of defense against life-threatening systemic fungal infections [164].
AmB in particular is considered the most effective drug for the treatment of systemic fungal
infections [24,165]. For this reason, the semi-synthesis of new derivatives has been focused
on this drug [166–169]. It is not easy to chemically modify AmB given its dense array
of functional groups, e.g., the macrolactone is susceptible to saponification, the heptaene
and the hydroxyl groups are prone to oxidation, and the hemiketal and the mycosamine
are acid-sensitive [170]. The C16 carboxy group is an easily accessible locus for chemical
modification by esterification or amidation.

Now we present successful derivatives. That is, derivatives that keep the antimycotic
efficiency of AmB and considerably reduce its host toxicity.

Paquet and Carreira [171] documented the synthesis with significant improvement
in antifungal activity via double reductive alkylation of the mycosamine—that is, the
introduction of two amino propylene sidechains to produce the N,N-di-(3-aminopropyl)
AmB derivative 5 (Figure 8). This compound exhibited significant inhibitory activity against
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an AmB-resistant Candida albicans strain with a MIC value of 4.0 µM, and was also more
active against S. cerevisiae than AmB with MIC of 0.10 µM. In hemolysis assays, 5 displayed
less toxicity for blood cells, EHB50 50 µM, compared with AmB (EHB50 4.0 µM).
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Another successful compound was produced by modification of the C16 carboxy
group of AmB. The amide N,N-dialkyl derivative 6 (Figure 9) that was synthesized and
evaluated by Preobrazhenskaya et al. [172] exhibited a high activity against four fungal
strains and lower hemolytic activity compared to AmB for in vivo studies. The minimum
inhibitory concentration (MIC50) was 0.08 µg/mL compared with AmB’s 0.11 µg/mL. On
the other hand, it showed acute toxicity in mice, with a lethal dose (LD50) of 16.4 mg/kg
compared with AmB’s 2.8 mg/kg.
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Davis et al. [173] synthesized AmB urea derivatives in just three steps from AmB.
In vitro tests showed a very successful compound 7 (Figure 10) with considerable increased
safety. The authors proposed that the increased membrane selectivity was due to its binding
to ergosterol while doing so less effectively to cholesterol than AmB. This was shown using
isothermal titration calorimetry (ITC).

Membranes 2022, 12, x FOR PEER REVIEW 13 of 44 
 

 

 
Figure 10. Chemical structure of AmB urea derivative 7. 

Another successful product is L-histidine methyl ester, derived from Amphotericin 
B (A21) 8 (Figure 11), which has an L-Histidine that substitutes the carboxyl group of AmB 
and was shown to be less toxic than AmB in in vitro and in vivo tests [72]. The authors 
hypothesized that its greater safety is due to a smaller dipole moment that reduces the 
aggregation threshold. 

 
Figure 11. Structure of A21, an amphotericin B derivative 8. 

In 2020, Tevyashova et al. [174] synthesized a series of AmB derivatives with pre-
sumably reduced aggregation properties and designed a series of C16-carboxamides of 
AmB containing a basic group that can be protonated and cause reduced aggregation in 
aqueous solutions as well as improved water solubility. Previously this same research 
group studied a series of semi-synthetic genetically engineered derivatives, proving that 
the introduction of a side chain with a tertiary amino group on the amide moiety led to 
improved water solubility and, in some cases, to an increase in the antifungal activity of 
derivatives [172,175,176]. The introduction of the positively charged group at the C16 po-
sition also disrupts the zwitterionic interaction between the carboxy group of C16 and the 
amino group of mycosamine, increasing the solubility of the compounds [174]. They also 
reported a series of derivatives obtained by the transformation of C16-carboxylic group 
into carboxamide. The molecule obtained from 1,2-diaminoethane and AmB in particular 
demonstrated a higher antifungal potency than that of parent AmB. The N-(2-aminoethyl) 
amide of AmB 9, which they called “amphamide” (Figure 12), has an ionic form that is 
more stable and soluble in water. It has a considerably increased safety and efficacy com-
pared with those of AmB, with a therapeutic index calculated as the ratio between the 
lethal dose and the effective dose (LD50/ED50) of 41.8 in a murine model. 

 
Figure 12. Amphamide salt form with glutamate 9. 

Figure 10. Chemical structure of AmB urea derivative 7.

Another successful product is L-histidine methyl ester, derived from Amphotericin B
(A21) 8 (Figure 11), which has an L-Histidine that substitutes the carboxyl group of AmB
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and was shown to be less toxic than AmB in in vitro and in vivo tests [72]. The authors
hypothesized that its greater safety is due to a smaller dipole moment that reduces the
aggregation threshold.
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In 2020, Tevyashova et al. [174] synthesized a series of AmB derivatives with pre-
sumably reduced aggregation properties and designed a series of C16-carboxamides of
AmB containing a basic group that can be protonated and cause reduced aggregation in
aqueous solutions as well as improved water solubility. Previously this same research
group studied a series of semi-synthetic genetically engineered derivatives, proving that
the introduction of a side chain with a tertiary amino group on the amide moiety led to
improved water solubility and, in some cases, to an increase in the antifungal activity
of derivatives [172,175,176]. The introduction of the positively charged group at the C16
position also disrupts the zwitterionic interaction between the carboxy group of C16 and
the amino group of mycosamine, increasing the solubility of the compounds [174]. They
also reported a series of derivatives obtained by the transformation of C16-carboxylic group
into carboxamide. The molecule obtained from 1,2-diaminoethane and AmB in particular
demonstrated a higher antifungal potency than that of parent AmB. The N-(2-aminoethyl)
amide of AmB 9, which they called “amphamide” (Figure 12), has an ionic form that is more
stable and soluble in water. It has a considerably increased safety and efficacy compared
with those of AmB, with a therapeutic index calculated as the ratio between the lethal dose
and the effective dose (LD50/ED50) of 41.8 in a murine model.

Membranes 2022, 12, x FOR PEER REVIEW 13 of 44 
 

 

 
Figure 10. Chemical structure of AmB urea derivative 7. 

Another successful product is L-histidine methyl ester, derived from Amphotericin 
B (A21) 8 (Figure 11), which has an L-Histidine that substitutes the carboxyl group of AmB 
and was shown to be less toxic than AmB in in vitro and in vivo tests [72]. The authors 
hypothesized that its greater safety is due to a smaller dipole moment that reduces the 
aggregation threshold. 

 
Figure 11. Structure of A21, an amphotericin B derivative 8. 

In 2020, Tevyashova et al. [174] synthesized a series of AmB derivatives with pre-
sumably reduced aggregation properties and designed a series of C16-carboxamides of 
AmB containing a basic group that can be protonated and cause reduced aggregation in 
aqueous solutions as well as improved water solubility. Previously this same research 
group studied a series of semi-synthetic genetically engineered derivatives, proving that 
the introduction of a side chain with a tertiary amino group on the amide moiety led to 
improved water solubility and, in some cases, to an increase in the antifungal activity of 
derivatives [172,175,176]. The introduction of the positively charged group at the C16 po-
sition also disrupts the zwitterionic interaction between the carboxy group of C16 and the 
amino group of mycosamine, increasing the solubility of the compounds [174]. They also 
reported a series of derivatives obtained by the transformation of C16-carboxylic group 
into carboxamide. The molecule obtained from 1,2-diaminoethane and AmB in particular 
demonstrated a higher antifungal potency than that of parent AmB. The N-(2-aminoethyl) 
amide of AmB 9, which they called “amphamide” (Figure 12), has an ionic form that is 
more stable and soluble in water. It has a considerably increased safety and efficacy com-
pared with those of AmB, with a therapeutic index calculated as the ratio between the 
lethal dose and the effective dose (LD50/ED50) of 41.8 in a murine model. 

 
Figure 12. Amphamide salt form with glutamate 9. Figure 12. Amphamide salt form with glutamate 9.

Unfortunately, despite all of the above-mentioned efforts and success in synthesizing a
polyene derivative with equal efficacy and less toxic effects, none of these AmB derivatives
are yet in clinical use. Another alternative to reduce polyene host toxicity is to develop new
formulations that deliver the drug in a more precise manner. Several formulations of AmB
are now available for therapeutic use [177] and, in the case of Nys, a lipid formulation is in
phase III clinical trials [178].

4.2. Lipid-Based Formulations

In the past decades, much effort has been made to develop and use new AmB formula-
tions with equal efficacy but lower host toxicity. These include lipid-based formulations to
deliver polyenes, such as liposomes or lipid complexes [24,117]. In addition, other forms of
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delivery consider emulsions [179,180], polymeric nanoparticles [181], and a nanoparticle-
based encochleated AmB oral formulation [182]. Here we focus on lipid complexes and
liposomal formulations.

Since the 1990s, some of these formulations went into clinical use: AmB lipid complex
with the commercial name Abelcet® [183,184], which is formed in a ribbon-like shape [185];
there is also a colloidal dispersion of AmB and cholesteryl sulfate that forms disk com-
plexes and is sold under the commercial name of Amphotec® or Amphocil® [186–190]; a
liposomal formulation of AmB in cholesterol-containing lipid vesicles sold under the name
of Ambisome® [191–194]; and a multilamellar vesicle formulation, with a different lipid
mixture and sold under the name FungisomeTM [195–200]. In the case of Nys, a liposomal
formulation called Nyotran® [201–205] is currently undergoing phase III clinical trials [178],
and the available results are promising. Lipid formulations have distinct pharmacokinetic
profiles and thus have specific dose and administration requirements [206–214]. They are
supposed to target specific cell membrane properties or the cell wall of the fungal pathogens.
The latter case was observed by Walker et al. [215] by means of electron microscopy. The
authors found that the viscoelastic properties of the fungal cell wall seem to favor the traffic
to the plasma membrane of AmB-loaded vesicles, whereas unloaded vesicles do not cross
the cell wall. The authors hypothesize that AmB-loaded vesicles cross the cell wall due
to AmB’s binding to ergosterol in the mannose filaments due to exosome transit through
the cell wall. We believe that, as the authors themselves showed, all liposomes reach the
outer cell wall, where we think the AmB-loaded liposomes release AmB into the medium,
contrary to the authors’ idea that delivery only occurs when the liposome fuses to the
plasma membrane. In our idea, AmB reaches the plasma membrane and destabilizes it
along with the fungal cell wall, changing its porosity and allowing for the eventual transit
of the liposomes towards the plasma membrane.

Lipid formulations can also penetrate fungal biofilms in a more efficient way than
the usual AmB-deoxycholate formulation [216–220]. It should be noted that most lipid
formulations for polyenes make use of high transition temperature lipids (e.g., hydro soy
PC in AmBisome® or DMPC in Nyotran®). This is important for two reasons. One is
that high transition temperature lipids seem to form stable polyene:lipid complexes in
comparison to low transition temperature lipids [59,64,221,222], which, along with the
presence of cholesterol, favors the incorporation of AmB into the lipid membrane. The
second reason is that high transition temperature lipids confer the liposomes with enough
physical stability to prolong their blood circulation half-life [223]. Another important factor
that contributes to the efficacy of AmBisome® is the small size of the liposomes, which
allows for the evasion of the reticuloendothelial system that clears blood plasma from large
particles. This fact has been further reinforced by the results obtained by generic versions
of AmBisome® against the original formulation, where the former have a larger particle
size and show a lower efficacy in the treatment of fungal infections [117]. Lamellarity is
another critical parameter, as FungisomeTM, which is stored as multilamellar vesicles for
better stability, must go through an ultrasonication step prior to infusion in order to obtain
unilamellar vesicles from the multilamellar ones [200]. Electric charge in liposomes, e.g., in
the form of phosphatidylglycerol (PG), also plays a role in the efficacy of lipid formulations.
Liposome–cell interactions depend on the surface charge present in the liposome bilayer,
which can be neutral, positive, or negative [224,225]. Furthermore, neutral liposomes will
tend to aggregate and thus have a reduced physical stability [226], along with a tendency to
release their cargo away from the target cell given both instability and a lower liposome–cell
interaction [227]. Finally, the process of liposome manufacturing follows critical parameters,
e.g., acidification, liposome heat curing, etc., that must be carefully carried out to obtain the
best quality final product [228].

New lipid formulations are currently under research and development and exploit
new and exciting properties such as surface modified liposomes [229] and even liposomes
with encapsulated iron oxide yielding magnetic properties [230]. For a more detailed review
on this topic, we recommend Faustino and Pinheiro [117]. As we have seen, the action of
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polyenes is closely related to the membrane properties, whether in solution or liposomal
preparations. Hence, an understanding of membrane properties and its involvement in
polyene action are crucial.

5. Role of Membrane Structure on the Activity of Polyenes
5.1. Binary Lipid Mixtures Containing Sterol

Binary mixtures consisting of a lipid species and a sterol are the simplest study model
for the effects of sterol on membrane properties. While ergosterol has been less studied than
cholesterol, we can obtain information regarding their similarities and differences from the
available literature. The addition of ergosterol to DPPC-ordered bilayers produced a phase
separation of gel- and liquid-ordered phase, as well as filament-like structures on both of
them. This was observed via AFM of supported lipid bilayers (SLB) [231]. Cholesterol pres-
ence on DPPC bilayers produces much larger domain-like gel-phase regions that contain
smaller liquid-ordered regions, as observed on Langmuir–Blodgett monolayers imaged
using AFM [232]. Thus, both sterols produce segregation of gel and liquid-ordered phases
on DPPC bilayers, though their morphologies vary. Furthermore, polyenes affect mem-
brane structure. Using a Langmuir trough to obtain lipid monolayers and Brewster angle
microscopy, as well as atomic force microscopy, Wang et al. [233] showed that AmB has an
effect on the packing of lipid and polyene molecules in DPPC bilayers, either sterol-free or
containing 30 mol% cholesterol or ergosterol. The authors also found, by using the limiting
molecular area analysis, that depending on the sterol used, AmB affects the monolayer
containing an unsaturated lipid, DOPC, differently. This difference is smaller for monolay-
ers containing saturated lipids, DPPC. Finally, the authors hypothesized that AmB could
orient itself differently when it inserts in lipid/sterol bilayers depending on the saturation
of the lipid involved, which could help understand the toxicity towards cells. A Deuterium
Nuclear Magnetic Resonance (2H NMR) and Differential Scanning Calorimetry study
showed that ergosterol induces less liquid ordered domains than cholesterol, in both gel-
and liquid-disordered DPPC membranes [234]. In 1-palmitoyl (2H31)-2-oleoyl-sn-glycero-
3-phosphocholine (POPC, d31) multibilayer vesicles, lipid ordering was evaluated using
2H NMR spectroscopy for different sterols, including cholesterol and ergosterol [235]. The
study found that all sterols increase lipid chain ordering at increasing concentrations but
have distinct limits in this ordering, with cholesterol having a higher limit than ergosterol.
The authors hypothesize that the C22 double bond on ergosterol could be the underlying
cause for its lower limit. In a study using X-ray Scattering and Grazing-Angle Scattering,
lipid bilayers of a saturated lipid, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC);
a mixed alkyl lipid, (POPC); and an unsaturated lipid, DOPC with either ergosterol or
cholesterol showed differences in their condensing effect [236]. Ergosterol did not present
a condensing effect on POPC and DOPC, but did so on DMPC, albeit to a smaller degree
than cholesterol. This suggests that ergosterol does not have a thickening effect on POPC or
DOPC. The authors suggest this could be due to a difference in the sterol-lipid interactions,
where cholesterol has a hydrophobic-matching effect and ergosterol does not. However,
Pencer et al. [237] used small-angle neutron scattering measurements on DMPC vesicles
with either cholesterol, ergosterol, or lanosterol and showed that all three sterols increase
bilayer thickness in a similar way. The area expansion coefficients were different for each
sterol, indicating a difference in the condensing effect, with cholesterol having a higher
effect than ergosterol. Although there are mixed results, there seems to be a difference in
the effect of ergosterol and cholesterol on simple binary lipid mixtures. This explains the
previously presented results on the action of Nys on POPC/sterol [58,238] lipid mixtures
along a phase diagram [140,141].

Another structural model suggests that sterols distribute themselves regularly at cer-
tain periodical mole fractions. This comes from a study using fluorescence microscopy on
dehydroergosterol-containing DMPC multilamellar vesicles [122] and cholesterol-containing
DMPC and SM multilamellar vesicles [123]. The authors link this regular distribution
to a hexagonal superlattice [121]. With this superlattice model in mind, they measured
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Nys’ partition coefficient in DMPC/ergosterol, DMPC/cholesterol, POPC/ergosterol, and
POPC/POPE/ergosterol multilamellar vesicles at varying sterol content with small in-
crements [120]. The authors found a correlation between Nys’ partition coefficient and
proposed superlattice existence, suggesting a facilitated insertion into lipid bilayers due to
the superlattice.

Clearly, sterols have a lot of influence on the action of polyenes in membranes. How-
ever, it is important to point out that even in the absence of sterols, polyenes modify
membrane permeability to ions.

5.2. Sterol-Free Bilayers

Over the years, several authors have suggested sterol might not be absolutely necessary
for polyene activity. One early study was that of HsuChen and Feingold [239], where AmB
and Nys were shown to have different effects on the glucose release of liposomes made of
egg, dipalmitoyl, or distearoyl lecithins with increasing mol% of cholesterol. The authors
showed that, at 0 mol% cholesterol, there was glucose release for both polyenes. It should
be noted that, in this study, the polyene concentration causing glucose release in the absence
of cholesterol was low (5–10 µM), whereas more recent experiments required much higher
polyene concentrations (100 µM) [135,137]. These latter studies found AmB single channels
in lipid bilayers lacking sterol, including lipid extract from Escherichia coli. This discrepancy
can be understood if we consider the polyene/lipid ratio for each study. In the first case
the ratio was ~0.1, whereas in the second case it was ~0.01. This highlights the importance
of considering said ratio when comparing results.

As mentioned previously, Harstel’s group performed several studies based on the idea
that surface tension modified by osmotic pressure could have an effect on the activity of
polyenes even in the absence of sterol [145]. Following these results, Ruckwardt et al. [240]
performed similar experiments on sterol-free LUVs made of POPC, diecosenyl phos-
phatidylcholine (DEPC), and egg phosphatidylcholine. Under osmotic stress, LUVs made
of POPC became more sensitive to AmB, even more than egg phosphatidylcholine. LUVs
made from DEPC were unresponsive to AmB in spite of the applied osmotic pressure,
showing that this effect is dependent on bilayer thickness and membrane composition. Fur-
thermore, the concentrations of AmB used were within the therapeutic range (0.5–10 µM),
and the polyene/lipid ratio between 10−3 and 10−2. Additional to osmotic pressure, lipid
order seems to facilitate polyene incorporation and form AmB-lipid complexes. In mono-
layers of dipalmitoyl phosphatidylserine (DPPS) or DPPC, complexes of 2:1 (polyene: lipid)
stoichiometry are thought to be formed [241,242]. Another study using monolayers [243]
showed that in the presence of K+ AmB has a higher affinity for DPPC bilayers as compared
with when Na+ is present.

Another possible mechanism of polyene action in the absence of sterol is phase seg-
regation. Dos Santos et al. [59] used model membranes composed of a lipid with a high
gel/liquid transition temperature (Tm), either 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
(DPPC) or egg sphingomyelin (ESM), and POPC, a low Tm lipid with mixed acyl chains. At
room temperature, both DPPC and ESM are in gel phase and form concentration-dependent,
highly ordered domains. The authors argued that these ordered states facilitate polyene
action in a sterol-independent manner. Their findings showed that the action of Nys is
favored by the presence of gel phase domains given the moderate presence of membrane
permeabilization in fluid membranes; this permeabilization rises with the increasing num-
ber of gel-phase domains. The results vary slightly between DPPC- and ESM-containing
liposomes suggesting a lipid species dependence. Finally, the authors hypothesized that
Nys’ interaction with the membrane seems to occur in the gel–liquid boundaries. These
findings agree with previous results that suggest that AmB has a high affinity for the
aliphatic chains of DPPC in the gel phase [244,245]. This agrees with the fact that filipin
incorporates more in DPPC bilayers when it is in its gel phase [246]. Although this behavior
might be polyene-dependent, as we mentioned previously filipin requires cholesterol to
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aggregate on SM/DOPC-supported lipid bilayers [126]. These results emphasize the fact
that membrane structure is a determinant factor for polyene action on lipid membranes.

5.3. Ternary Lipid Mixtures Containing Sterol

Ternary lipid mixtures are a very interesting model system when they present different
phase coexistence [141,247–255]. This allows for model membranes to better resemble
natural cell membranes. Of particular interest are mixtures that present phase segregation
and contain sterol. However, these models have seldom been used to study polyene inter-
actions. Lawrence et al. [126] used filipin to detect cholesterol in SM/DOPC/cholesterol
supported lipid bilayers imaged with AFM. They found that, in the sterol-free membrane,
filipin had no effect on the lipid bilayer. However, the ternary cholesterol-containing bilayer
filipin formed filament-like aggregates with a well-defined periodicity of ~4.3 nm. These
filaments were only present on high-ordered SM-rich domains. This suggests that filipin
binding to lipid bilayers is favored by gel-phase lipids and cholesterol presence. A recent
paper [256] showed that adding ergosterol or cholesterol to a 1:1 mol/mol ESM/POPC
bilayer had an effect on the morphology of the gel-phase domains. Increasing the amount
of sterol reduced the coverage of gel-phase domains. This effect is more pronounced in
cholesterol-containing membranes. At 20 mol%, cholesterol inhibits the formation of large
gel-phase domains. Here we present additional studies of polyene binding to the previous
ternary mixtures, with 20 mol% sterol where ergosterol-containing bilayers show significant
domain coverage, whereas cholesterol-containing ones do not. Figures 13 and 14 show the
effect of adding either AmB or A21 to ergosterol- or cholesterol-containing ESM/POPC
bilayers. Firstly, the required concentration of polyene to cause different effects in the topog-
raphy of the bilayers is different for AmB or A21. The effect also depends on the particular
sterol present. AmB has an effect on the ergosterol-containing bilayer at 1 µM, while A21
does so at 2 µM. In the cholesterol-containing bilayer, AmB shows some effect at 2 µM
while A21 does so at 5 µM. Secondly, ESM domains swell for both polyenes acting on the
ergosterol-containing bilayer, suggesting the insertion of both polyenes into the gel-phase
domains. In the cholesterol-containing bilayer, where micron-size domains are non-existent,
AmB causes bilayer damage in the form of nano-defects in addition to large membrane-free
mica regions (indicated by the white arrows in Figure 14B). On the other hand, A21 seems
to form aggregates on the bilayer surface and does not produce nano-defects. These results
suggest that A21 and AmB act differently in cholesterol-containing bilayers, where phase
segregation is almost non-existent, and somewhat similarly in ergosterol-containing ones,
where there is clear phase segregation and gel-phase domains are large. This could help to
explain the differences in the lower host toxicity produced by A21 on mice in comparison
with AmB [72].

Another interesting effect is how polyenes change phase segregation on lipid bilayers
of ternary mixtures. Chulkov et al. [257] used confocal fluorescence microscopy to evaluate
how AmB, Nys, and filipin influence phase separation in giant unilamellar vesicles made
of: the DOPC/SM/cholesterol (57/10/33 mol%) ternary mixture; the DOPC/cholesterol
(67/33 mol%) binary mixture; and pure POPC or DOPC. None of these lipid mixtures
produce phase segregation. In the presence of Nys, however, stable solid ordered domains
are formed in the ternary DOPC/SM/cholesterol mixture, as well as in giant unilamellar
vesicles made from the binary DOPC/cholesterol and pure POPC. The authors argued
that each polyene’s ability to induce gel-phase domains correlates with each polyene’s
biological activity, that is, their ability to increase membrane permeability.

The hypothesis that membrane structure is what drives polyene membrane selectivity
has gained some momentum due to differences in raft characteristics between mammalian
and fungal cells. Small, transient, ordered gel-phase cholesterol-enriched lipid rafts are
thought to exist in mammalian cells [258]. In yeast cells, on the other hand, there are large
gel-phase domains that might not be ergosterol-enriched [259]. This idea, as well as all
previously discussed theories, could lead to new polyene derivatives and/or formulations
with higher therapeutic index for clinical application. Clinical application is probably the
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greatest motivation for polyene study, and we shall therefore address some recent advances
in this area.
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1:1 mol:mol + 20 mol% cholesterol in the presence (B,C) or absence of polyenes (A). Polyenes were
added by increments of 0.5 µM until a clear effect was observed. For AmB (B) this occurred at 2 µM;
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6. Clinical Use of Polyenes

Clinical use of polyenes has been discussed thoroughly in previous papers [50,260–262].
Here, we present some United States of America Federal Drug Administration (FDA)-
approved uses for polyenes that appear in the World Health Organization model list of
essential medicines: 22nd list 2021 [21]. We then address their current clinical use and some
important clinical advances.

In its several formulations, AmB is used to treat coccidioidomycosis via intrathecal
route [263], American mucocutaneous leishmaniasis, invasive aspergillosis [264], blastomy-
cosis [265], candidiasis [266–271], coccidioidomycosis [263,264,272], cryptococcal meningi-
tis in patients with HIV infection [273–277], cryptococcosis [278–281], severe fungal infec-
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tion of central nervous system [282–286], severe fungal infection of lung [287–292], histoplas-
mosis [293–295], histoplasmosis in patients with HIV infection [273], pulmonary cryptococ-
cosis in patients with HIV infection [273,278], infection by Basidiobolus [296], mucormyco-
sis [297–302], sporotrichosis [303,304], and severe urinary tract mycosis [267,305–310]. Nys
is used to treat candidal vulvovaginitis [311,312], candidiasis of skin [313,314], cutaneous
and mucocutaneous infections [315], and non-esophageal gastrointestinal candidiasis [316].
Natamycin is used to treat blepharitis (Fungal infection of eye), fungal conjunctivitis, and
fungal keratitis [317]. In addition to polyenes’ use as antimycotics and antiparasitics,
experimental trials of other therapeutic applications have been reported [318,319].

6.1. Recent Advances in Clinical Use

In recent years, the increased emergence of new diseases has wreaked havoc on the
medical community and health systems worldwide, the most obvious example being the
recent pandemic caused by the SARS-CoV-2 coronavirus (COVID-19) and its co-morbidity
with pre-existing chronic diseases [320]. Problematically, public health policies in health
institutes, research centers, and the scientific community have focused on the study of
this disease, leaving aside other important conditions with high mortality and for which
there are still no effective and safe therapeutic options, as in the case of diseases caused by
fungi [321,322].

Fungal infections, particularly invasive mycoses, represent a serious problem for
patients with compromised immune systems [323]. Invasive fungal diseases are still a
major global health problem [324,325]. Because these diseases do not present a clear clinical
picture, early diagnosis is consequently difficult and proper assessment only takes place
once the disease is already very advanced and therapy no longer as effective. Recent
studies show that the global morbidity and mortality of invasive fungal infections have
substantially increased during the past decade [326]. About 1 billion people in the world
are thought to suffer from a fungal infection, an increase due to host factors as well
as new mechanisms of virulence or resistance. Additionally, recent environmental and
epidemiological evidence of endemic mycoses shows changes in the geographic prevalence
of pathogenic fungi worldwide [327,328]. It has recently been suggested that invasive
mycoses are undergoing etiopathogenic changes that are making these diseases even more
prevalent, and that the geographical distribution is moving towards geographical areas
where it did not exist before [329]. The former matter is at least partially due to new
risk factors such as the rise of new medications that alter the immune response and the
appearance of new strains of pathogenic fungi, such as Candida auris; the latter is tied to
phenomena such as human migration, new practices in agriculture, occupational exposure,
soil movement, and climate change, which are significant triggers in the spread of the
disease [330]. The treatment of invasive fungal diseases continues to lag behind despite
available drug therapies. This is because of three key issues: (1) treatment costs are not
accessible to all sectors of the population, (2) available medications might be too toxic and
their use should be discontinued, and (3) health care systems are not well-equipped to
handle silent diseases such as invasive mycoses given our aforementioned lack of tools for
early diagnosis and the high treatment costs once diagnosis has been made. All of these
factors play a role in the increase in morbidity and mortality.

Invasive fungal diseases are quite costly. They are serious illnesses that tend to become
chronic, and this takes a toll on the economically active population. They entail substantially
expensive lab tests, long hospital stays, treatments that must be administered for long
periods of time, and lastly, very expensive medication [331]. A 2019 study on the estimated
health care costs for fungal diseases in the United States showed a total of 4885 related
deaths and an economic burden of over $48 billion USD [332]. The gradual increase in
both morbidity and mortality is itself a reflection of the diseases’ high medical costs and
impact on worldwide public health. Efforts need to be redoubled and more attention
should be paid to basic aspects such as preventive measures and faster and safer lab tests
for early diagnosis [333,334]. Above all, there is an urgent need for therapeutic alternatives
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with antifungal activity and specific mechanisms of action that prove more effective, safer,
and cheaper so they are well within reach of the general population. Right now, while
medication is prohibitively expensive for low-income patients, phenomena such as human
migration will promote disease morbidity and mortality.

Nowadays, scientific and biotechnological advances allow for studies of the genetic
interaction between the host and the metagenomic structure of the fungus (mycobiome
and microbiome). These studies have revealed, among other things, that fungi have high
genomic plasticity and metabolic diversity, factors that have played an essential role in
their adaptation to changing environments and their observed evolutionary success over
hundreds of years [335–337]. There is no doubt that these findings will be very useful
for identifying diagnostic markers and designing personalized therapies in the future.
Currently, there are some molecular techniques used at the clinical level that allow for
diagnostic tests and screening for invasive mycoses [338]; however, their use is also limited
given their high cost, which, again, makes them unavailable to the general population.

The development of new cost-effective alternatives to treat invasive mycoses requires
a better understanding of the molecular mechanism involved in the antifungal activity of
each treatment. Major efforts must be undertaken in the case of gold standards such as AmB.
These efforts include (but are not limited to) understanding the physicochemical interac-
tions with cell or lipid membranes, liposomal formulations, and semi-synthetic derivatives.

Polyene antibiotics have been used for more than 60 years to combat protozoa and
fungal infections through the induced permeability of the cell membrane. Some have a
differentiated action between membranes with cholesterol and ergosterol, with a high
degree of effectiveness and generate very low resistance in fungal pathogens [339]. Both
Nys and AmB are used to combat fungal pathogens, where Nys is used topically and
orally, while AmB is the most effective polyene antibiotic for combating fungal pathogens
systemically (e.g., cryptococcal meningitis and invasive zygomycosis) [340,341]. It is also
used when there is a lack of response to azole or echinocandin therapeutic treatments
in aspergillosis infections, candidiasis, and histoplasmosis [341–344]. It has an antipara-
sitic effect against Trypanosoma cruzi, Schistosoma mansoni, Echinococcus Multilocularis, and
Leishmania spp. [27,344–347].

Unfortunately, and despite its great efficacy, both AmB and Nys have undesirable col-
lateral toxicity [45,348], the most serious being nephrotoxicity and hematotoxicity [34,49,177],
both of which limit their therapeutic use to a short range of specific clinical cases and that
can also result in eventual treatment interruption [23–26]. In spite of these unwanted toxic
side effects, AmB is still considered the gold standard for serious invasive fungal infections
due to its high antifungal activity, the low appearance of resistant strains, and its low
cost compared with other treatments. Its main adverse effects include, in order of impor-
tance, nephrotoxicity, hepatotoxicity, and hemotoxicity [349–352]. Moderate toxic effects
such as nausea, vomiting, bloody stool, fever, chills, hypokalemia, hypercalcemia, hypo-
magnesemia, and increased liver enzymes have also been reported [164,352–358]. Severe
toxicity data indicate the presence of disseminated intravascular coagulation, hypotension,
dysrhythmias, renal failure, respiratory failure, and heart failure [359,360].

In order to address said toxicity problems, the pharmaceutical industry has focused
for some decades on developing novel formulations that reduce the toxicity profile without
affecting therapeutic efficacy [358–360], or, as previously stated, novel derivatives. In
addition, AmB derivatives have been developed and used in the treatment of human im-
munodeficiency virus (HIV)-1 to prevent the entry of the virus into P4 cells [31]. Currently,
AmB can be found on the market as AmB deoxycholate (Fungizone®), AmB lipid complex
(Abelcet®), liposomal AmB (AmBisome®), and AmB in colloidal dispersion (Amphotec®).
The best-known formulations are AmB lipid complex (ABLC) and liposomal AmB (L-AmB).
The last two act as a form of selective drug delivery to the fungal wall [215] while at the
same time allowing the drug to remain in circulation and bound to the lipid, reducing
tissue distribution and thus avoiding toxicity [361]. Toxicity, however, remains despite
these formulation changes. A comparative study to evaluate the safety of the liposomal
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formulation vs. the AmB lipid complex showed that the administration of 5 mg/Kg of the
AmB lipid complex was associated with infusion-related reactions such as fever and chills,
although to a lesser degree than with AmB deoxycholate. The use of the AmB lipid complex
was also associated with reduced treatment discontinuity given the absence of evident toxi-
city [362]. Because nephrotoxicity is still present, albeit to a lesser degree, its use in patients
with kidney disease remains restricted or requires additional supervision [363–365]. The
toxic effects at the renal level have already been studied, and we now know that liposomal
AmB can induce acute kidney injury by inducing tubular injury and renal vasoconstric-
tion [366]. Tubular injury is the product of intramembranous pore formation or vacuolation
of epithelial cells in the distal convoluted tubule [156], whereas renal vascular resistance is
increased by activation of the tubuloglomerular feedback mechanism [367].

Which of the two formulations works better in the clinic? We do not know. There
are no reports in the literature comparing the efficacy and safety of both formulations
given the difficulty of finding two similar populations for this purpose. The clinical status
of each patient varies, as do the comorbidities, the pathogenic agent, risk factors, and
history of previous therapies, all of which make a comparative clinical study difficult to
carry out. However, there have been several attempts using patient populations with
specific characteristics. The best option for antifungal treatment will depend on the price
of the drug and the patient’s or the health system’s ability to cover this cost. The price
of AmB varies, with deoxycholate being the cheapest and most toxic, and liposomal and
lipid complex formulations being the most expensive given their production costs. Semi-
synthetic derivatives of existing polyenes could prove to be a cost-effective alternative but,
up to now, none of the previously presented derivatives are in clinical use. There is a clinical
preference for the use of liposomal AmB and there are few studies on the use of AmB lipid
complex, probably because the latter is more expensive and has different properties.

6.2. Pharmacokinetic Changes

Studies in animals and humans have shown changes in the pharmacokinetic profile
of AmB. For example, in a study using rats, the AUC(0–24 h) was 316, 325, and 76 µg/mL;
the half-lives for AmB liposomal, lipid complex, and deoxycholate were 9.7, 6.25, and
6.9 h, respectively. Data obtained from patients also indicate that lipid formulations have
a higher bioavailability and longer half-lives [368–378]. In a pharmacokinetic study of
animals with skin lesions, plasma concentrations were much higher (11-fold) for liposomal
AmB than AmB deoxycholate [195]. AmB per se is known to have a high affinity for plasma
proteins (>95%), albumin and α1-acid glycoprotein, which causes it to become pharmaco-
logically inactive. Putting it in the bloodstream in encapsulated form prevents its binding
to plasma proteins, thereby increasing its mean residence time, plasma concentrations and,
consequently, pharmacological activity [379].

Most preclinical studies consistently indicate that liposomal AmB increases drug dispo-
sition in organs such as the lung and central nervous system [380–382]. Clinical trial results,
on the other hand, indicate that liposomal AmB and AmB lipid complexes have better
bioavailability, tolerability, and safety compared with AmB deoxycholate [207,208,383–385].
Studies conducted in patients have shown the presence of high concentrations of liposomal
AmB in the liver, spleen, kidney, thyroid, bone marrow, and lung [386]. A similar tissue
distribution was found in patients prescribed AmB deoxycholate, although concentrations
were higher in liver, kidney, and spleen, which correlates with the toxicity of the latter
formulation [378]. The tissue distribution of AmB has a similar pattern across the different
formulations; the difference lies in the amounts found in each organ [387,388].

Fungal infections in the CNS are difficult to treat with AmB deoxycholate because
there is some difficulty in crossing the blood–brain barrier (BBB). AmB is a substrate for
p-glycoprotein, an efflux transporter found in biological membranes of primary brain
capillary endothelial cells, and this places a limit on how long the drug can remain within
the cell [389]. Furthermore, Ambisome does not seem to cross the BBB in normal physi-
ological conditions [390], but inflammation and damage to the site secondary to fungal
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invasion increase the permeability of the BBB [390–392]. In a study of a pediatric cohort
with hemato-oncological diseases treated with lipid complex AmB, AmB was found in
cerebrospinal fluid (CSF) samples and remained for around 48 h in this compartment [387].
Recently, a sensitive method used to quantify lipid complex AmB (1.8 mg/kg) in biological
samples from a patient with neuro cryptococcosis yielded important pharmacokinetic
data, including that AmB lipid complex becomes widely distributed and was present in
CSF (although concentrations were 30 times lower than those found in plasma), again
demonstrating that AmB in lipid formulations can cross biological barriers [387,393]. When
it comes to urinary excretion, we know AmB is eliminated without metabolizing in the
urine and is excreted in very low quantities. In a comparative study, intact AmB was found
in the urine of 20.6% of subjects treated with AmB deoxycholate and 4.5% of those treated
with liposomal AmB. In turn, it showed in the fecal excretion of 42.5% patients treated with
AmB deoxycholate, but only 4% for the subjects treated with liposomal AmB [394,395].
The reduction in the excretion of liposomal AmB may either reflect its longer half-life or
mean that the liposomal formulation favors its metabolism and directs its elimination to
the kidneys, albeit in the form of metabolites. Several publications show evidence of lipid
formulations producing important changes in the absorption, distribution, metabolism,
and excretion properties of AmB [214,396–400].

6.3. Pharmacodynamic Changes

There are several advantages to the modifications of the pharmacodynamic properties
of the lipid formulations. For example, liposomal AmB, in addition to having the same
spectrum of activity as AmB deoxycholate, can be used against invasive fungal infections
in patients who are refractory or intolerant of conventional AmB. While AmB lipid com-
plex has broadened its spectrum of activity towards filamentous fungi (Fusarium spp.,
phaeohyphomycetes/dematiaceous, fungi/black fungi, Schizophyllum and other basid-
iomycetes, Scopulariopsis spp., Penicillium spp., Paecilomyces), it also covers other yeast
fungi (Saprochaete spp., Sporobolomyces spp., Trichosporon spp.) and can be used as empirical
therapy for situations where a fungal infection is suspected in patients with febrile neu-
tropenia [401]. Additionally, lipid AmBs have extended their use to other pathogens such
as leishmaniasis [402] and mucormycosis [403]. Among some of the other advantages of
lipid formulations is the expanded therapeutic index of AmB, its LD50 is 5 times higher
than AmB deoxycholate, which allows the dose to be increased without increasing its toxic
effects [404], thus raising the safety margin. Animal studies have shown that the median
lethal dose (LD50) was 2 to 3 mg/kg [405] for AmB deoxycholate, 40 mg/kg for liposomal
AmB [406], and 175 mg/kg for AmB lipid complex [386]. On the other hand, the standard
usage doses for AmB deoxycholate range from 0.25 to 1 mg/Kg, while formulations of
liposomal AmB have a 1 to 5 mg/Kg range and lipid complex AmB ranges from 3 to
5 mg/Kg [407]. In the case of the latter, the dose can be further increased or the treatment
time extended. Recently, a study conducted in patients with different fungal infections
(histoplasmosis, paracoccidioidomycosis, cryptococcal meningitis, and mucocutaneous
leishmaniasis) measured trough concentrations of liposomal AmB under different intermit-
tent dosage regimens: at doses of 100 mg/day (4 to 5/week), 50 mg/day (4 to 5/week) and
50 mg/day (1 to 3/week), with an approximate dose of 0.7 to 4 mg/Kg during the initial
as well as the consolidation phases of the treatment (7 days). Regardless of the dosage
regimen, trough concentrations remained constant in patients, particularly those with
cryptococcosis. It has therefore been suggested that intermittent administration regimens
of liposomal AmB should be implemented in patients with mycoses [408].

Since their pharmacological profile was modified to improve their bioavailability and
safety, lipid formulations have undoubtedly had an impact on the treatment of invasive
mycoses. However, studies are still underway to find more about dosage, treatment
schemes, combinations with other drugs, and identify new adverse reactions in specific
clinical situations. Additionally, effects are still being evaluated in patients in critical
conditions or with specific comorbidities.
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In spite of the advantages shown by the liposomal formulations, the difference in cost
has prevented the complete replacement of AmB deoxycholate formulation. However, the
problem is not only cost-effective, as the liposomal formulation poses some problems and
seems to be more hepatotoxic [409,410]. Since the advantages of the liposomal formula-
tions reduce toxicity, a derivative presenting increased safety in solution is an important
alternative, one that could even be applied in a liposomal formulation.

The clinical application of polyenes is still at the threshold of new developments. Some
recent advances for particular applications are described below.

6.4. Kidney Damage

Several authors have pointed out that the lipid formulations of AmB have a better
safety margin. However, the medical community is still concerned about its suitability for
patients with kidney damage, being this organ is AmB’s target. Invasive fungal infections
in critically ill patients with acute kidney injury are two comorbidities often observed
in the clinic that require prompt treatment to save the patient’s life. Here we present
a brief recount of the available evidence of kidney damage associated with the use of
liposomal AmB.

Clinical studies indicate that the use of liposomal AmB is empirically advisable,
even when the fungal species causing the disease is unknown [411,412]. All cases have
resulted in an improvement of the patient’s clinical condition and many of them have
achieved recovery. It was recently pointed out that when a daily infusion is administered
for 7 days from the onset of acute kidney injury, the patient will exhibit early recovery
without alterations in creatinine levels, which indicates there is no deterioration in renal
function [413]. Why is liposomal formulation less toxic in the kidney? Probably because
it does not concentrate in that organ, and the higher plasma concentrations facilitate
the eradication of the pathogenic agent, furthering the patient’s recovery. A recent and
retrospective study of 507 patients treated with liposomal AmB (doses of 2–2.5 mg/kg for
a period of 7 to 28 days) found certain risk factors associated with the development of
acute kidney damage in subjects receiving liposomal AmB. Some of these factors included
previous treatment with ACE inhibitors/ARBs or carbapenems, ongoing treatment based
on catecholamines or immunosuppressants, or doses ≥ 3.52 mg/kg/day of liposomal
AmB. Another additional factor is that the presence of serum potassium levels < 3.5 mEq/L
can also lead to severe kidney damage after the administration of liposomal AmB. These
findings are of great clinical relevance, since they provide guidelines for the management
of patients with invasive fungal infections who present kidney damage. Furthermore, they
show that liposomal AmB will only cause kidney damage under certain circumstances [414].
Liposomal formulations for polyene delivery might therefore enable an increased use of
these drugs.

6.5. Septicemia

Septicemia is a life-threatening bodily response to an infection where the immune
system damages different tissues, including the kidney, lung, heart, and nervous system.
Septicemia is progressive and can lead to septic shock, which increases the risk of death.
A recent study using liposomal AmB in 141 patients with invasive fungal infection and
septic shock found that early use of liposomal AmB (>6 mg/kg, for 15 days) was associated
with a shorter duration of septic shock and the absence of mortality. That study showed
that the timing of liposomal AmB administration was associated with a good prognosis
for patients. This is of great clinical importance, especially for the management of those
patients with septicemia who are at high risk of developing septic shock due to their
immunosuppressed state, other risk factors for poor prognosis, and the pathogenic agent
present [415].
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6.6. Transplants

Fungal infections are very common in transplant patients and are the leading cause of
death in immunocompromised patients. For that reason, it is important to monitor them
and take timely prophylactic measures or treatment. Very recently, a case of a patient with a
liver transplant and refractory invasive candidiasis was published: caspofungin (0.12 mg/L)
was administered for 10 days, followed by isavuconazole (0.25 mg/L) for 4 days, then
caspofungin (0.12 mg/L) for 4 days and, finally, liposomal AmB (0.25 mg/L) for 12 days,
with no response to treatment. A combined therapy based on isavuconazole + liposomal
AmB was therefore employed, with a remission of invasive candidiasis 12 days later.
This study showed that a combined therapy of liposomal AmB with another antifungal
could improve response in cases of persistent mycoses among immunocompromised
patients [416]. Prophylactic therapies or extension of liposomal AmB dosage regimens
have also been suggested for organ transplant patients [417]. In animals with invasive
fungal infections, liposomal AmB has been administered at doses of up to 20 mg/Kg,
achieving survival in animals with histoplasmosis as well as neutropenic mice [418,419].
The literature reports human cases where liposomal AmB was used at doses of up to
7.5 mg/kg in adults with transplants and also in children with neutropenia [420]. In a
cohort study of 900 patients receiving continuous renal replacement therapy due to acute
renal failure, liposomal AmB (0.5 mg/kg) was well tolerated and there was no need to
adjust dosage or change the duration of treatment. Patients who underwent hemodialysis
and continuous renal replacement therapy had a low incidence of adverse reactions, even if
the patients had renal insufficiency. Therefore, liposomal AmB may be indicated in patients
who, due to renal dysfunction, require hemodialysis or continuous renal replacement
therapy [421].

The use of antimycotics as a prophylactic strategy in patients with Hematopoietic
Stem Cell Transplantation (HSCT) is a measure to reduce the presence of invasive mycoses
after transplantation. Therefore, when choosing a treatment, it is important to consider the
efficacy and safety of the medication. A retrospective study with a cohort of 84 pediatric
HSCT patients showed a high incidence of invasive mycoses when liposomal AmB or
micafungin were used as prophylactic treatment. Additionally, their use was associated
with the presence of nephrotoxicity and hepatotoxicity. This incidence, however, was
related to the degree of immunosuppression, type of transplant, or environmental exposure
to the pathogen. Therefore, the prophylactic use of liposomal AmB in pediatric patients
with CMHP is not recommended because, in addition to not being effective, pediatric
patients seem to be more susceptible to toxic effects [422].

Prophylactic therapy is a practice also used in immunocompromised patients sched-
uled to undergo a transplant. Prophylactic therapies have been using doses of up to
10 mg/kg/week with positive response from patients [423], although the increases in
serum creatinine levels suggest impaired renal function. The above findings show that,
given the safety of lipid formulations, it is feasible to increase doses or extend treatment
span, always monitoring renal function. The prophylactic use of liposomal AmB has been
recommended in onco-hematological patients at high risk of fungal infections. While the
prophylactic therapy of first choice in these patients is azoles, this therapy is replaced by
liposomal AmB when the use of azoles is contraindicated [424].

6.7. Anti-Parasitic

For some years now, liposomal AmB has been one of the therapeutic options to treat
visceral leishmaniasis in several countries [425]. Unlike what happens with other con-
ditions, there is no established dosage regimen to treat this disease, nor does it follow a
characteristic clinical picture. The fact that the therapeutic response varies depending on
the species of Leishmania or the geographical area makes it difficult to establish a dosage
schedule. For example, treatments for leishmaniasis caused by L. donovani in India use up
to 10 mg/kg of liposomal AmB, while doses of up to 30 mg/kg are used in Africa [426,427].
For leishmaniasis caused by L. infactum, doses of 20 mg/kg are used in America and
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Europe [428]. It has been reported that, under certain circumstances (HIV infection, trans-
plants, age, presence of other co-infections, etc.), doses of liposomal AmB may reach up
to 60 mg/kg [429]. A systematic review of the use of liposomal AmB for the treatment of
visceral leishmaniasis has shown evidence not only of its efficacy but, more importantly, of
its safety, even in the case of very high doses [430]. In another recent retrospective study,
the different AmB formulations were compared for efficacy and safety. Evidence showed
liposomal AmB was more effective and less toxic than the other formulations, suggesting it
to be the most acceptable treatment for this disease [431]. However, liposomal AmB has
not only been employed to treat leishmaniasis of the visceral type; it is also the standard
treatment and formulation for mucocutaneous leishmaniasis. We know that liposomal
AmB has proved effective in this case because it prevents the macrophage–parasite linkage
and inhibits the production of g-INF, which induces macrophage activation. To achieve
remission of the disease, the WHO has recommended establishing a regimen based on
liposomal AmB at doses of 2–3 mg/kg/day up to a total dose of 40–60 mg/kg to ensure
successful results without producing nephrotoxicity. A new treatment in a murine model
has shown that a combination of benznidazole and A21 is effective for trypanosomiasis of
a very virulent strain [432], offering a possible treatment for Chagas disease.

6.8. Mucormycosis

The incidence of mucormycosis has increased significantly in recent years, even in
patients without immunodeficiencies. One characteristic of these infections is that they
are resistant to most antifungals and their treatment is limited. Liposomal AmB has been
effective when administered for prolonged periods of time (4–12 weeks) [433]. Since
liposomal AmB can cross the BBB in mycotic infections, it has been proposed as an initial
treatment strategy for patients with mucormycosis of the central nervous system at doses
of 5–10 mg/kg/day for 28 days. So far, the response has been satisfactory, although
monitoring the immune status of the patient is recommended [434]. The combined use
of liposomal AmB with other antifungal drugs has reportedly been successful in several
clinical trials. A recent retrospective study pointed out that the combination of liposomal
AmB together with posaconazole produced a significant synergistic effect for ensuring
short-term survival in patients with hematologic malignancy and was more effective
than monotherapy [435]. Similar results were seen in a patient with acute lymphoblastic
leukemia, although the drug of choice in this case was AmB lipid complex [436]. This
evidence shows the potential synergistic interaction that can be obtained with AmB in
lipid formulation.

The effectiveness of AmB, regardless of formulation, is clear. As we have seen, the lipid
formulations have improved pharmacological profiles and potential interactions, as well as
new therapeutic uses. New dosage regimens have been established. Still, lipid formulations
are not readily available to all patients suffering from invasive mycoses, which continues
to limit the treatment of a large swathe of the global population. The development of new,
effective, safe and, above all, low-cost polyene derivatives is therefore urgent. These should
be accessible to the general population and help reduce the morbidity and mortality caused
by invasive fungal infections.

7. Summary and Outlook

Polyenes are small pharmaceutical molecules that produce a great variety of phenom-
ena on lipid membranes and biological cells, and many studies have sought to understand-
ing the mechanism of interaction between molecules and membranes, obtaining valuable
information in the process.

Polyene antibiotics remain relevant more than 70 years after they were first introduced
into the market. The high antifungal activity and low resistance incidence to polyene
treatment are the main reasons why they are still being studied so as to circumvent their
substantial host-toxicity. New formulations, such as lipid-based formulations and new semi-
synthetic derivatives, bring new life to these drugs while offering therapeutic alternatives
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for invasive fungal infections and the surge of multiple drug resistant strains such as
Candida auris. To better design these lipid-based formulations or direct the synthesis of
derivatives, we need a solid understanding of polyene selectivity towards fungal cells. In
this regard, recent evidence suggests that membrane structure is an important factor. In
particular, the evidence suggests that the coexistence of liquid–gel or ordered–disordered
phases favor polyene activity at the membrane level. This structure-dependent activity can
be exploited to obtain polyenes or polyene formulations with a higher therapeutic index
for clinical use.

We expect that future work could be directed to the study and characterization of
pore formation in lipid bilayers that present phase segregation and its relation to real
fungal or mammalian cell membranes. Another topic that will probably prove quite
important in the upcoming years is the immunomodulatory effect of polyenes and their
different formulations. As is the case with the pore-forming model, the immunomodulatory
phenomenon has yet to be fully understood and is sure to receive a lot of attention.
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