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A computerized diagnostic model 
for automatically evaluating 
placenta accrete spectrum 
disorders based on the combined 
MR radiomics‑clinical signatures
Hao Zhu1,5, Xuan Yin2,5, Haijie Wang3, Yida Wang3, Xuefen Liu2, Chenglong Wang3, 
Xiaotian Li1, Yuanyuan Lu4, Guang Yang3* & He Zhang2*

We aimed to establish a computerized diagnostic model to predict placenta accrete spectrum 
(PAS) disorders based on T2‑weighted MR imaging. We recruited pregnant women with clinically 
suspected PAS disorders between January 2015 and December 2018 in our institution. All 
preoperative T2‑weighted imaging (T2WI) MR images were manually outlined on the picture archive 
communication system terminal server. A nnU‑Net network for automatic segmentation and the 
corresponding radiomics features extracted from the segmented region were applied to build a 
radiomics‑clinical model for PAS disorders identification. Taking the surgical or pathological findings as 
the reference standard, we compared this computerized model’s diagnostic performance in detecting 
PAS disorders. In the training cohort, our model combining both radiomics and clinical characteristics 
yielded an accuracy of 0.771, a sensitivity of 0.854, and a specificity of 0.750 in identifying PAS 
disorders. In the testing cohort, this model achieved a segmentation mean Dice coefficient of 0.890 
and yielded an accuracy of 0.825, a sensitivity of 0.830 and a specificity of 0.822. In the external 
validation cohort, this computer‑aided diagnostic model yielded an accuracy of 0.690, a sensitivity of 
0.929 and a specificity of 0.467 in identifying placenta increta. In the present study, a machine learning 
model based on preoperative T2WI‑based imaging had high accuracy in identifying PAS disorders in 
respect of surgical and histological findings.

Abbreviations
DWI  Diffusion-weighted magnetic resonance imaging
EBL  Estimate blood loss
MRI  Magnetic resonance imaging
US  Ultrasound
GW  Gestational week
PAS  Placenta accrete spectrum
PACS  Picture archiving and communication system
DCAs  Decision curve analyses
ROC  Receiver operator curve
AUC   Area under the curve
3D  Three dimensional
LR  Logistic regression
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RFE  Recursive feature elimination
DL  Deep learning

Placenta accrete spectrum (PAS) is a general term used to describe abnormal trophoblastic invasion into the 
myometrium of the uterus. The incidences of various risk factors, such as cesarean sections and abortions, are 
gradually increasing worldwide. The overall prevalence was 1/695-731 over the past ten  years1,2. At present, 
there are no large-scale epidemiological data on PAS occurrence in China, although a high cesarean section 
rate has been  reported3. At present, the pathogenesis of PAS and the specific pathophysiological process are still 
unclear. The occurrence of PAS may be attributed to the combined effects of one or more pathological factors, 
such as the absence of basal decidua, local oxygen tonal abnormality, abnormal vascular remodeling, and the 
excessive invasion of trophoblast  cells4. PAS can lead to a variety of complications, such as hemorrhage during 
or after delivery, disseminated intravascular coagulation, renal failure, and venous thrombosis, which may lead 
to maternal or fetal death in severe  cases5. Early diagnosis is the upmost effective method to prevent postpartum 
hemorrhage and reduce maternal mortality.

PAS disorders can be diagnosed by clinical symptoms and signs, laboratory examination, ultrasound (US) 
or magnetic resonance imaging (MRI)6–8. US examinations are cheap, easy to perform and widely applied in the 
clinical setting for PAS diagnosis. MR examination has the technical advantages of high soft tissue resolution 
and multidirectional and multisequence imaging and is not affected by the position of intestinal gas, bones or the 
placenta, which can provide more information for the diagnosis of  PAS9. MRI is an important complementary 
tool for US in both the diagnosis and staging of PAS disorders. The sensitivity and specificity of MRI diagnosis 
of PAS range from 87 to 100% and 97 to 99%,  respectively6,10,11, and the accuracy of its diagnosis before invasive 
surgical procedures is highly dependent on radiologists’  expertise10,12. Minimizing the knowledge differences 
across various institutions could help improve the accuracy of the preoperative diagnosis of PAS with imaging 
modalities in primary hospitals, supply timely and reasonable referrals and reduce the potential maternal mor-
tality rate. In recent years, machine learning based on imaging data has provided convincing results for various 
tasks in medicine. It was reported that MR-based radiomics could help improve the preoperative estimation of 
postpartum hemorrhage volume related to PAS disorders with an accuracy of 68.1% in the validation  group13. 
However, similar studies are still alarmingly  limited14.

The purpose of this study was twofold: (1) to train a nnU-Net network to automatically sketch out placental 
tissue on sagittal T2-weighted imaging and (2) to establish a radiomics-clinical combined model for the pre-
diction of PAS disorders and then to calculate its diagnostic performance, taking surgical and/or pathological 
findings as the reference standard.

Materials and methods
Patients. Our institutional review board approved this retrospective study. All methods were performed in 
accordance with the relevant guidelines and regulations. From January 2015 to December 2018, data from 752 
patients who underwent MRI, including 551 pregnant women with clinically suspected PAS disorders (either 
by previous US or external MR reports), were retrospectively retrieved from the PACS at our institution. We 
excluded 39 of them who had undergone abdominal aorta balloon occlusion surgery before delivery. Finally, 512 
pregnant women were included (Fig. 1). We divided the included pregnancies into the following five categories 
(scores from 0 to 5 points) based on placental position: 0, normal placental position; (1) low-lying placenta; (2) 
marginal placenta previa; (3) partial placenta previa; (4) central placenta previa; and (5) pernicious placenta 
previa.

MR examination, imaging reading and lesion segmentation. In our hospital, MR examination 
was performed using a 1.5-Tesla MR unit (Magnetom Avanto, Siemens). In the external hospital, one MR scan 
unit was a 3.0-Tesla machine (Ingenia 3.0 T, Philips), and another was a 1.5-Tesla MR unit (Optima MR 360, 
GE). The detailed scanning parameters for each unit are summarized in Supplementary Table 1. The diagnosis 
for placental implantation on MRI was established based on the previous well-described  criteria8,15. First, two 
observers (each had more than 7 years of PAS diagnosis on MRI) blinded to the US and surgical results analyzed 
all the MRI datasets of each participant independently on the PACS terminal server. Confidence in identifying 
the status of placenta accreta spectrum was assessed using a five-point scale as follows: ‘5’, definitely present; ‘4’, 
probably present; ‘3’, uncertain; ‘2’, probably absent; and ‘1’, definitely absent. Second, all conclusions required 
a consensus agreement between the two observers. All visible placental tissue was examined by an experienced 
radiologist (H.Z.) on sagittal T2WI using ITk-SNAP software (http:// www. itksn ap. org/ pmwiki/ pmwiki. php?n= 
Main. HomeP age).

Semantic segmentation and radiomic feature extraction. The pipeline of the imaging process is 
shown in Fig. 2. A semantic segmentation three dimensional (3D) nnU-Net model was trained by the radiolo-
gist, who labeled the placental region to segment the placenta used for radiomics feature  extraction16. nnU-Net 
can automatically adapt to arbitrary datasets and take full advantage of the characteristics of the dataset to 
outperform many U-Net-based models and has been used successfully in 3D biomedical image segmentation. 
We used a combination of cross entropy loss and dice loss as the loss function. The stochastic gradient descent 
algorithm was used as the optimizer with an initial learning rate of 0.01, a momentum of 0.9 and a weight decay 
of 0.005. In brief, a total of 107 features were extracted from each placental region, including the following: (1) 
14 shape features; (2) 18 first-order statistical features; and (3) 75 texture features, including the gray level cooc-
currence matrix (GLCM), gray-level dependence matrix (GLDM), gray-level run-length matrix (GLRLM), gray-

http://www.itksnap.org/pmwiki/pmwiki.php?n=Main.HomePage
http://www.itksnap.org/pmwiki/pmwiki.php?n=Main.HomePage
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Figure 1.  The flowchart of the recruited samples in this study.

Figure 2.  A trained nnU-Net model was utilized to automatically segment placenta region on sagittal T2WI. 
The radiomics features were extracted from the segmented region and combined with clinical features to build a 
machine learning model for prediction of PAS disorders.
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level size zone matrix (GLSZM) and neighborhood gray-tone difference matrix (NGTDM). Feature extraction 
and model building were implemented with the open-source software  FeatureExplore17.

Dataset split. We stratified the dataset based on the archiving time into a training cohort (110 women with 
PAS disorders versus 248 with normal placentas, from 2015 to 2017) and a testing cohort (47 women with PAS 
disorders versus 107 with normal placentas, 2018). In the external hospital, 11 pregnancies with a 3.0 T scan-
ner and 17 pregnancies with a 1.5 T MR scanner were treated (15 women with PAS disorders/13 with normal 
placentas, 2020) as an external validation cohort.

Radiomics‑clinical nomogram construction. The radiomics score (rad-score) was calculated for each 
patient cohort by the linear combination of the selected features in the best radiomics signature. A clinical 
Logistic Regression (LR) model based on clinical characteristics, such as placental position, maternal age, and 
gravida, was also built. Furthermore, multivariable logistic regression analysis was developed with the rad-score 
and clinical variables. A radiomics-clinical nomogram was constructed based on multivariable logistic analysis 
in the training cohort to quantitatively predict the risk of PAS disorders.

Performance comparison of both the models and radiologists for PAS diagnosis. Taking the 
surgical or histopathological findings as the gold standard, the accuracy (ACC), sensitivity (SEN), specificity 
(SPE), positive predictive value (PPV) and negative predictive value (NPV) of both the computer model and 
radiologists for PAS diagnosis were separately calculated and compared. Decision curve analyses (DCAs) were 
used to determine the effectiveness of the combined radiomics-clinical computerized model. A t test or Mann–
Whitney test was performed to assess the differences between the two cohorts. A P value < 0.05 was regarded as 
statistically significant. Receiver operating characteristic (ROC) curves and areas under the curve (AUCs) were 
used to evaluate the diagnostic performance of the various methods. R software (version 4.0.4, http:// www.R- 
proje ct. org) was used to perform statistical analyses and plot the nomogram.

Ethics approval. Our institutional review board approved the study, and the requirement for the informed 
consent of all participants was waived. In this article, institutional review board was review board of Obstetrics 
and Gynecological hospital, Medical College, Fudan University.

Consent to participate. The requirement for the informed consent of all participants was waived (IRB 
No.2020-138). The signed consent for further MR scan was obtained from each pregnancy when have indetermi-
nate anomalies on screening ultrasound. This consent will comprehensively tell each pregnancy that indications, 
contraindications, advantages, limitations and potential medical use on MR imaging.

Consent to publication. Verbal informed consent for publication was obtained from the pregnancies to 
usage these clinical and imaging data (Figs. 3, 4, 5 and 7).

Results
Baseline characteristics. In the present study, the patients were 21 to 48  years of age and between 18 
and 41 weeks of gestation. The average gravida and parity were 3.63 and 1.83, respectively. Among them, 397 
(77.54%) had no history of cesarean section, and 115 (22.46%) had undergone a cesarean section 1 to 4 times 
(Table 1). Ninety-four (18.36%) women were diagnosed with diabetes mellitus (including pregestational diabe-
tes mellitus and gestational diabetes mellitus), 31 (6.05%) were diagnosed with hypertensive disorders (includ-
ing gestational hypertension, preeclampsia, and chronic hypertension complicating pregnancy), 19 (3.71%) had 
undergone in-vitro fertilization embryo transplantation, 20 (3.91%) were diagnosed with hypothyroidism, and 
8 (1.56%) were twin pregnant women. A total of 102 (19.93%) women underwent vaginal delivery, including 
3 (0.59%) who underwent operative vaginal delivery; 409 (79.88%) underwent cesarean section; and 1 (0.20%) 
underwent spontaneous abortion. In our data, the mean estimated blood loss (EBL) volume during surgery was 
308.56 ± 155.26 ml in pregnancies with a normal placenta, 533.00 ± 1053.29 in those with marginal placenta pre-
via, 675.00 ± 599.40 in those with partial placenta previa, 823.39 ± 1041.95 in those with central placenta previa, 
1926.10 ± 1783.91 in those with pernicious placenta previa, and 503.04 ± 481.69 in those with low lying placenta.

Performance of semantic segmentation and radiomics signatures. The trained 3D nnU-Net 
model obtained a mean dice coefficient of 0.890 in the testing cohort. The segmentation was in good agreement 
with the radiologists’ labels (Figs. 3, 4 and 5). From the subgroups, 8 shape features, 1 first-order feature and 9 
texture features were selected because of the higher cross-validation AUC. Among the T2WI radiomics signa-
tures, 6 radiomics features were retained in the final LR model with an AUC of 0.792 (95% confidence interval 
(CI): 0.736–0.844) in the training cohort and 0.790 (95% CI: 0.698–0.876) in the testing cohort.

Clinical data analysis. There were significant differences in some clinical variables between those with PAS 
disorders and normal placentas (Table 2). The clinical-radiological signature used age, placental location, and 
gravida selected by the recursive feature elimination (RFE) algorithm and achieved an AUC of 0.807 (95% CI: 
0.759–0.857) in the training cohort and 0.800 (95% CI: 0.743–0.850) in the testing cohort.

Performance of the radiomics‑clinical nomogram and comparison with radiologists’ perfor‑
mance. The diagnostic performance from the radiomics features extracted from manual segmentation by 

http://www.R-project.org
http://www.R-project.org
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radiologists was similar to those extracted from the nnU-Net’s segmentation (AUC: 0.847 vs 0.849) for PAS 
identification. The radiomics-clinical nomogram was constructed based on LR using the rad-score and clinical 
characteristics (Supplementary Fig. 1). The combined model achieved the best performance with AUCs of 0.833 
(95% CI: 0.780–0.882) and 0.849 (95% CI: 0.778–0.914) in both the training and testing cohorts, respectively. 
The statistical analysis for the clinical/radiomics/radiomics-clinical nomogram in the two cohorts is shown in 
Table 3. The waterfall plot of the testing cohort with an optimal cutoff value of 0.458 for the distribution of the 
prediction probability is shown in Fig. 6. The DCAs curve indicated that the net benefit of the nomogram was 
better than the other models when the threshold was in the range between 0.1 and 0.5. The radiomics signa-
ture had a higher positive prediction rate when the threshold was greater than 0.5. In external validation, the 

Table 1.  Baseline characteristics of the included 512 pregnancies of clinically suspected PAS disorders. EBL, 
estimated blood loss; IVF-ET, in-vitro fertilization embryo transplantation.

Age, years (mean ± SD) 33.22 ± 4.61 (21–48)

Gravida (mean ± SD) 3.63 ± 2.05 (1–13)

Para (mean ± SD) 1.83 ± 0.75 (1–6)

GW, week (mean ± SD) 37.62 ± 2.36 (18.3–41.4)

History of cesarean section, n (%)

0 397 (77.54)

1 73 (14.26)

2 40 (7.81)

3 1 (0.20)

4 1 (0.20)

Maternal comorbidities, n (%)

Diabetes mellitus 94 (18.36)

Hypertensive disorders 31(6.05)

IVF-ET 19 (3.71)

Hypothyroidism 20 (3.91)

Twin pregnancy 8 (1.56)

Delivery, n (%)

Vaginal 99 (19.34)

Operative vaginal 3 (0.59)

Cesarean section 409 (79.88)

Others (abortion) 1 (0.20)

EBL, ml (mean ± SD)

*Placenta position, n: 0 (268) 308.56 ± 155.26 (130–1200)

1 (30) 533.00 ± 1053.29 (200–6000)

2 (8) 675.00 ± 599.40 (200–2000)

3 (115) 823.39 ± 1041.95 (200–7280)

4 (68) 1926.10 ± 1783.91 (200–10,000)

5 (23) 503.04 ± 481.69 (200–2500)

Figure 3.  A 38-year-old gravid woman with pernicious placenta previa at 35.1 GW. The normal interface 
(arrowhead) between normal (A) and increta (B) placental interface were displayed on sagittal T2WI. The 
computerized model automatically drew the contour of placenta and gave the prediction probability of 0.937 in 
placenta increta (C). The surgical findings showed the perforating vessels along the uterine serosa (D).
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nomogram performed similarly to the testing cohort with an AUC of 0.862 (95% CI: 0.697–0.980). In the testing 
group, this trained model showed better discriminative ability than the radiologists (AUC: 0.849 versus 0.744, 
Table 4). For our studied cases, either small invasion signs on MRI or large interface area between placenta and 
myometrium (for example, both anterior and posterior uterine wall involved) mostly attributed to the model’s 
error identification (Fig. 7).

Discussion
With the comprehensive opening of the "third child" policy in China, the number of people who get married at a 
later age and have children at a later age increases. It can be speculated that the incidence of placental implanta-
tion owing to cesarean surgery in China may further increase. In our study, we designed a computerized diag-
nostic model for evaluating PAS from a large cohort sample from a single institution. Our model yielded an AUC 
of 0.849 and an ACC of 0.825 in detecting invasive placentation in the testing group. In the external validation 
group, our model also provided the competitive diagnostic performance in detecting PAS. To our knowledge, 
this is the first reported study focusing on PAS disorder identification with machine learning techniques using 
T2WI images.

Figure 4.  A 35-year-old gravid woman with placenta previa at 34.3 GW. The placenta increta (arrowhead) 
were clearly displayed at the lower segment of the uterus on sagittal T2WI (A). The computerized model 
automatically drew the contour of placenta and gave the prediction probability of o.98 in placenta increta (B). 
The surgical specimen (arrowhead) disclosed the invasive placentation near the lower uterine segment (C).

Figure 5.  A 35-year-old gravid woman with placenta previa at 34.2 GW. The placenta increta (arrowhead) were 
clearly displayed at the lower uterine segment on sagittal T2WI (A). The computerized model automatically 
drew the contour of placenta and gave the prediction probability of 0.877 in placenta increta (B). The 
histological picture disclosed the placenta villi (arrowhead) among the muscular vessels in the uterus (HE × 100, 
C).
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Several meta-analysis studies concluded that MRI yielded a SEN of 94.4%, 100% and 86.5% and a SPE of 
98.8%, 97.3%, and 96.8% for the detection of placenta accreta, increta and percreta,  respectively6,7. However, in 
recently published articles, these values varied with an SEN from 66 to 100% and an SPE from 71% to 76.9%10,12. 
Our study’s results also did not reach the high diagnostic performance level based on MRI knowledge. Some 
reasons are explained as follows. First, radiologists’ experiences play a vital role in the interpretation of PAS. In a 
recent study, the authors disclosed that abdominopelvic MRI experience without specific placental MRI experi-
ence did not improve diagnostic performance in PAS  diagnosis10. Knowledge of PAS-related MRI findings defi-
nitely varies among various institutions, even in tertiary centers. Second, in our study, the final results included 
both surgical and histological findings. We could imagine that some objective judgments of PAS diagnosis from 
individual obstetricians may be incorrect. In our study, we did not use postpartum hemorrhage  volume13 as the 
reference standard because, on the one hand, the blood loss volume in pregnant women, who underwent previ-
ous abdominal aorta balloon occlusion in case massive bleeding occur, may be inaccurate; on the other hand, 
pregnancies with either accreta or increta placenta diagnosed by obstetricians may not have massive blood loss 
but may still require some necessary treatments or follow-up after delivery. We believe that our present gold 
standard is similar to real scenarios where placenta accreta or increta is the greatest concern for obstetricians 
before invasive procedures.

Herein, we designed a pipeline algorithm aimed at confirming PAS disorders. Our study had several character-
istics that were different from those of previous  studies13,14,18. A trained 3D nnU-Net model was utilized to auto-
matically segment the placental region on T2WI images. Compared with previous radiomics  studies13, automatic 
segmentation of targeted regions could reduce the subjectivity, workload of radiologists and negative impact of 
interreader variance on predictions. This variance is relatively slight due to the good tissue contrast between the 
placenta and the myometrium on T2WI images. Our present results showed that the radiomics-clinical model 
achieved a satisfying performance in PAS disorder identification. The radiomics texture features reflect intra-
placental heterogeneity, which may indicate physiological changes, such as fibrin deposition. Clinical features, 

Table 2.  Summaries of clinical characteristics in the training, testing and external testing cohort. P value of all 
characteristics are calculated by one of independent-samples t-test, Mann–Whitney U-test or chi-squared test 
based on their distribution.

Characteristics

Training Validating Testing

Normal (n = 248)
PAS disorders 
(n = 110) P value Normal (n = 107)

PAS disorders 
(n = 47) P value Normal (n = 13)

PAS disorders 
(n = 15) P value

Age, years 
(mean ± SD) 33.0 ± 4.6 33.7 ± 4.3 0.180 33.0 ± 4.5 33.7 ± 5.0 0.378 32.7 ± 3.9 36.4 ± 3.3 0.015

Gravida 
(mean ± SD) 3.5 ± 2.1 4.1 ± 1.9 0.100 3.6 ± 2.0 3.5 ± 1.8 0.145 2.1 ± 1.2 2.7 ± 2.0 0.656

Para (mean ± SD) 1.8 ± 0.8 1.8 ± 0.6 0.407 1.8 ± 0.8 1.7 ± 0.7 0.570 0.7 ± 0.6 0.8 ± 0.8 0.713

Placental position  < 0.001  < 0.001 0.004

Normal 164 21 76 7 15 2

Low lying placenta 19 4 5 2 0 0

Marginal placenta 
previa 3 3 1 1 0 1

Partial placenta 
previa 38 41 15 21 0 0

Complete placenta 
previa 12 37 4 15 2 4

Pernicious placenta 
previa 12 4 6 1 0 6

Table 3.  The diagnostic performance of clinical, radiomics and nomogram models in detecting PAS disorders 
in training, validation and testing group.

Cohort AUC (95% CI) ACC SEN SPE PPV NPV

Training (N = 358)

Clinical 0.807 (0.759–0.857) 0.776 0.736 0.794 0.614 0.872

Radiomics 0.792 (0.736–0.844) 0.729 0.800 0.698 0.540 0.887

Radiomics-clinical 0.833 (0.780–0.882) 0.771 0.854 0.750 0.605 0.919

Validation (N = 154)

Clinical 0.800 (0.743–0.850) 0.768 0.727 0.786 0.602 0.867

Radiomics 0.790 (0.698–0.876) 0.805 0.681 0.860 0.681 0.860

Radiomics-clinical 0.849 (0.778–0.914) 0.825 0.830 0.822 0.672 0.917

Testing (N = 28)

Radiomics-clinical 0.862 (0.697–0.980) 0.690 0.929 0.467 0.619 0.875
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including placenta location, maternal age, and gravida and parity, played an equally important role. Compared 
to one study using deep learning (DL) method to predict PAS  disorders14, our study did not apply DL method 
to extract high-level imaging features. The trained DL network here was only utilized to segment the placental 
region on MRI. In our opinion, the cascaded modeling process consists of many model building steps including 
model training, DL feature extraction and combine both the deep learning and radiomics-extracted signatures to 
get the predicted point and predict placenta invasion. Many combinations of algorithms and hyper-parameters 
need to be explored to get the best results, which make the process vulnerable to information leaking and over-
fitting, especially when the studied sample size is small. We compared the model’s prediction capability with 
the radiologists’ performance at the two-task level. The model’s performance outperformed or was equal to the 
radiologists’ performance in PAS status evaluation. The trained model can process the unsegmented data and get 

Figure 6.  (a) The waterfall plot for the distribution of prediction probability of radiomics-clinical nomogram 
in the testing cohort. The cutoff value of 0.488 was defined based on the Youden index in the training cohort. 
(b) DCAs for radiomics signature (red line), clinical-radiological signature (green line) and radiomics-clinical 
nomogram (blue line). The “All” line is made with the assumption that all patients are poor prognosis.

Table 4.  The diagnostic performance comparison between radiologists and computers in prediction placenta 
accreta or increta in testing group (N = 154).

AUC ACC SEN SPE PPV NPV

Radiologists 0.744 0.753 0.532 0.850 0.610 0.805

MR-based Radiomics 0.790 0.805 0681 0.860 0.681 0.860

MR-based Nomogram 0.849 0.825 0.830 0.822 0.672 0.917
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the result within two minutes for each case, which help radiologists, especially less experienced residents, make 
a correct conclusion with more confidence. In our institution, this computerized model will help our physicians 
to establish the risk scores for each suspicious PAS pregnancies at the multidisciplinary treatment discussion. 
Further, this standardized-diagnostic model may also improve the diagnostic confidence and accuracy on PAS 
identification on MRI through telemedicine, especially for less-trained radiologists in some primary institutions 
where equip with MR unit. Although, artificial intelligence (represented by machine learning) technology can 
help physicians to tackle problems effectively, precisely at present; such technology should better incorporate 
with modern medicine in order to overcome its inherent shortcomings and limitation in the  future19.

Our study has several limitations. First, we train this computerized model using MRI in our single institution, 
and the external validation samples are limited. The true diagnostic performance still needs to be validated in 
a larger cohort. Second, in the present study, we only used a single sequence of MRI (sagittal T2WI) to recon-
struct the assisted diagnostic model. Theoretically, more selected sequences could help improve the estimated 
performance to some extent. Third, in this study, 1.5 T MR equipment was applied. Although it has not yet been 
well evaluated for intrauterine examinations, 3.0 T in utero MR imaging with a high signal-to-noise ratio and 
fast scanning protocols may improve image  resolution20.

Conclusion
In the present study, a machine learning model based on preoperative T2WI-based imaging had high accuracy 
in identifying PAS disorders in respect of surgical and histological findings.

Figure 7.  A 29-year-old gravid woman with placenta previa at 34.5 GW (A). Both the raw image and the 
segmented area were displayed on sagittal T2WI. In this case, the model gave the prediction probability of 0.264 
in PAS status, representing a false-negative error. A 28-year-old gravid woman with complete placenta previa 
at 37.2 GW (B). The raw image and the corresponding segmented image were also displayed. In this case, the 
model gave the prediction probability of 0.744 in PAS status, representing a false-positive error.
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