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SUMMARY
The novel coronavirus SARS-CoV-2 was first detected in the Pacific Northwest region of the United States in
January 2020, with subsequent COVID-19 outbreaks detected in all 50 states by early March. To uncover the
sources of SARS-CoV-2 introductions and patterns of spread within the United States, we sequenced nine
viral genomes from early reported COVID-19 patients in Connecticut. Our phylogenetic analysis places the
majority of these genomes with viruses sequenced from Washington state. By coupling our genomic data
with domestic and international travel patterns, we show that early SARS-CoV-2 transmission in Connecticut
was likely driven by domestic introductions. Moreover, the risk of domestic importation to Connecticut ex-
ceeded that of international importation by mid-March regardless of our estimated effects of federal travel
restrictions. This study provides evidence of widespread sustained transmission of SARS-CoV-2 within
the United States and highlights the critical need for local surveillance.
INTRODUCTION

A novel coronavirus, known as SARS-CoV-2, was identified as

the cause of an outbreak of pneumonia in Wuhan, China, in

December 2019 (Gorbalenya et al., 2020; Wu et al., 2020; Zhou
990 Cell 181, 990–996, May 28, 2020 ª 2020 Elsevier Inc.
et al., 2020). Travel-associated cases of coronavirus disease

2019 (COVID-19) were reported outside of China as early as

January 13, 2020, and the virus has subsequently spread to

nearly all nations (World Health Organization, 2020a, 2020b).

The first detection of SARS-CoV-2 in the United States was a
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travel-associated case from Washington state on January 19,

2020 (Centers for Disease Control and Prevention, 2020a). The

majority of early COVID-19 cases in the United States were (1)

associated with travel to a ‘‘high-risk’’ country or (2) close con-

tacts of previously identified cases according to the testing

criteria adopted by the Centers for Disease Control and Preven-

tion (CDC) (Centers for Disease Control and Prevention, 2020b).

In response to the risk of more travel-associated cases, the

United States placed travel restrictions on multiple regions with

SARS-CoV-2 transmission, including China on January 31, Iran

on February 29, and Europe on March 11 (Taylor, 2020). Howev-

er, community transmission of SARS-CoV-2 was detected in the

United States in late February, when a California resident con-

tracted the virus despite meeting neither testing criterium

(Moon et al., 2020).

From March 1–19, 2020, the number of reported COVID-19

cases in the United States rapidly increased from 74 to 13,677,

and the virus was detected in all 50 states (Dong et al., 2020).

It was recently estimated that the true number of COVID-19

cases in the United States is likely in the tens of thousands (Per-

kins et al., 2020), suggesting substantial undetected infections

and spread within the country. We hypothesized that, with the

growing number of COVID-19 cases in the United States and

the large volume of domestic travel, new United States out-

breaks are nowmore likely to result from interstate rather than in-

ternational spread.

Because of its proximity to several high-volume airports,

southern Connecticut is a suitable location in which to test this

hypothesis. By sequencing SARS-CoV-2 from local cases and

comparing their relatedness to virus genome sequences from

other locations, we used ‘‘genomic epidemiology’’ (Grubaugh

et al., 2019a) to identify the likely sources of SARS-CoV-2 in Con-

necticut. We supplemented our viral genomic analysis with

airline travel data from major airports in southern New England

to estimate the risk of domestic and international importation

therein. Our data suggest that the risk of domestic importation

of SARS-CoV-2 into this region now far outweighs that of interna-

tional introductions regardless of federal travel restrictions and

provide evidence for coast-to-coast SARS-CoV-2 spread in

the United States.

RESULTS

Phylogenetic Clustering of Connecticut SARS-CoV-2
Genomes Demonstrates Interstate Spread
To delineate the roles of domestic and international virus spread

in the emergence of new United States COVID-19 outbreaks, we

sequenced SARS-CoV-2 viruses collected from cases identified

in Connecticut. Our phylogenetic analyses showed that the

outbreak in Connecticut was caused by multiple virus introduc-

tions and that most of these viruses were related to those

sequenced from other states rather than international locations

(Figure 1).

We sequenced SARS-CoV-2 genomes from nine of the first

COVID-19 cases reported in Connecticut, with sample collection

dating from March 6–14, 2020 (Data S1). These individuals are

residents of eight different cities in Connecticut. According to

the Connecticut State Department of Public Health, none of
the cases were associated with international travel. Using our

amplicon sequencing approach, ‘‘PrimalSeq’’ (Grubaugh et al.,

2019b; Quick et al., 2017), with the portable Oxford Nanopore

Technologies (ONT) MinION platform, we generated the first

SARS-CoV-2 genome approximately 14 h after receiving the

sample (CT-Yale-006), demonstrating our ability to perform

near-real-time clinical sequencing and bioinformatics. Our com-

plete workflow included RNA extraction, PCR testing, validation

of PCR results, library preparation, sequencing, and live base

calling and read mapping. We shared the genomes of these vi-

ruses publicly as we generated them (GISAID EPI_ISL_416416-

416424). We combined our genomes with other publicly avail-

able sequences for a final dataset of 168 SARS-CoV-2 genomes

(Figure 1; Data S2). The dataset can be visualized on our ‘‘com-

munity’’ Nextstrain page (https://nextstrain.org/community/

grubaughlab/CT-SARS-CoV-2/paper1).

We built phylogenetic trees using a maximum likelihood

reconstruction approach, andwe used shared nucleotide substi-

tutions to assess clade support (Figure 1; Data S3). Our first nine

SARS-CoV-2 genomes clustered into three distinct phylogenetic

clades, indicating multiple independent virus introductions into

Connecticut. Our SARS-CoV-2 genome CT-Yale-001 clusters

closely with other viruses sequenced from Asia (China), whereas

the close genetic relatedness of genomes from Europe and

Washington state in the clade that contains CT-Yale-006 makes

it difficult to track the origins of this virus (Figure 1A). Regardless,

neither the CT-Yale-001 nor the CT-Yale-006 COVID-19 cases

were travel-associated, which indicates that these patients

were part of domestic transmission chains that stemmed from

undetected introductions. The other seven SARS-CoV-2 ge-

nomes clustered with a large, primarily United States clade,

within which the majority of genomes were sequenced from

cases in Washington state (Figure 1B). Because of a paucity of

SARS-CoV-2 genomes from other regions within the United

States, we could not determine the exact domestic origin of

these viruses in Connecticut. We also cannot yet determine

whether the higher number of substitutions observed in CT-

Yale-007 and CT-Yale-008 (Figure 1B) compared with the other

Connecticut virus genomes within this clade was the result of

multiple introductions or of significant undersampling. However,

given that seven of our nine Connecticut SARS-CoV-2 genomes

fell within this clade versus the many other international clades,

these were most likely the result of a common domestic sour-

ce(s) rather than repeated international introductions. Impor-

tantly, our data indicate that, by early to mid-March, there had

already been interstate spread during the early COVID-19

epidemic in the United States.
Travel and Epidemiological Patterns Reveal Significant
Domestic Importation Risk
Our phylogenetic analysis shows that the COVID-19 outbreak in

Connecticut was driven, in part, by domestic virus introductions.

To compare the roles of interstate and international SARS-CoV-2

spread in the United States, we used airline travel data and the

epidemiological dynamics in regions where travel routes origi-

nated to evaluate importation risk. We found that, because of

the large volume of daily domestic air passengers, the dominant
Cell 181, 990–996, May 28, 2020 991
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Figure 1. The COVID-19 Outbreak in Connecticut Is Phylogenetically Linked to SARS-CoV-2 from Washington

(A) We constructed a maximum-likelihood tree using 168 global SARS-CoV-2 protein coding sequences, including 9 sequences from COVID-19 patients

identified in Connecticut fromMarch 6–14, 2020. The total number of nucleotide differences from the root of the tree quantifies evolution since the putative SARS-

CoV-2 ancestor. We included clade-defining nucleotide substitutions to directly show the evidence supporting phylogenetic clustering. The number of SARS-

CoV-2 genomes used in this phylogenetic tree from each location is shown in parentheses.

(B) We enlarged the United States clade consisting primarily of SARS-CoV-2 sequences from Washington state and Connecticut. The map shows the location

and number of SARS-CoV-2 genomes that cluster within this clade. The MinION sequencing statistics are enumerated in Data S1, and the SARS-CoV-2 se-

quences used and author acknowledgments can be found in Data S2. A root-to-tip plot showing the genetic diversity and substitution rate of the data can be

found in Figure S1. The genomic data can be visualized and interacted with at https://nextstrain.org/community/grubaughlab/CT-SARS-CoV-2/paper1.
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Figure 2. Domestic Outbreaks and Travel Are a Rising Source of SARS-CoV-2 Importation Risk

(A) To compare the relative risks of SARS-CoV-2 importations from domestic and international sources, we selected five international (China, Italy, Iran, Spain,

and Germany) and out-of-region states (Washington, California, Florida, Illinois, and Louisiana) with the highest number of reported COVID-19 cases as of March

19, 2020.

(B)We selected three international airports in the region that are commonly used byConnecticut residents: Hartford (BDL), Boston (BOS), and NewYork (JFK).We

used data from January to March 2019 to estimate relative differences in daily air passenger volumes from the selected origins to the airport destinations. These

daily estimates were then combined by either international or domestic travel.

(C and D) The cumulative number of daily COVID-19 cases were divided by 100,000 population to calculate normalized disease prevalence for each international

location (China, Italy, Iran, Spain, and Germany) (C). The cumulative number of daily COVID-19 cases were divided by 100,000 population to calculate normalized

disease prevalence for each international location (Washington, California, Florida, Illinois, and Louisiana) (D).

(E) We calculated importation risk by modeling the number of daily prevalent COVID-19 cases in each potential importation source and then estimating the

number of infected travelers using the daily air travel volume from each location. The data, criteria, and analyses used to create this figure can be found in Data S3.
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importation risk into the Connecticut region switched from inter-

national to domestic by early to mid-March (Figure 2).

We first estimated daily passenger volumes arriving in the re-

gion from the five countries (China, Italy, Iran, Spain, and Ger-

many) and out-of-region states (Washington, California, Florida,

Illinois, and Louisiana) that have reported the most COVID-19

cases to date (Figures 2A–2D). By March 18, the five countries
comprised 78% of reported non-United States cases, whereas

the five states comprised 48% of reported domestic cases

outside of Connecticut and New York. To this end, we collected

passenger volumes arriving in three major airports in southern

New England: Bradley International Airport (BDL; Hartford, Con-

necticut), General Edward Lawrence Logan International Airport

(BOS; Boston, Massachusetts), and John F. Kennedy
Cell 181, 990–996, May 28, 2020 993
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International Airport (JFK; New York, New York; Figure 2B).

Because travel data for 2020 are not yet available, we calculated

the total passenger volume from each origin and destination pair

between January and March 2019, and estimated the number of

daily passengers. We found that the daily domestic passenger

volumes were �100 times greater than international in Hartford,

�10 times greater in Boston, and�4 times greater in NewYork in

our dataset (Figure 2B).

By combining daily passenger volumes (Figure 2B) with

COVID-19 prevalence at the travel route origin (Figures 2C

and 2D) and accounting for differences in reporting rates, we

found that the domestic and international SARS-CoV-2 impor-

tation risk started to increase dramatically at the beginning of

March 2020 (Figure 2E). Without accounting for the effects of

international travel restrictions, our estimated domestic impor-

tation risk from the selected five states surpassed the interna-

tional importation risk by March 10. Using previous assump-

tions around travel restrictions (Chinazzi et al., 2020), we also

modeled two scenarios where federal travel restrictions

reduced passenger volume by 40% and by 90% from the

restricted countries (Figure 2E). Because of the overall low

prevalence of COVID-19 in China, we did not find any signifi-

cant effects of travel restrictions from China that were enacted

on February 1 (Data S3). Also, we did not find significant

changes to the importation risk following travel restrictions

from Iran on March 1, likely because of the relatively small num-

ber of passengers arriving from that country (Data S3).

Although we did find a dramatic decrease in international

importation risk following the restrictions on travel from Europe

(March 13), this decrease occurred after our estimates of

domestic travel importation risk had already surpassed that

of international importation (Figure 2E). The dramatic rises in

domestic and international importation risk preceded the

state-wide COVID-19 outbreak in Connecticut (Figure 2E),

and the recent increase in risk of domestic importation may

give rise to new outbreaks in the region.

DISCUSSION

The combined results of our genomic epidemiology and travel

pattern analyses suggest that domestic spread recently became

a significant source of new SARS-CoV-2 infections in the United

States. We find strong evidence that outbreaks on the East

Coast (Connecticut) are linked to outbreaks on the West Coast

(Washington), demonstrating that trans-continental spread has

already occurred. As of March 25, there are more than 1,000

SARS-CoV-2 genomes sequenced from around the world,

including more than 350 from the United States (https://

nextstrain.org/ncov); however, most of the latter were obtained

from a small number of states. Therefore, we cannot determine

the exact origins of the viral introductions into Connecticut.

Recent domestic travel history of the nine reported cases was

not available, but it is unlikely that all of the infections originated

in Washington state. Furthermore, because of low genetic diver-

sity between these early sequences from Connecticut and

Washington, we cannot yet quantify the rate at which the virus

may be spreading between the United States coasts or whether

an introduction from a common source is responsible for phylo-
994 Cell 181, 990–996, May 28, 2020
genetic grouping. There are likely other large, multi-state phylo-

genetic SARS-CoV-2 clades that exist in the United States. As

testing capacity increases and more viral genome sequences

become available from new locations, more granular reconstruc-

tions of virus spread throughout the United States will be

possible (Grubaugh et al., 2019a). Specifically, elucidating the

phylogenetic relationship of viral genomes collected in Connect-

icut to those collected in neighboring states, especially states

with a high burden of disease, like New York, will improve our un-

derstanding of critical interstate dynamics.

Our estimates of domestic importation risk are likely conser-

vative despite some important limitations of our air travel anal-

ysis. Because we do not have access to current airline data, we

could not exactly quantify the effect of government restrictions

on international travel. In addition, even without explicit govern-

ment restrictions, general social distancing and work-from-

home guidelines are reducing all airline travel. By using airline

data available from 2019, we did not account for these de-

creases in our international or domestic travel patterns.

Although such variations may lower our domestic risk esti-

mates, we also did not account for the large volumes of

regional automobile and rail travel, especially along the corridor

that connects Massachusetts, New York, New Jersey, Pennsyl-

vania, and Washington D.C. to Connecticut. We do not believe

that Connecticut is more closely connected to its neighbors

than states in other regions of the country. Therefore, our risk

estimates indicate that this interconnectedness will perpetuate

the domestic spread of SARS-CoV-2 and that domestic spread

will likely become the primary source of new infections in the

United States.

We argue that, although simplistic, our model demonstrates

the urgent need to focus control efforts in the United States on

preventing further domestic virus spread. As this epidemic pro-

gresses, domestic introductions of the virus could undermine

control efforts in areas that have successfully mitigated local

transmission. In China, local outbreak dynamics were highly

correlated with travel between Wuhan and the outbreak dy-

namics therein during the early months of the epidemic (Kraemer

et al., 2020). Similarly, if interstate introductions are not curtailed

in the United States with improved surveillance measures, more

robust diagnostic capabilities, and proper clinical care, quelling

local transmission within states will be a Sisyphean task. We

therefore propose that a unified effort to detect and prevent

new COVID-19 cases will be essential for mitigating the risk of

future domestic outbreaks. This effort must ensure that states

have sufficient personal protective equipment, sample collection

materials, and testing reagents because these supplies enable

effective surveillance. Finally, state- and local-level policymakers

must recognize that the health and well-being of their constitu-

ents are contingent on that of the nation. If spread between

states is now occurring, as our results indicate, then the United

States will struggle to control COVID-19 in the absence of a uni-

fied surveillance strategy.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Clinical samples CT State Dept Public Health N/A

Clinical samples Yale Clinical Virology Lab N/A

Critical Commercial Assays

SuperScript IV VILO Master Mix ThermoFisher 11756050

Q5 High-Fidelity 2X Master Mix New England BioLabs M0492S

Qubit High Sensitivity dsDNA kit ThermoFisher Q32851

Nuclisens easyMAG BioMérieux 280135

Mag-Bind TotalPure NGS Omega Bio-Tek M1378-01

Ligation Sequencing Kit Oxford Nanopore Tech SQK-LSK109

Native Barcoding Kit Oxford Nanopore Tech EXP-NBD114

R9.4.1 Flow cell Oxford Nanopore Tech FLO-MIN106D

Blunt/TA Ligase Master Mix New England BioLabs MO367L

NEBNext Ultra II End Repair/dA-Tailing

Module

New England BioLabs E7546S

NEBNext Quick Ligation Module New England BioLabs E6056S

Deposited Data

International COVID-19 cases ECDC https://ourworldindata.org/

coronavirus-source-data

U.S. COVID-19 cases JHU Dong et al., 2020

Air passenger volumes (commercial) IATA https://www.iata.org/pages/default.aspx

SARS-CoV-2 Genomes GISAID (EPI_ISL_416416-416424) https://www.gisaid.org/

SARS-CoV-2 Sequencing Data SRA, NCBI https://www.ncbi.nlm.nih.gov/bioproject/

PRJNA614976

Software and Algorithms

R CRAN https://cran.r-project.org/

IQ-Tree http://www.iqtree.org/ Nguyen et al., 2015

augur toolkit https://bedford.io/projects/augur/ Hadfield et al., 2018

MAFFT https://mafft.cbrc.jp/alignment/software/ Katoh et al., 2002

treetime https://github.com/neherlab/treetime Sagulenko et al., 2018

RAMPART ARTIC Network https://github.com/artic-network/rampart

ARTIC Network Bioinformatic protocol ARTIC Network https://artic.network/ncov-2019/

ncov2019-bioinformatics-sop.html

Nextstrain https://nextstrain.org/ Hadfield et al., 2018

Other

Amplicon sequencing protocol PrimalSeq Quick et al., 2017
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for data, resources, and reagents should be directed to and will be fulfilled by the Lead Contact,

Nathan D. Grubaugh (nathan.grubaugh@yale.edu).
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Materials Availability
This study did not generate new unique reagents, but raw data and code generated as part of this research can be found in the

Supplemental Files, as well as on public resources as specified in the Data and Code Availability section below.

Data and Code Availability
The accession number for the SARS-CoV-2 sequence data reported in this paper is NCBI BioProject:PRJNA614976 and GISAID:

EPI_ISL_416416-416424. Sequencing data have been made available via SRA. Data used to create the figures can be found in

the supplemental files. The interactive Nextstain page to visualize the genomic data can be found at: https://nextstrain.org/

community/grubaughlab/CT-SARS-CoV-2/paper1. The raw data, results, and analyses can be found at: https://github.com/

grubaughlab/CT-SARS-CoV-2.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics Statement
Residual de-identified nasopharyngeal samples testing positive for SARS-CoV-2 by reverse-transcriptase quantitative (RT-q)PCR

were obtained from the Yale-New Haven Hospital Clinical Virology Laboratory or the Connecticut State Department of Public Health.

In accordance with the guidelines of the Yale Human Investigations Committee and the Connecticut State Department of Public

Health, this work with de-identified samples is considered non-human subjects research. All samples were de-identified before

receipt by the study investigators.

METHOD DETAILS

Sample collection and processing
Samples for this study were collected during an early testing phase by the Connecticut State Department of Public Health or the Yale

Clinical Virology Laboratory at the Yale School of Medicine. None of the cases that we sequenced in this study were associated with

international travel. All samples included in this study had CT values less than 35, sufficient volume of RNA for library preparation, and

were collected byMarch 14. As early sampleswere crucial for validating PCRdiagnostics inmultiple laboratories, the number of sam-

ples meeting these criteria were limited. Nasopharyngeal swabs were collected from patients presenting with symptoms of SARS-

CoV-2 infection at multiple medical centers in Connecticut. These patients are all Connecticut residents, but we do not have access

to location data associated with each of these early SARS-CoV-2 genomes to avoid patient identification. Swabs were placed in virus

transport media (BDUniversal Viral Transport Medium) immediately upon collection. Samples (200 mL) were subjected to total nucleic

acid extraction using the NUCLISENS easyMAG platform (BioMérieux, France) at the Yale Clinical Virology Laboratory. The recom-

mended CDC RT-qPCR assay was used to test for the presence of SARS-CoV-2 RNA (Centers for Disease Control and Prevention,

2020c). A total of 10 samples from 10 different individuals met our inclusion criteria and were selected to to move forward with next

generation sequencing (NGS). Of these, we were successfully able to generate sequencing libraries from nine samples.

SARS-CoV-2 Sequencing
SARS-CoV-2 positive samples were processed for NGS using a highly multiplexed PCR amplicon approach for sequencing on the

Oxford Nanopore Technologies (ONT; Oxford, United Kingdom) MinION using the V1 primer pools (Quick et al., 2017). Sequencing

libraries were barcoded andmultiplexed using the Ligation Sequencing Kit and Native Barcoding Expansion pack (ONT) following the

ARTIC Network’s library preparation protocol (V1 primers) (Quick, 2020) with the following minor modifications: cDNAwas generated

with SuperScriptIV VILOMaster Mix (ThermoFisher Scientific, Waltham, MA, USA), a total of 20 ng of each sample was used as input

into end repair, end repair incubation time was increased to 25min followed by a 1:1 bead-based clean up, and Blunt/TA ligase (New

England Biolabs, Ipswich, MA, USA) was used to ligate barcodes to each sample. cDNA synthesis and amplicon generation was per-

formed concurrently for each sample. Samples were processed by CT value to reduce the likelihood of contamination from high titer

samples to low titer samples. Barcoding, adaptor ligation, and sequencing was performed on samples with CT values between 25-35

(low titer group) prior to samples with CT values below 25 (high titer group) (Data S1). Two samples, Yale-006 and Yale-007, were

diluted 1:100 in nuclease-free water prior to cDNA synthesis. A no template control was created at the cDNA synthesis step and am-

plicon generation step to detect cross-contamination between samples. Controls were barcoded and sequenced with both the high

and low titer sample groups.

A total of 24 ng of the low titer groupwas loaded onto aMinIONR9.4.1 flow cell and sequenced for a total of 5.5 h and generated 2.1

million reads. The flow cell was nuclease treated, flushed, and primed prior to loading 25 ng of the high titer group library. These sam-

ples were sequenced for a total of 9 h and generated 1.4 million reads (Data S1). The RAMPART software from the ARTIC Network

was used tomonitor the sequencing run to estimate the depth of coverage across the genome for each barcoded sample in both runs

https://github.com/artic-network/rampart). Following completion of the sequencing runs, .fast5 files were basecalled with Guppy

(v3.5.1, ONT) using the high accuracy module. Basecalling was performed on a single GPU node on the Yale HPC. Consensus ge-

nomes were generated for input into phylogenetic analysis according to the ARTIC Network bioinformatic pipeline (Artic Network).

Variants in the consensus genomes were called using nanopolish per the bioinformatic pipeline (Loman et al., 2015). Amplicons that
e2 Cell 181, 990–996.e1–e4, May 28, 2020

https://nextstrain.org/community/grubaughlab/CT-SARS-CoV-2/paper1
https://nextstrain.org/community/grubaughlab/CT-SARS-CoV-2/paper1
https://github.com/grubaughlab/CT-SARS-CoV-2
https://github.com/grubaughlab/CT-SARS-CoV-2
https://github.com/artic-network/rampart


ll
Article
were not sequenced to depth of 20x were not included in the final consensus genome, and these positions are represented by

stretches of NNN’s (Data S1).

Phylogenetic analysis
To investigate the origin and diversity of SARS-CoV-2 in Connecticut, we compiled a dataset of our nine genomes with another 159

representative sample of SARS-CoV-2 genomes that were available from GenBank (https://www.ncbi.nlm.nih.gov/genbank/

sars-cov-2-seqs/) andGISAID (https://www.gisaid.org/). See Data S2 for a list of sequences and acknowledgments to the originating

and submitting labs. No data that was only released on GISAID was used without consent from the authors (see Acknowledgments).

We aligned consensus genomes using the augur toolkit version 6.4.2 (Hadfield et al., 2018). Specifically, we aligned sequences using

mafft (Katoh et al., 2002), masked sites at the 50 and 30 ends of the alignment as well as a small number of sites that likely vary due to

assembly artifacts (see https://github.com/nextstrain/ncov), and reconstructed a phylogeny using IQ-Tree (Nguyen et al., 2015).

These trees are further processed using augur and treetime to add ancestral reconstructions (Sagulenko et al., 2018). The tree is

rooted on the ancestor of the two genomes ‘‘Wuhan-Hu-1/2019’’ and ‘‘Wuhan/WH01/2019.’’ Sequences in this sample differ from

the root by 10 or fewer nucleotide substitutions. Bootstrap values are not a meaningful measure of branch support in this case.

Here, many of the branches are supported by one substitution, which would correspond to a bootstrap support of 0.63. For a branch

supported by two substitutions the bootstrap support valuewould correspondingly be 0.86. Given this approximate one-to-onemap-

ping between bootstrap values and the number of substitutions, we directly showmutations supporting the major splits in the tree as

it is more informative. The substitutions defining these clades are compatible with the tree topology and are not homoplastic. The

probability that all clade defining substitutions arose multiple times independently in a manner compatible with the tree topology

is vanishingly small. For example, with a rate of 2 nucleotide substitutions per month in a genome of length approximately 29’000

bases, the probability of this happening for any pair of six sister clades within a 2 month time frame is < 0.01. A root-to-tip plot

can be found in Figure S1. The data can be visualized at: https://nextstrain.org/community/grubaughlab/CT-SARS-CoV-2/paper1.

International and U.S. COVID-19 cases
Daily COVID-19 cases from international locations were obtained from the European Centre for Disease Prevention and Control via

Our World in Data (https://ourworldindata.org/coronavirus-source-data). International data were accessed on March 19, 2020. Daily

COVID-19 cases from Connecticut and other U.S. locations (Washington, California, Florida, Illinois, and Louisiana) were obtained

from the repository (https://github.com/CSSEGISandData/COVID-19) hosted by the Center for Systems Science and Engineering

(CSSE) at Johns Hopkins University (Dong et al., 2020). These represent the international and out-of-region domestic (i.e., excluding

New York, Massachusetts, and New Jersey) locations with the most reported COVID-19 cases.

Air passenger volumes
To investigate the domestic and international spread of SARS-CoV-2, we obtained air passenger volumes from the International Air

Transport Association (IATA; http://www.iata.org/). IATA data consist of global ticket sales, which account for true origins and final

destinations, and represents 90% of all commercial flights. We obtained the monthly number of passengers traveling by air from five

international (China, Italy, Iran, Spain, and Germany) and five U.S. locations (Washington, California, Florida, Illinois, and Louisiana) to

airports that are commonly used by Connecticut residents: Bradley International Airport (BDL, Hartford, Connecticut; ranked 53rd in

U.S. in yearly passenger volume; https://www.faa.gov/airports/planning_capacity/passenger_allcargo_stats/passenger/), General

Edward Lawrence Logan International Airport (BOS, Boston,Massachusetts; ranked 16th), and John F. Kennedy International Airport

(JFK, New York, New York; ranked 6th). Air passenger data from 2020 is not currently available; thus, we used data from January to

March 2019 to represent general trends in passenger volumes, as done previously (Bogoch et al., 2020). We took the average of the

3-month passenger volumes to estimate the daily number of travelers entering each airport from the specified origin. To account for

passenger reductions following U.S. government alerts and restrictions (Taylor, 2020), we modeled two scenarios: a 40% reduction

in passenger volume and a 90% reduction in passenger volume. These thresholds were determined based on previously reported

estimates and assumptions around travel restrictions (Chinazzi et al., 2020).

Travel importation risk estimates
We estimated the true number of incident cases per day by adjusting the number of reported incident cases to reflect the ascertain-

ment period and reporting rate using:

It�d�1 =
Ct

r
Eq. 1
whereC is the number of reported incident cases of COVID-19 on
t day t, d is the number of days from symptomonset to testing, and r

is the reporting rate.

We assumed a constant ascertainment period of d = 5 days between symptom onset and testing (Ferguson et al., 2020). Because

of the evidence of pre-symptomatic transmission (Tindale et al., 2020), we also assumed that cases become infectious one

day before symptom onset. To account for substantial uncertainty around reporting rates, we assigned different reporting rates to
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individual locations based on the testing criteria enacted in that location (Niehus et al., 2020). For each country and state, we first

extracted testing criteria from the department or ministry of health website. We assumed that countries or states with similar testing

criteria policies captured similar proportions of true infections. Using the respective testing criteria, we categorized countries or

states as having narrow, moderate, or broad testing levels. We then assigned reporting rates to each testing level by using the

mean and 95% confidence interval of the reporting rate estimated by Nishiura et al. (2020): 0.092 (95%CI = 0.05–0.20). The reporting

rate for the broadest testing level, r = 0.20, also corresponded to the reporting rate in Mainland China (Chinazzi et al., 2020). We thus

assigned Iran, Florida, Washington, and Illinois to a ‘‘narrow’’ testing level (r = 0.05); Spain, Italy, and Louisiana to a ‘‘moderate’’

testing level (r=0.092); and China, Germany, and California to a ‘‘broad’’ testing level (r = 0.20; Data S2, ‘‘testing-criteria’’).

To estimate the number of prevalent infectious individuals on day t (Pt), we multiplied the number of incident infections up to day t

by the probability that an individual who became infectious on day i was still infectious on day t:

Pt =
Xt�1

i =1

Iið1�gðt� iÞÞ+ It Eq. 2
Where g(t-i) is the cumulative distribution function of the infectiou
s period. We modeled the infectious period as gamma distribution

with mean 7 days and standard deviation 4.5 days which aligns with other modeling studies (Prem et al., 2020; Zhao et al., 2020).

We assumed that cases would not travel once they were diagnosed and therefore removed them from our estimate of infectious

travelers (Tt):

Tt =
Xt�5

i = 1

ðIi �Ci +d +1Þð1�gðt� iÞÞ+
Xt�1

i = t�4

Iið1�gðt� iÞÞ+ It Eq. 3
The first term of Equation 3 accounts for the assumption that some
 cases had been diagnosed by day t and thus would not travel. The

second and third terms capture cases who are infectious on day t and have not yet been diagnosed.

We calculated daily risk of importation as a function of the population-adjusted density of infectious travelers and passenger

volume:

Riskt =
Tt

popA

� nt Eq. 4
where Tt is the number of infectious travelers on day t, popA is the
 population of location A, and nt is the number of passengers trav-

eling from each location to southern New England on day t. We summed the calculated risk across the three airports (BDL, BOS, JFK)

and then across domestic and international travelers to arrive at our final estimates.

Maps
The maps presented in our figures were generated using shape files from Natural Earth (http://www.naturalearthdata.com/). The

basemaps are open source and freely available to anyone.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using R version 3.5.2 (R Core Team, 2017) and are described in the figure legends and in the

Method Details.
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Supplemental Figures

Figure S1. Root-to-Tip Plot Showing the Evolutionary Rate of the SARS-CoV-2 Genomes in Our Dataset, Related to Figure 1
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