
Carcinogenesis vol.31 no.10 pp.1770–1777, 2010
doi:10.1093/carcin/bgq152
Advance Access publication July 28, 2010

Inherited variation in immune genes and pathways and glioblastoma risk
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To determine whether inherited variations in immune function
single-nucleotide polymorphisms (SNPs), genes or pathways af-
fect glioblastoma risk, we analyzed data from recent genome-wide
association studies in conjunction with predefined immune func-
tion genes and pathways. Gene and pathway analyses were con-
ducted on two independent data sets using 6629 SNPs in 911 genes
on 17 immune pathways from 525 glioblastoma cases and 602
controls from the University of California, San Francisco (UCSF)
and a subset of 6029 SNPs in 893 genes from 531 cases and 1782
controls fromMDAnderson (MDA). To further assess consistency
of SNP-level associations, we also compared data from the UK
(266 cases and 2482 controls) and the Mayo Clinic (114 cases and
111 controls). Although three correlated epidermal growth factor
receptor (EGFR) SNPs were consistently associated with glioblas-
toma in all four data sets (Mantel–Haenzel P values5 13 1025 to
4 3 1023), independent replication is required as genome-wide
significance was not attained. In gene-level analyses, eight im-
mune function genes were significantly (minP < 0.05) associated
with glioblastoma; the IL-2RA (CD25) cytokine gene had the
smallest minP values in both UCSF (minP 5 0.01) and MDA
(minP 5 0.001) data sets. The IL-2RA receptor is found on
the surface of regulatory T cells potentially contributing to im-
munosuppression characteristic of the glioblastoma microenvi-
ronment. In pathway correlation analyses, cytokine signaling

and adhesion–extravasation–migration pathways showed similar
associations with glioblastoma risk in both MDA and UCSF data
sets. Our findings represent the first systematic description of
immune genes and pathways that characterize glioblastoma risk.

Introduction

Glioblastoma is an immunosuppressive tumor characterized by a me-
dian survival time of only 14 months (1). Although little is
known about its etiology, there is evidence that this tumor’s immune
microenvironment can suppress or promote its development (2). In
addition, epidemiological studies have consistently found an inverse
association between self-reported allergies and glioma risk (3) and
two studies show reduced risk of glioma among non-steroidal anti-
inflammatory drug users (4,5). Results of analyses of associations
between allergy-related genetic variants and glioma risk are
mixed; however, these studies have been restricted to a relatively
small number of single-nucleotide polymorphisms (SNPs) or haplo-
types (1,6–10). A study of 1397 innate immune system SNPs also
suggested that innate immunity may affect glioma risk (11), but
none of the results were statistically significant after adjustment for
multiple comparisons.

The advantage of single-locus analysis is that because SNPs repre-
sent relatively small areas of the genome, results of SNP association
studies are less likely to be obscured by misclassification than are
results of gene- or pathway-based studies. Furthermore, in contrast
to candidate gene association studies, in which candidate markers are
selected on the basis of strong prior biological hypotheses, genome-
wide analysis (GWA) studies scan markers across the entire genome
‘agnostically’ to identify previously unsuspected risk loci, as was
recently demonstrated by the success of breakthrough studies
about glioma. Both of these studies (12,13) identified glioma risk loci
in or near CDKN2A/B 9p21, 5p15.33 (TERT) and 20q13.33 (RTEL1).

Despite the unparalleled power of GWA studies in generating novel
biological hypotheses, there are a few limitations inherent in their
design and interpretation. First, GWA studies are specifically de-
signed to identify associations characterized by small p values, which
are the result of either strong SNP–disease associations or moderate
associations characterized by little variation. Therefore, genetic var-
iants that confer moderate but variable risks may be missed after
adjustment for multiple testing, which reduces statistical power. Sec-
ond, due to etiologic heterogeneity, SNPs identified in a discovery
study and confirmed in a replication study are frequently not those
most strongly associated with the disease (14,15). Third, gene–gene
interactions, which may exert powerful effects on disease risk, are not
estimated. These limitations may pose difficulty in validating GWA
results and point to potential problems in pursuing only those single-
marker associations with the smallest p values.

In contrast to GWA SNP studies, the gene- and pathway-based
approaches take advantage of prior knowledge from previous re-
search. Therefore, they can be potentially more powerful (have
a higher probability of identifying associations that are present) and
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at the same time have fewer false-positive findings (16) than studies of
the same size that are not based on previous research. In addition, the
gene-based approach is less susceptible to erroneous findings due to
genetic differences among populations. Given these advantages, gene-
based studies are more likely to be replicated than are similar studies
based on the single-SNP approach. Gene- and pathway-based analy-
ses also allow detection of additional genes that contribute to suscep-
tibility of complex diseases that might be missed in single-SNP
analysis. One such scenario could occur when multiple SNPs in a gene
or pathway are important but have small individual effects.

In the present investigation, we analyzed data from recent GWA
studies to examine inherited variation in immune function SNPs,
genes and pathways using previously published immune-related gene
and pathway definitions (17). Various statistical methods have been
developed for joint analyses of SNPs in a gene or region to identify
causal variants. One such well-known method is Fisher’s product test,
which forms the product of all p values in a gene or region, to assess
their joint effect. Similarly, one can form the product of the k most
significant p values only (18) or the product of all p values at less than
a preset threshold (19,20). These variations on Fisher’s product test
have proven more powerful than the original test in simulation studies
(18). Nevertheless, one of the limits of these tests is that they require
arbitrary selection of a truncation point. Another method, the permu-
tation-based minP approach, combines all single-locus tests in a gene
into a single test statistic, the minimum p value, and the empirical
distribution of this test statistic is then obtained using standard
permutation methods (21). Yet a third category of approaches em-
ploys multivariate regression to simultaneously model all SNPs in
a gene (22).

In the current study, we used the permutation-based minP approach
(21) for the gene-level analysis. The minP approach has previously
been successfully applied in studying lung and biliary tract cancer
risks (23,24). A comprehensive simulation study conducted by Chap-
man and Whittaker (25) shows that the minP approach performs well
over a range of scenarios: on tag-SNP or whole-genome SNP panels,
and among low-linkage disequilibrium (LD) or high-LD loci, com-
pared with Fisher’s product test and a number of multivariate meth-
ods. Given its simplicity and good performance, the minP approach
was recommended as the default choice of test statistic for gene- or
pathway-level association summaries (25).

We used University of California, San Francisco (UCSF) and MD
Anderson (MDA) GWA data sets for SNP-, gene- and pathway-level
analyses and then inspected SNP-level data from the UK and Mayo
GWA data sets to determine whether SNP-level results were consis-
tent as all four GWA data sets had not been previously used together
for SNP-level comparisons (12,13).

Materials and methods

Since current policies regarding sharing large-scale genotyping data vary by
country, institution and investigator, data from each site (UCSF, MDA, Mayo
and UK) were analyzed separately and results forwarded to UCSF for compar-
isons across sites. Each site had approval from their local human subjects
review board for their study.

Study participants

For a complete description of UCSF subject selection, see Felini et al. (26) and
Wrensch et al. (13). Briefly, participants included 525 adults with newly
diagnosed histologically verified glioblastoma patients who were identified
either through the San Francisco regional population-based registry’s rapid
case ascertainment program or through the UCSF Neuro-oncology Clinic
between 1997 and 2006. Controls from the San Francisco Bay area were
identified using random digit dialing and frequency matched to population-
based cases on age, sex and self-identified race and ethnicity. The GWA
study was limited to people who self-reported being white and provided
blood.

The MDA study was based on 531 newly diagnosed histologically verified
adult glioblastoma cases (326 males and 205 females) ascertained through the
MDA Cancer Center, Texas, between 1990 and 2008 (see ref. 12 for details).
Individuals from the Cancer Genetic Markers of Susceptibility Study served as
the 1782 controls (15,27).

The UK study included 266 glioblastoma cases ascertained through the
INTERPHONE Study (28). Briefly, the INTERPHONE Study was an interna-
tional multicenter case–control study of primary brain tumors coordinated by
the International Agency for Research on Cancer, with material collected
between September 2000 and February 2004. UK individuals newly diagnosed
with glioblastoma were identified using records from neurosurgery, neuropa-
thology, oncology and neurology centers in the Thames regions of Southeast
England and the Northern UK including central Scotland, the West Midlands,
West Yorkshire and the Trent area. Cases with previous brain tumors were
excluded. To minimize population stratification, cases with self-reported
non-western-European ancestry were excluded from the present study. Indi-
viduals from the 1958 Birth Cohort served as the source of controls (29).

The Mayo Clinic study included 114 glioblastoma patients newly diagnosed
between 2005 and 2008. Cases were identified within 24 h of diagnosis, except
for those who were initially diagnosed elsewhere and later had their diagnosis
verified at the Mayo Clinic. Pathologic diagnosis was confirmed by review of
the primary surgical material for all cases by two Mayo Clinic neuropatholo-
gists based on surgically resected material. The control group consisted of
consented individuals who had a general medical exam at the Mayo Clinic.
Matching variables were sex, date of birth (within two and one half years), race
and residence. Ninety-eight percent of the cases described their race as
‘White’. Geographic region of residence was matched in three zones based
on the distance to the Mayo Clinic Rochester: Olmsted County; the rest of
Minnesota, Wisconsin, Iowa, North Dakota and South Dakota and the rest of
the USA and Canada. Excluded were individuals under the age of 18 years and
those with a history of brain tumor. The Mayo Clinic case and control enroll-
ment research protocol was approved by the Mayo Clinic’s Institutional Re-
view Board (13).

Genotyping

Genotyping for UCSF subjects was conducted by deCODE genetics using
Illumina’s HumanCNV370-duo BeadChip. Mayo DNA was genotyped
using Illumina 610Quad SNP arrays according to the manufacturer’s recom-
mendations. For complete details of methods and quality control procedures
that were used for UCSF and Mayo genotyping, see Wrensch et al. (13).
Genotyping MDA and UK subjects was conducted by Illumina Service labo-
ratory using the Illumina Infinium Human610-Quad BeadChips according to
Illumina protocols. Further details of genotyping procedures are available in
Shete et al. (12).

Selection of allergy and immune function pathways, genes and SNPs

Loza et al. (17) identified 17 immune function pathways containing 1027 genes
and 12 011 SNPs that characterize allergy, asthma and inflammation in a
European population. We used this catalog to guide our selection of immune
function SNPs from the UCSF GWA data set. Exact matching of genes was not
possible because some of the genes were not assigned standard gene symbols
and we therefore manually curated the lists changing 15 names to standard
gene names.

Also, to standardize coverage for the genes, we identified all SNPs in the
GWA data set that were within 5 kb upstream or 2 kb downstream of any of the
immune function genes (17). We mapped 6629 SNPs to 911 of the 1027 genes
previously defined by Loza et al. (17). If a SNP was within the vicinity of
multiple genes, then it was matched to each of these genes. Supplementary
Figure 1 (available at Carcinogenesis Online) shows the distribution of the
number of SNPs representing each gene in the UCSF data set. UCSF inves-
tigators then sent the list of 6629 SNPs together with gene and pathway anno-
tations to MDA investigators who identified 6029 SNPs on 893 genes
belonging to 17 immune pathways using their GWA data. No gene was in-
cluded in more than one pathway.

Because of the relatively small numbers of glioblastoma cases in the UK and
Mayo Clinic data sets, we did not attempt full gene- and pathway-level anal-
yses in these data sets. Instead, we used these GWA data to assess consistency
of 20 SNPs that had Cochran–Armitage trend test p values (ptrend) ,0.05 for
association with glioblastoma in both the UCSF and the MDA data. Seventeen
of these 20 SNPs were available in the Mayo Clinic GWA data set.

Statistical methods

SNP-level associations. For each of the 6629 SNPs in the UCSF data set and
the 6029 SNPs in the MDA data set, we calculated the Cochran–Armitage
ptrend statistic. We next identified 20 SNPs associated with glioblastoma
(ptrend � 0.05) in both data sets and computed ptrend for each of the 20 SNPs
in the UK data set and for the 17 available SNPs in the Mayo Clinic data set.
Results from the four studies were summarized using a Bonferroni-adjusted
Mantel–Haenszel statistic (adjusted for 20 hypothesis tests).

Gene-level associations: the minP approach. To combine the multiple SNP-
level association p values into one number that represents the gene-level
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association, and at the same time, to control for the problem that genes with
more SNPs are more likely to have lower p values than genes with fewer SNPs,
we used the minP approach, first proposed by Westfall and Young (21) to
adjust for family wise (gene level) type I error. The outcome of this analysis
is a set of minP statistics that quantify associations with glioblastoma at the
gene level and are directly comparable among genes. The minP approach
performs well in simulations using a variety of scenarios (25) and has several
advantages. First, the empirical null distribution generated via permutation of
case–control labels preserves the correlation among SNPs in the same gene,
implicitly taking account of LD among SNPs. It is therefore more statistically
powerful than tests, which ignore these correlations (30). Second, the derived
gene-level association p values control for different numbers of SNPs among
genes. A conceptually similar method was used in a paper on associations
between DNA repair genes and lung cancer risk (23).

The specific procedures for the minP analysis are as follows. For each SNP,
we calculated its marginal p value for association with glioblastoma risk
(ptrend). For each gene, we combined the ptrend values of all SNPs mapped to
that gene (as described above) by obtaining their minimum, and this minimum
ptrend value became the gene-level test statistic. Suppose gene Gg has N SNPs
and denote the marginal association ptrend value for the jth (j 5 1, ., N) SNP
located in the gene to be pj,g, the test statistic for gene-level association is
defined as minP0;g5 min

1�j�N
pj;g. To evaluate the significance of minP0, we used

permutations to generate its null distribution by randomly shuffling case–con-
trol status a thousand times. Let pjb,g be the p value for the jth SNP assigned to
gene Gg in the bth permuation, the permuted minP statistic is
minPb;g5min1 � j � Npjb;g Then the permutation-adjusted p value for the

minP statistic can be calculated as minPg5
1
B

PB51000

b51

I
�
minPb;g � minP0;g

�
;

the proportion of {minPb,g,b 5 1, .,B} that are smaller or equal to the
observed minP statistic minP0,g. The procedures described above were applied
to the UCSF data and then repeated using the 6029 SNPs on 893 genes from the
MDA data set. (Note that throughout the present manuscript, we use the lower
case ptrend to represent the p value associated with the Cochran–Armitage trend
test on a single SNP, whereas the upper case P in minP is used together with
a subscript (minP0) to represent the smallest ptrend among all SNPs matched to
that gene. The symbol minP with no subscript represents the permutation-
adjusted minimum p value for each gene. With each data set, UCSF and
MDA, we used the binomial test to evaluate the probability that more genes
than expected by chance had minP � 0.05 (31).

Pathway-level associations. We applied two approaches to examine correla-
tive patterns between the minP values from the UCSF and MDA data sets
within each of the 17 pathways. These approaches address the question: within
each pathway, do the MDA and UCSF data sets show that similar genes are
associated with glioblastoma risk? In the first approach, for each pathway, we
used the binomial test (31) to calculate the probability of observing an equal or
greater number of genes that were significant (minP � 0.05) in both data sets.
Let n be the number of genes in a specific pathway, p1 and p2 be the percen-
tages of significant genes (minP � 0.05) in the UCSF and MDA data sets,
respectively, and k be the number of genes that are significant in both datasets.
The binomial p value equals the probability of having k or more significant
genes among the n genes given that the background probability is p1Xp2. In the
second approach, we calculated Pearson correlation coefficients (31) between
�log10(minP) values from both sites. The significance of the correlation co-
efficients was determined by 1000 permutations that disrupted the pairings of
genes between the two sites. The first approach relies on setting an (arbitrary)
significance threshold to classify genes into two categories and can therefore
be less powerful than the second approach, which examines the overall trend of
concordance in the entire pathway. We used one-sided right-tailed tests for
both approaches. Results from the two tests can be used together to determine
the likelihood that genes in a pathway are similarly related to glioblastoma risk
in the two data sets. If both tests are significant, it suggests that in both studies,
more of the same genes are significantly associated with glioblastoma and that
there is general linear correlation of minP values across the two data sets. If the
correlation test p value is significant but the binomial test is not, it suggests that
although there is concordant trend in p values between the two groups, there
are not enough statistically significant genes in both sites for binomial p value
significance.

Using pathway enrichment analyses methods similar to those used for path-
way analysis in expression microarrays (32), we also conducted preliminary
pathway enrichment analyses. These analyses address the question: does a par-
ticular pathway have more genes than expected by chance that are significantly
associated with glioblastoma risk? For these analyses, we used Fisher’s exact
and Wilcoxon tests (32,33) to evaluate whether each pathway is enriched with
genes that are associated with glioblastoma risk (those are the genes that had
low minP values). Unlike the pathway correlative analysis discussed above, T
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they were carried out separately for the UCSF and MDA data sets at each site.
However, since the UCSF (525 cases and 602 controls) and MDA (531 cases
and 1782 controls) data sets did not have sufficient numbers of observations to
produce definitive pathway enrichment findings, we only include these results
in the supplementary materials (see supplementary Table 1 is available at
Carcinogenesis Online).

Results

SNP-level associations

There were more SNPs with nominal associations ptrend � 0.05 from
both UCSF and MDA sites than expected by chance (n5 20, Fisher’s
exact test, p 5 0.04; see supplementary Table 2, available at Carci-
nogenesis Online, for a complete list). Four SNPs had odds ratios that
were consistent across all four data sets (UCSF, MDA, Mayo and
UK); these included three epidermal growth factor receptor (EGFR)
SNPs (rs6969537, rs1015793 and rs11979158) and one MICB SNP
with Bonferroni-adjusted Mantel–Haenszel p values of 0.0042,
3.04 � 10�5, 1.19 � 10�5 and 0.0013, respectively (Table I).

Gene-level associations

As shown in supplementary Figure 2 (available at Carcinogenesis
Online), although, as expected, the observed minimum P value
(minP0) for gene–disease risk was inversely associated with the num-
ber of SNPs per gene, permutation-adjusted minimum p values
(minP) were independent of number of SNPs per gene and thus this
potential bias was removed from the following results.

In the gene-based analyses, 59 out of 911 and 66 out of 893 genes
were significantly associated (minP � 0.05) with glioblastoma risk in
the UCSF and MDA datasets, respectively. There is significant en-
richment of glioblastoma-associated genes compared with what is
expected under the null hypothesis in both datasets (UCSF binomial
p 5 0.048 and MDA binomial p 5 0.009). Figure 1 displays the
scatter plot of the minP values for all genes from both data sets. Eight
genes were significantly associated with glioblastoma risk in both data
sets: IL-2RA, CCL15, ITGAM, JAK1, IFNAR1, MAPK11, ITGAD and
IL-18. Note that the IL-2RA gene has relatively small minP values in
both analyses (UCSF minP 5 0.01 and MDA minP 5 0.001).

Pathway-level associations

As shown in Table II and Figure 2a and b, the cytokine signaling and
the adhesion–extravasation–migration pathways have statistically sig-

nificant binomial and correlation coefficient p values suggesting a sim-
ilar relation to glioblastoma risk from both sites. In addition, for the
cytokine signaling pathway, both sites have significantly more
genes than expected that have minP values , 0.05 (14 out of 147
genes in the UCSF dataset, p 5 0.007 and 13 out of 146 genes in
the MDA dataset, p 5 0.03; supplementary Table 1 is available at
Carcinogenesis Online), further suggesting an association to glioblas-
toma risk for the cytokine signaling pathway from both studies.

Consistent with these findings, all but one of the eight genes having
minP � 0.05 in Figure 1 are found on the cytokine signaling or
adhesion–extravasation–migration pathways. The exception is the
MAPK11 (p38 MAP kinase) gene on the MAPK signaling pathway.
In addition, the pathway enrichment analysis (supplementary Table 1
is available at Carcinogenesis Online) provides some support for a role
for the cytokine signaling pathway. Using Fisher’s exact test, the
cytokine signaling pathway had the second and first lowest p values
in the UCSF and MDA analyses, respectively.

Although the glucocorticoid/PPAR signaling pathway correlation
coefficient is also statistically significant (Table II), its binomial
p value is 1.0, indicating a lack of significantly low p values for
gene–glioblastoma associations for this pathway.

Discussion

Our gene- and pathway-level analyses of immune function genes sug-
gest a role for eight immune function genes and two immune function
pathways: the cytokine signaling and adhesion–extravasation–

Fig. 1. Scatter plot of minP values of allergy- and inflammation-related
genes (893) present in both UCSF Adult Glioma Study and MDA Study data
sets. Each gene from each study site is assigned a minP value, which
represents the results of a test of the association of that gene with
glioblastoma. The minP is adjusted for multiple testing and number of SNPs
per gene.

Table II. Correlation analyses between minPa, values for gene-based
associations of glioblastoma risk from UCSF Adult Glioma Study and MDA
Study cases and controls within 17 immune or inflammation pathways
identified by Loza et al. (17)

Pathways Number of
genes

Binomial
pb

Correlation
coefficient rc

Correlation
coefficient pc

Natural killer cell signaling 22 1 �0.03 0.484
Cytokine signaling 146 0.029 0.15 0.003
Apoptosis signaling 65 1 �0.17 0.927
Complement caspase 37 1 �0.20 0.927
G protein-coupled receptor

signaling
41 1 0.07 0.258

Glucocorticoid/PPAR
signaling

19 1 0.43 0.003

ROS/glutathione/cytotoxic
granules

18 1 0.03 0.410

Adhesion–extravasation–
migration

119 0.003 0.30 ,0.001

Eicosanoid signaling 31 1 �0.11 0.701
Innate pathogen detection 37 1 �0.03 0.549
MAPK signaling 107 0.209 0.12 0.116
Nuclear factor-kappaB

signaling
31 1 �0.01 0.504

Phagocytosis-Ag
presentation

32 1 �0.19 0.857

Leukocyte signaling 105 1 �0.07 0.791
Calcium signaling 14 1 �0.31 0.878
PI3K/AKT signaling 35 1 �0.03 0.528
Tumor necrosis factor

superfamily signaling
34 1 0.10 0.294

ROS, reactive oxygen species.
aminP is a permutation-based association p value for the association of genes
with glioblastoma risk.
bBinomial test p value calculates a one-sided (right-tailed) probability of
observing the number of genes that are significant (minP � 0.05) in both
studies.
cThe Pearson correlation coefficient describes the association between
�log10(minP) values from each pathway at both sites. Significance of the
observed correlation coefficients indicates the probability of finding an equal
or higher correlation coefficient from 1000 random permutations.
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migration pathways (Table II, Figure 2a and b). The cytokine signal-
ing pathway consists of immunomodulatory proteins that act as
short-range signaling molecules between cells. There is extensive
evidence for a central role of cytokines in glioma growth and angio-
genesis (34). This pathway includes the IL-2RA (CD25) receptor gene
(Figure 1, Figure 2a), expressed on the surface of a subset of regula-
tory T cells (Tregs) that contribute to immunosuppression that is char-
acteristic of the glioblastoma microenvironment (35–45).

The adhesion–extravasation–migration pathway, also associated
with glioblastoma risk in both data sets, includes the CCL15 gene
(Figures 1 and 2b), a member of a class of genes that regulates leu-
kocyte trafficking across the blood–brain barrier (46). Although there
is no evidence for a specific association between the CCL15 gene and
glioblastoma, this chemokine may mediate Treg infiltration of mela-
noma (47) and also induces cell migration and differentiation of hu-
man eosinophilic leukemia (48). It is therefore possible that it may
also play an as yet unidentified role in glioblastoma risk.

Limitations of our gene and pathway findings rest first on the limits
of GWA data. These data do not include comprehensive coverage of
all genes and pathways that may be important in understanding
associations between inherited variation in immune function and glio-
blastoma risk. However, reanalysis of GWA is useful for illuminating
potentially important areas for future, in-depth, candidate gene
and pathway studies. Another potential source of error comes from
misspecification of immune function pathways. Although Loza et al.
(17) assigned genes to each of the 17 immune function pathways,
genes appropriately included in each pathway may vary with each
pathway-specific function, its physiological environment and loca-
tion. In addition, although population stratification is minimized using
genetic- and pathway-level analyses, it may not be eliminated. Further
potential errors in interpretation may arise from the heterogeneity of
glioblastoma (49) with the possibility of the immune system playing
different roles in different subtypes. In the present study, to maintain
adequate statistical power, we have treated this tumor as a single
entity thus possibly obscuring associations that may exist between
immune function genes or pathways for specific tumor subtypes. In
fact, a larger sample may have allowed us to identify more genes or
pathways related to glioblastoma risk. Finally, we did not evaluate
gene–gene or gene–environment interactions although both undoubt-
edly play central (although presently unknown) roles in glioblastoma
development (50,51).

Although there are many potential sources of error and bias in our
study, evidence for the plausibility of our gene and pathway
results comes from the extensive literature on the role of the IL-2RA

(CD25) receptor in carcinogenesis. Specifically, this receptor,
expressed on the surface of immunosuppressive CD4þ CD25þ Tregs,
is found in proportionately higher levels in the peripheral circulation
of cancer patients, including patients with glioma, than in that of
controls (35–45). This excess has been attributed to the antitumor
immunity-inhibiting role of these cells and has been documented
in both glioma and glioblastoma (52). Learn et al. (53) compared
differences in T-cell gene expression profiles in individuals with
and without glioma. They found that genes in glioma patients in-
volved in T-cell receptor ligation were downregulated, whereas genes
associated with Tregs and their immunosuppressive cytokines were
upregulated. Grauer et al. (54) showed that Tregs gradually accumu-
late in murine gliomas and suppress antitumor immunity. El Anda-
lossui and Lesniak (55) confirmed this observation in humans noting
that FOXP3-expressing Tregs increase during human glioma
progression and that this increase is correlated with tumor grade.
The association between Tregs and glioma, however, is complex as
an messenger RNA expression study of glioblastoma tissue
conducted by Schwartzbaum et al. (56) illustrates. These authors
found downregulation of Treg-associated immunosuppressive cyto-
kines (e.g. IL-10) with increased expression of CD133, an indicator
of tumor progression.

With respect to single-SNP–glioma risk associations, odds ratios
for three SNPs in EGFR results were consistent across the four data
sets (Table I). EGFR has a direct role in inflammation and subsequent
immunosuppression and both its amplification and mutation have
been frequently observed in glioblastoma tumors (57). Elevated
EGFR expression is also a negative prognostic indicator (58,59). In
addition, three reports suggest that inherited variation in EGFR is
related to glioblastoma risk (60–62) with three EGFR SNPs reported
in the present study being highly correlated (0.47 � r2 � 1.0) with
four other EGFR SNPs (rs759171, rs17172430, rs17172432 and
rs17172433) found to be significantly associated with glioma risk
(62). The latter paper includes UK cases and controls presented in
aggregate with data from the Swedish, Danish and Finnish
INTERPHONE glioma case–control studies. In the present study,
we report the UK data separately. Because there is an overlap
between subjects in our report and that of Andersson et al. (62) and
our results do not achieve genome-wide significance, further replica-
tion of the association among these EGFR variants and glioma risk is
warranted.

There are apparent differences between the SNP- and gene-level
associations. Specifically, although three EGFR SNPs were statisti-
cally significant, we found only marginal significance of EGFR at the

Fig. 2. (a and b) Scatter plots of minP of genes by pathway from UCSF Adult Glioma Study and MDA Study data sets. Each gene from each study site is assigned
a minP value, which represents the results of a test of the association of that gene with glioblastoma. The minP is adjusted for multiple testing and number of SNPs
per gene.
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gene level (minP 5 0.11 and 0.06, respectively) in UCSF and MDA
data sets. This difference can be attributed, in part, to the way we
estimated associations at each level of analysis. In the SNP-level
analysis, we evaluated whether identical SNPs were related to glio-
blastoma across data sets, whereas the gene-level comparisons were
based on the SNP associated with the smallest adjusted p value (minP)
for each gene independently in each data set. There are at least two
additional factors, besides a low ptrend that determine whether a SNP
will attain gene-level significance. The first is the LD structure of
SNPs within the gene and the second is the number of SNPs in the
gene that are genotyped. The three EGFR SNPs (rs6969537,
rs1015793 and rs11979158) that we report in Table I don’t represent
independent association signals; in fact, they are linked with each
other, with their LD r2 ranging from 0.58 to 0.74. In addition, EGFR
is a fairly long gene, spanning .130 Kb, and has 43 SNPs on the
UCSF genotype panel, whereas an average immune gene that we
queried has only 7 SNPs. The minP approach takes into account the
correlation structure among SNPs so that closely linked signals are
not erroneously treated as independent and given additional weights.
Furthermore, the multiple testing procedures prevent long genes from
attaining higher significance purely on the basis of their larger
number of SNPs. As a result of the two factors, the EGFR gene did
not obtain significance at the gene level. This example aptly demon-
strates the advantages of the minP approach and the stringency that
we applied to our study to avoid reporting false-positive findings.
Nonetheless, the marginal significance that we observed at the SNP
level may have given rise to statistical significance had we been able
to combine the two data sets (see Methods ) at the gene level. In
any case, further independent replication of the association between
these and linked SNPs in the EGFR gene and glioblastoma is now
warranted.

Results for IL-2RA are also different for SNP- and gene-level
analyses. The IL-2RA gene is represented by rs4749926 in UCSF
data and rs791589 in MDA data. Neither one of these SNPs is signif-
icant in both data sets thus explaining, in part, the absence of SNPs
from this gene in Table I.

Results from previous studies of asthma- and allergy-related
SNPs and haplotypes have been inconsistent (1,6–9). None of the
13 allergy- or asthma-related SNPs (11 in IL-4Ralpha and 2 in
IL-13 SNPs) in the UCSF or the MDA data set were statistically
significantly (ptrend , 0.05) associated with glioblastoma. Nonethe-
less, our findings suggest that this relation may result from the relative
absence of immunosuppression among people with allergies. Specif-
ically, allergies are associated with deficiency in CD4þ CD25þ Treg
function (63,64), whereas, as previously noted, glioma patients have
a relatively high proportion of CD4þ CD25þ Tregs in their peripheral
blood (45).

Previous work has also suggested that the innate immune system
may be related to glioblastoma risk. Rajaraman et al. (11) reported
results of a study of 1397 SNPs related to innate immunity and both
glioma and glioblastoma risk. Although both the UCSF and the MDA
data sets included five of the eight genes on which these investigators
found SNPs significantly associated with glioblastoma in their data
set, none of these genes were statistically significantly related to
glioblastoma.

To summarize, we note different limitations and advantages of both
genome-wide and candidate gene approaches. Our analyses indicate
the importance of inherited variation in the cytokine signaling
and adhesion–extravasation–migration pathways (most notably the
IL-2RA gene on the cytokine pathway) in glioblastoma risk. They
also possibly suggest that inherited variation in EGFR may influence
risk, supporting results recently published by Andersson et al. (62).
IL-2RA and other genes on the cytokine signaling pathway may con-
tribute to an immunosuppressive microenvironment necessary for tu-
mor growth (2), whereas EGFR can act as an inflammation signaling
hub. Since GWA data are not designed to examine specific candidate
genes, our results suggest that more comprehensive candidate gene
and pathway analyses are now warranted for studies for IL-2RA and
the cytokine signaling pathway.

Supplementary material

Supplemental Figures 1 and 2 and Tables 1 and 3 can be found at
http://carcin.oxfordjournals.org/.
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