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Abstract: The molybdenum (Mo)-catalyzed oxidation of sulfide under neutral conditions yields
sulfone. This reaction proceeds more smoothly than olefin epoxidation and primary or secondary
alcohol oxidation. In this study, Mo-catalyzed oxidation was used to screen for sulfur compounds
(named “MoS-screening”) in microbial broths by liquid chromatography-mass spectrometry (LC/MS).
To demonstrate proof-of-concept, known sulfur microbial compounds were successfully identified
from a mixture of non-sulfur microbial compounds as sulfinyl or sulfonyl products of Mo-catalyzed
oxidation. Then our MoS-screening method was used to screen 300 samples of microbial broth for
sulfur compounds. One of the identified compounds was a kitasetaline-containing N-acetyl cysteine
moiety produced by an actinomycete strain. These results demonstrate the potential of MoS-screening
in the search for new sulfur compounds from microbial sources.

Keywords: microbial metabolites; molybdenum-catalyzed oxidation; MoS-screening; screening
method; sulfoxidation; sulfur compounds

1. Introduction

Natural products are often used as drugs, agricultural chemicals, and chemical reagents.
Compounds containing nitrogen and sulfur are particularly useful due to their strong biological
activities. For example, staurosporine, which is produced by Lentzea albida AM-2282, strongly inhibits
protein kinase C (PKC) and sets a precedent for the development of PKC inhibitors [1–5]. Penicillin,
the world’s first antibiotic, is produced by Penicillium chrysogenum and contains both nitrogen and
sulfur [6,7]. According to the KEGG MEDICUS database, which provides molecular information about
commercially available medicines [8], 87% of medicines contain nitrogen and 37% contain sulfur. Thus,
both nitrogen and sulfur are important constituents of most medicines.

The identification of natural products containing nitrogen is relatively simple, and we have
utilized several developed methods that can be used to discover nitrogen compounds in microbial
cultures. For example, staurosporine, neoxaline, and pyrindicin were discovered using Dragendorff’s
reagent, which can be used to detect tertiary or quaternary amines [1–5,9,10]. Trichothioneic acid,
which contains an ergothioneine moiety, was discovered by nitrogen rule screening [11]. By contrast,
with the exception of ultrahigh resolution mass spectrometry [12,13], screening methods for sulfur
compounds have not been reported. This report aims to help establish a simple means of screening for
sulfur compounds.
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Molybdenum (Mo)-catalyzed oxidation with hydrogen peroxide (H2O2) was first reported in 1984
by Trost et al. [14]. Under basic conditions, this reaction preferentially oxygenates secondary alcohols
followed by olefin epoxidation and primary alcohol oxidation. In a subsequent report, Trost et al. [15]
described the Mo-catalyzed oxidation of sulfides. During the synthesis of the 20-member macrolide
laulimalide, sulfide is oxygenated to sulfone by Mo-catalyzed oxidation under neutral conditions
in ethanol. This oxidation proceeds more readily than olefin epoxidation and primary or secondary
alcohol oxidation [16]. Therefore, Mo-catalyzed oxidation may allow the identification of sulfur
compounds from microbial cultures when combined with liquid chromatography-mass spectrometry
(LC/MS).

In this study, we report the establishment of a screening method for sulfur compounds based on
Mo-catalyzed oxidation (MoS-screening) and LC/MS.

2. Results and Discussion

To determine the suitability of Mo-catalyzed oxidation for the identification of sulfur compounds,
methanol solutions of several known microbial compounds containing sulfur, such as outovirin A [17],
nanaomycin K [18], and lactacystin [19,20] (Figure S1), were oxygenated with (NH4)6Mo7O24·4H2O
and 30% H2O2. After 6 h of shaking at room temperature, both non-oxidized and oxidation samples
were analyzed by LC/MS. The LC/MS conditions are shown in Table S1. For outovirin A, which contains
a diketopiperazine bridged by a sulfur atom, an oxidative product was detected at a retention time of
12.55 min (m/z = 497 [M + H]+), indicating a higher polarity than the original compound (retention time
13.44 min, m/z = 481 [M + H]+) (Figure S2A). This result suggests that the Mo-catalyzed oxidation of
outovirin A results in sulfinyl outovirin A. Similarly, Mo-catalyzed oxidation of nanaomycin K, which
contains an ergothioneine moiety, yielded a sulfonyl product (12.08 min, m/z = 580 [M + H]+) at a lower
retention time than that of nanaomycin K (13.38 min, m/z = 548 [M + H]+) (Figure S2B). Figure S2A(ii)
and B(iv) show that Mo-catalyzed oxidation of outovirin A or nanaomycin K results in the complete
replacement of the LC peaks corresponding to the original compounds with those corresponding to
the oxidized products. By contrast, no peaks were detected after the oxidation of lactacystin, which
contains an N-acetylcysteine moiety. This suggests that lactacystin was oxidatively decomposed (data
not shown). Thus, sulfur compounds that are stable enough to withstand Mo-catalyzed oxidation will
yield sulfinyl and/or sulfonyl products.

Next, we investigated the possibility of selectively identifying sulfur compounds from a mixture
containing 1.0 mg each of six microbial compounds: outovirin A and nanaomycin K as sulfur
compounds, and acremolin B [21], SF-227 [22], beauvericin [23] and tanzawaic acid B [24] as non-sulfur
compounds. This mixture was oxidized as described above using H2O2 and (NH4)6Mo7O24·4H2O
as a catalyst. As a non-oxidized sample, this process was repeated using H2O in place of the Mo
catalyst. A comparison of data and the experimental conditions are provided in Figure 1 and Table S2,
respectively. Six compounds were detected in the non-oxidized sample (Figure 1A) and their chemical
structures, retention times, and mass-to-charge ratios (m/z [M + H]+) are shown in Table 1. Each peak in
the non-oxidized chromatogram (Figure 1A, peaks 1–6) was identified by its UV absorption spectrum
(Figure S3) and mass-to-charge ratio as a corresponding compound in Table 1. In the chromatogram of
the oxidized sample (Figure 1B), peaks 1′ (11.56 min), 2′ (11.16 min), and 4′ (7.10 min) were identified
as tanzawaic acid B, beauvericin, and acremolin B, respectively, by their UV absorption spectra (data
not shown), mass-to-charge ratios, and retention times. Peaks 5 (6.52 min) and 6 (6.45 min) were not
detected after oxidation, while peaks 5a, 6a, and 6b appeared only after oxidation (Figure 1B). Peaks
6a (5.62 min) and 6b (6.21 min) yielded pseudomolecular ion peaks at m/z = 564 and 580 [M + H]+,
respectively, and the same absorption spectrum as that of peak 6 (nanaomycin K). Peak 5a (5.72 min)
gave a pseudomolecular ion peak at m/z = 497 [M + H]+ and exhibited the same UV absorption spectrum
as peak 5 (outovirin A). Thus, peaks 5a, 6a, and 6b were identified as corresponding to sulfinyl outovirin
A, sulfinyl nanaomycin K and, sulfonyl nanaomycin K, respectively. Because the oxidative product
(m/z 295) of peak 1a (SF-227) was not detected in the oxidized sample, SF-227 likely decomposed during
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oxidation. Identification of corresponding oxidative products was relatively straightforward because
the UV absorption spectra were unchanged by oxidation. All of the sulfur compounds were identified
from a complex mixture by comparing the chromatograms and MS spectra of the non-oxidized and
oxidized samples. These results suggest that oxidized sulfur compounds, such as sulfinyl, sulfonyl,
or both derivatives, can be identified by the presence of additional chromatographic peaks adjacent to
those of the original compounds.Molecules 2020, 25, 240 5 of 9 
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actinomycetes and 150 of fungi) yielded a single potentially sulfur compound. The candidate 
compound was produced by actinomycete strain Kitasatospora setae KM-6054T and showed a retention 
time of 7.11 min and UV absorbance peaks at 214, 242, 276, 310, and 384 nm (Figure 2A). High-
resolution electrospray ionization mass spectrometry (HRESIMS) data show an [M + H]+ ion at m/z 
402.1103, indicating a molecular formula of C19H20N3O5S (calculated value for m/z 402.1124). The data 
in Figure 2B further indicate that the candidate compound was oxygenated to a sulfonyl (7.48 min, 
m/z = 434.1018 [M + H]+). Comparisons of the LC/MS data and UV spectrum of the candidate 
compound with those of known natural products contained in the Dictionary of Natural Products 
database identified the candidate as kitasetaline, which contains an N-acetyl cysteine moiety [25]. 
Thus, MoS-screening successfully identified a sulfur compound from microbial broths.  

Figure 1. An LC/MS chromatogram of a mixture of compounds with and without sulfur. (A) Control
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Table 1. The structures and LC/MS data of the compounds used in this study.

Peak No. Compound Retention
Time (min)

m/z
[M + H]+ Structure

1, 1′ Tanzawaic acid B 11.56 295
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Table 1. Cont.

Peak No. Compound Retention
Time (min)

m/z
[M + H]+ Structure

4, 4′ Acremolin B 7.10 246
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plates. (NH4)6Mo7O24·4H2O and 30% H2O2 was added to the wells in one plate, while, as a control,
only H2O was added to the wells of the other plate. After 6 h of shaking, all of the wells were analyzed
by LC/MS and the data were compared between the two plates to identify any sulfur compounds.
MoS-screening of broths cultured from 300 different microbial strains (150 of actinomycetes and 150
of fungi) yielded a single potentially sulfur compound. The candidate compound was produced by
actinomycete strain Kitasatospora setae KM-6054T and showed a retention time of 7.11 min and UV
absorbance peaks at 214, 242, 276, 310, and 384 nm (Figure 2A). High-resolution electrospray ionization
mass spectrometry (HRESIMS) data show an [M + H]+ ion at m/z 402.1103, indicating a molecular
formula of C19H20N3O5S (calculated value for m/z 402.1124). The data in Figure 2B further indicate
that the candidate compound was oxygenated to a sulfonyl (7.48 min, m/z = 434.1018 [M + H]+).
Comparisons of the LC/MS data and UV spectrum of the candidate compound with those of known
natural products contained in the Dictionary of Natural Products database identified the candidate
as kitasetaline, which contains an N-acetyl cysteine moiety [25]. Thus, MoS-screening successfully
identified a sulfur compound from microbial broths.Molecules 2020, 25, 240 6 of 9 
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Figure 2. LC/MS chromatograms of kitasetaline-containing broth for the (A) control (non-oxidized)
and (B) Mo-catalyzed samples. The physicochemical properties of kitasetaline are also shown.
Mass-to-charge ratios (m/z) are indicated as [M + H]+.

3. Materials and Methods

3.1. General Experimental Procedures

All solvents were purchased from Kanto Chemical (Tokyo, Japan). (NH4)6Mo7O24·4H2O
and 30% H2O2 were purchased from FUJIFILM Wako Pure Chemical (Osaka, Japan). Liquid
chromatography-high resolution electrospray ionization mass spectrometry (LC/MS) spectra were
measured using an AB Sciex TripleTOF 5600+ System (AB Sciex, Framingham, MA, USA). All analyses
were conducted in positive ion mode. Detailed conditions of MS analysis are shown as follows;
Ion Source Gas1 50 psi; Ion Source Gas2 50 psi; Curtain Gas 25 psi; Temperature 500 ◦C; IonSpray
Voltage Floating 5500 V; Declustering Potential 80 V; Collision Energy 45 V; Collision Energy Spread
15 V; Ion Release Delay 30 µs; and Ion Release Delay Width 15 µs. LC/MS data were analyzed by
Analyst software (AB Sciex, version 1.7.1). Known microbial compounds were obtained from the
natural compound library in the Kitasato Institute for Life Sciences.
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3.2. Mo-Catalyzed Oxidation

A 100 µL aliquot of the test compound solution (1 mg/mL in methanol), mixture solution (1 mg/mL
in methanol), or microbial broth (50% aqueous ethanol) was added to 10 µL (NH4)6Mo7O24·4H2O
(10 mg/mL in H2O) and 10 µL 30% H2O2. After shaking for 6 h at room temperature, the samples were
analyzed by LC/MS. The analysis conditions for HPLC of the pure sulfur compounds are shown in
Table S1 and those for the mixture of sulfur compounds, non-sulfur compounds, and microbial broths
are shown in Table S2.

3.3. Fermentation of Microbial Strains

In all, 150 strains of actinomycetes were cultured on agar slants consisting of 1.0% starch, 0.3% NZ
amine, 0.1% yeast extract, 0.1% meat extract, 1.2% agar, and 0.3% CaCO3. The producing culture was
generated as follows. A loop of spores of each strain was inoculated into 10 mL producing medium,
which consisted of 2.4% starch, 0.1% glucose, 0.3% peptone, 0.3% meat extract, 0.5% yeast extract, and
0.4% CaCO3 (adjusted to pH 7.0 before sterilization) in a 70 mL test tube. The test tube was incubated
on a shaker (210 rpm) at 27 ◦C for 6 days.

In all, 150 different fungal strains were grown on slants of modified Miura’s medium (LcA:
consisting of 0.1% glycerol, 0.08% KH2PO4, 0.02% K2HPO4, 0.02% MgSO4·7H2O, 0.02% KCl,
0.2% NaNO3, 0.02% yeast extract, and 1.5% agar (adjusted to pH 6.0 before sterilization)). A loop of
spores of each strain was inoculated into a 70 mL test tube containing 10 mL seed medium (2% glucose,
0.2% yeast extract, 0.5% hipolypeptone, 0.1% KH2PO4, 0.05% MgSO4·7H2O, and 0.1% agar). The tubes
were shaken at 210 rpm on a shaker at 27 ◦C for 3 days. A 0.5 mL portion of the seed culture was
transferred to 10 g rice medium containing seaweed tea (Itoen, Japan) and placed in a static state at
room temperature for 13 days.

4. Conclusions

In this study, a method of screening microbial broths for naturally occurring sulfur compounds
was demonstrated using a combination of Mo-catalyzed oxidation and LC/MS analyses. The results
indicate that MoS-screening is effective for identifying sulfur compounds that are sufficiently stable to
withstand the oxidation conditions. Although this method requires further validation with compounds
containing more than two sulfur atoms, it shows great potential for use in the screening of microbial
broths and other natural extracts for novel sulfur compounds.

Supplementary Materials: The following are available online, Figure S1: The structures of outovirin A,
nanaomycin K, and lactacystin, Figure S2: Chromatograms of sulfur-containing compounds before and after
Mo-catalyzed oxidation, Figure S3: UV spectra of the compounds using in this study, Figures S4–S12: MS/MS
spectra of the compounds used in this study, Table S1: The HPLC conditions for individual known microbial
compounds containing a sulfur atom, Table S2: The HPLC conditions for a mixture of known microbial compounds
and microbial broths.
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