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Abstract: Calcium pyrophosphate dihydrate (CPPD) deposition disease is a benign disorder char-
acterized by acute gouty arthritis-like attacks and first reported by McCarty. CPPD deposition
disease rarely occurs in the temporomandibular joint (TMJ), and although confirmation of positive
birefringence by polarized light microscopy is important for diagnosis, it is not reliable because other
crystals also show birefringence. We reported a case of CPPD deposition disease of the TMJ that was
diagnosed by chemical analysis. A 47-year-old man with a chief complaint of persistent pain in the
right TMJ and trismus was referred to our department in 2020. Radiographic examination revealed
destruction of the head of the mandibular condyle and cranial base with a neoplastic lesion involv-
ing calcification tissue. We suspected CPPD deposition disease and performed enucleation of the
white, chalky masses. Histopathologically, we confirmed crystal deposition with weak birefringence.
SEM/EDS revealed that the light emitting parts of Ca and P corresponded with the bright part of
the SEM image. Through X-ray diffraction, almost all peaks were confirmed to be CPPD-derived.
Inductively coupled plasma atomic emission spectroscopy revealed a Ca/P ratio of nearly 1. These
chemical analyses further support the histological diagnosis of CPPD deposition disease.

Keywords: calcium pyrophosphate dihydrate deposition disease; pseudogout; temporomandibular
joint; X-ray diffraction; inductively coupled plasma atomic emission spectroscopy

1. Introduction

McCarty was the first to report a case of calcium pyrophosphate dihydrate (CPPD)
crystal deposition disease, a rare benign crystalline arthropathy also known as pseudo-
gout [1,2]. This disease is characterized by the accumulation of CPPD crystals in various
intra-articular and periarticular tissues [3]. Unfortunately, its etiology is unknown, but
the disease has been associated with metabolic disorders such as hyperparathyroidism,
hypothyroidism, hypomagnesemia, and hyperphosphatemia [4–6]. Diabetes mellitus is
associated with a greater incidence of CPPD deposition disease [1,7]. CPPD deposition
disease predominantly involves relatively large joints such as the knee, shoulder, hip, wrist,
and pubic symphysis; small joints such as the temporomandibular joint (TMJ) are rarely
affected [4,8,9]. Pritzker et al. were the first to describe pseudogout in the TMJ in 1976 [10].
Almost all previously reported cases of CPPD deposition disease of the TMJ were diagnosed
using a polarized microscope to find positive birefringence. However, we consider this
modality insufficient for diagnosis because, in addition to those in CPPD and gout, many
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birefringent crystals such as those of calcium oxalate, synthetic steroids, and ethylenedi-
aminetetraacetic acid are present in the joint fluid, joint tissue, and bone [11]. Herein, we
describe a case of CPPD deposition disease of the TMJ diagnosed using chemical analyses,
scanning electronic microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDS), XRD,
and inductively coupled plasma atomic emission spectroscopy (ICP-AES).

2. Case Presentation
2.1. Clinical Summary

A 47-year-old man with a chief complaint of persistent pain in the right TMJ and
trismus was referred to our department in 2020. He experienced a traffic accident approx-
imately 25 years ago, which damaged his liver and pancreas and caused wrist and left
shoulder bone fractures. His clinical history appeared related to the accident, in which
he had also bruised his right TMJ but had not sought treatment for it. Since the accident,
the patient experienced discomfort with irregular sudden pain in the right TMJ. This pain
resolved after the use of analgesics at every episode. He visited a local hospital when the
frequency and intensity of pain increased in 2020. He was then referred to our department
when surgical management was anticipated.

Clinical examination revealed bilateral symmetry of the face. His mouth opening was
limited, and there was limited lateral excursion to the left. The maximal mouth opening
was 28 mm and accompanied by pain in the right TMJ. His uric acid level was normal.

The panoramic radiograph showed an unclear right mandibular condyle with a cloud-
like mass (Figure 1). Computed tomography (CT) revealed that the right mandibular
condyle was destroyed, and that mottled-like hard tissues had formed around the condyle
as viewed on the axial plane (Figure 2A). Similarly, it was confirmed on the coronal plane
that the mandibular fossa and cranial base were destroyed. Furthermore, calcified opacity
was observed in the bone resorption fossa (Figure 2B). Proton density-weighted imaging
showed no disc dislocation in the right TMJ, and the area corresponding to the upper
and lower joint space was filled with uneven hypointensity, and the joint space appeared
dilated. Additionally, the high signal inside and granular low-signal images were scattered
inside the mandibular condyle and fossa (Figure 3). The left TMJ showed no abnormal
findings. Based on these findings, we suspected CPPD deposition disease as a clinical
diagnosis and excised the lesion under general anesthesia. The right TMJ was exposed
using a preauricular approach. During surgery, we confirmed and removed the white
chalk-like masses (Figure 4). These masses were present in the articular capsule, articular
eminence, mandibular condyle, the upper and lower joint cavities, and articular disc. The
maximum size of the masses was 16 × 5 × 5 mm, although various sizes were extracted. CT
images were obtained after surgery, and we confirmed that the masses were extracted from
the right temporomandibular joint (Figure 5). The postoperative healing was uneventful.
This was six months post-surgery, and although the pain in the right TMJ was persistent
when opening the mouth, the maximal mouth opening had improved to 42 mm.

2.2. Pathological Findings

Histologically, the masses consisted of chondroid tissue with island-like or nodular
deposition of basophilic crystals (Figure 6A). A foreign body granulomatous reaction was
observed in some areas around the crystal deposition (Figure 6B). The crystals appeared
rhombus or needle shaped and showed weak birefringence under the polarized light
microscopy (Figure 6C,D).
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poromandibular joint revealed resorption of part of the mandibular condyle and cranial base. 

Figure 1. Panoramic radiograph from the first visit. The ill-defined calcification around the mandibu-
lar condyle is shown (yellow arrows).
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Figure 2. Preoperative computed tomography (CT) images. (A) Axial CT images showing the
intra-articular localized, non-corticated, and ill-marginated calcified lesion that abuts the articular
surface of the glenoid fossa around the right mandibular condyle. (B) Coronal CT images of the right
temporomandibular joint revealed resorption of part of the mandibular condyle and cranial base.
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Figure 4. Intraoperative photograph. The whitish calcified tumorous mass was enucleated from the
right infratemporal fossa.
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CT images revealed that the masses were extracted from the right temporomandibular joint.
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Figure 6. Histopathological examination. Representative specimen from the upper joint cavity
showed the histopathological features of calcium pyrophosphate dihydrate deposition disease.
(A) Chondroid metaplasia forms around basophilic islands of crystalline deposits. (B) A foreign body
granulomatous reaction with multinucleated giant cells phagocytosing the crystals. (C) Deposited
crystals appeared rhombus or needle shaped. (D) Under polarized light, these crystals demonstrated
weak birefringence.
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2.3. Elemental Analysis Using SEM/EDS

The two large deposits extracted from the upper and lower joint cavities were chosen
as representative specimens for the chemical analysis. SEM/EDS microanalysis was per-
formed to evaluate the calcified mass. Each deposit was fixed with 10% paraformaldehyde
solution and washed with distilled water. Thereafter, it was dehydrated in a series of alco-
hol baths of increasing concentration and dried using vacuum drying. SEM was performed
to observe the fine structure around the deposit surface. A carbon coat was formed on these
surfaces and observed using SEM (TM4000Plus, Hitachi High-Tech Corporation, Tokyo,
Japan) at an acceleration voltage of 15 kV. The elemental distribution around the interface
was estimated using EDS (Quantax75 (Oxford Instruments, Oxford, England). The elemen-
tal distribution images of the interface were acquired with a resolution of 256 × 200 pixels
with an integration time of 200 µs per point. The results are shown in Figure 7. The calcified
mass from the upper joint cavity consisted of needle-like crystals, rhomboid masses, and
soft tissue that lacked the crystal. However, the specimens from the lower joint cavity
consisted of needle-like crystals. Both crystals were the same size with no more than 1 µm
thickness and a length of approximately 10 µm. The elemental distribution images and
spectrum are shown in Figure 8. The same specimen used in Figure 6A (upper joint cavity)
was analyzed. The light emitting parts of Ca and P corresponded with each other. Figure 8C
shows the elemental distribution diagram: Ca, P, O, and C were detected. The specimen in
Figure 7B (lower joint cavity) was also analyzed, and the same results were obtained (data
not shown).
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fields of (A-a) and (A-b), respectively.
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Figure 8. Elemental distribution images of (A) Ca and (B) P. (C) The EDS spectrum for the entire
specimen (from Figure 6A) obtained by SEM/EDS.

2.4. Crystal Phase Analysis Using XRD

The calcified specimens extracted from the upper and lower joint cavities (Figure 6A,B)
were washed several times with distilled water, dried at 180 ◦C for 1 h, and ground into
powder using an agate mortar. The crystal phases of the powder specimens were analyzed
using XRD (Miniflex, Rigaku Cooporation, Tokyo, Japan) under the following conditions:
40 kV, 15 mA, and 2◦/min.

Most diffraction peaks of both crystals were assigned to those of CPPD, and a few
small peaks were assigned to those of hydroxyapatite (HAp). Therefore, the main crystal
was CPPD (Figure 9).
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of calcium pyrophosphate dihydrate (CPPD) and hydroxyapatite (HAp), respectively.
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2.5. Quantitative Elemental Analysis for ICP-AES

The tissue concentrations of Ca and P were quantitatively evaluated using ICP-AES.
The specimens of the deposits were washed several times with distilled water and weighed
while wet (upper: 0.0322 g, lower: 0.0582 g). The specimens were then dissolved in concen-
trated nitric acid (HNO3; 38 w/v%, UltraPur100, Kanto Chemical Co. Ltd., Tokyo, Japan)
overnight at 90 ◦C. The trace element concentrations in the solutions were quantitated
using ICP-AES (Spectro Arcos, Hitachi High-technologies, Tokyo, Japan). Multi-element
(100 ppm, XSTC-22, Seishin Trading Co. Ltd., Kobe, Japan) and Sr standard solutions
(1000 ppm, Nacalai Tesque, Kyoto, Japan) were used for ICP-AES analyses. The measure-
ment results are presented in Table 1. In the upper cavity specimen, 11.20 wt% Ca and
9.20 wt% P were detected. In the lower cavity specimen, 9.12 wt% Ca and 6.75 wt% P were
found (Table 1). Fe, K, Mg, Na, Zn, and Sr were also detected as the trace elements present
in the specimens, while the other elements could not be detected or the detection limit or
less by this method. In other words, it was clearly composed of elements of biological origin.
Accordingly, a Ca/P molar ratio of 0.94 and 1.04 was obtained in the upper and lower
cavity specimens, respectively. CPPD is a calcium phosphate that has a Ca/P molar ratio
of 1.0. Therefore, the elemental analyses with ICP-AES further supported the histological
diagnosis of CPPD deposition disease.

Table 1. ICP-AES for quantitative analysis of elements.

Element
Quantity

Unit
Upper Lower

Ca 11.2 9.12
wt%P 9.2 6.75

Fe 24 22

µg/g
(ppm)

K 153 102
Mg 274 267
Na 1920 2140
Zn 7 16
Sr 16 12

3. Discussion

McCarty’s diagnostic criteria for CPPD deposition disease are based on the following:
(1) the validation of the specimen by reliable methods such as XRD or chemical analysis
or (2) the presence of typical calcific deposition and the detection of crystals suggestive of
calcium pyrophosphate deposition through a polarized microscope [1]. The crystal deposits
in CPPD deposition disease had a rhomboid structure and were positively birefringent
under polarized light, whereas those in gout exhibited negative birefringence. Therefore,
birefringence is an important differential diagnostic criterion for gout and CPPD [3,12].
In our case, these crystals clearly demonstrated a rhomboid and rod-shaped appearance,
and they exhibited birefringence under a polarized microscope (Figure 6D). Based on
these findings, CPPD deposition disease was suspected. However, definitive diagnosis
of CPPD can be difficult because not only are these crystals small and often show weak
birefringence, but there are also many other birefringent crystals such as those of calcium
oxalate, synthetic steroids, and ethylenediaminetetraacetic acid, present in the joint fluid,
joint tissue, and bone [11,13]. Therefore, because other quantitative and chemical analyses
are required for definitive diagnosis of CPPD deposition disease, we performed SEM/EDS,
XRD, and ICP-AES.

Asghar et al. described how crystals demonstrate peaks corresponding to Ca and P in
SEM/EDS; therefore SEM/EDS is a rapid and effective method for diagnosing CPPD [3].
In elemental analysis using EDS, only Ca, P, and O derived from CPPD and C and O de-
rived from soft tissue were observed, and the distribution of Ca and P was the same
as the bright part of the SEM image (Figures 7A and 8). These results suggest that
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the specimens contained CPPD. Most previous reports of CPPD deposition disease de-
scribe the detection of Ca and P using SEM/EDS or the diagnosis of CPPD based on a
Ca/P ratio of approximately 1 on a rough composition analysis using EDS [3–5]. How-
ever, these diagnostic methods are considered inappropriate for the following reasons:
(1) Since there are innumerable calcium phosphate compounds such as HAp, tricalcium
phosphate (TCP), octacalcium phosphate, and dibasic calcium phosphate anhydrous, it
is not possible to determine the exact calcium phosphate compound present despite the
detection of Ca and P (Table 2), so accurate Ca and P concentrations should be determined
to distinguish calcium phosphate compounds; and (2) most EDS composition analyses have
a “standardless method,” and their accuracy is lower than that of other analyses calibrated
with the concentration standard specimens. Therefore, additional analyses are required to
definitively diagnose the precipitation as CPPD.

Table 2. A list of the major calcium phosphate compounds.

Composition Formula Ca/P Ratio Name Abbreviation (Mineral Name)

Ca (H2PO4)2·H2O 0.5 Calcium bis(dihydrogenphosphate)
monohydrate MCPM

CaHPO4 1 Calcium monohydrogen phosphate DCPA (monetite)

CaHPO4·2H2O 1 Calcium hydrogen phosphate dihydrate DCPD (brushite)

Ca2P2O7 1 Calcium pyrophosphate

Ca2P2O7·2H2O 1 Calcium pyrophosphate dihydrate CPPD

Ca8(PO4)4(HPO4)2(OH)2 1.33 Octacalcium phosphate OCP

Ca3(PO4)2 1.5 Tricalcium phosphate TCP

Ca10(PO4)6(OH)2 1.66 Hydroxyapatite HAp

Ca4(PO4)2O 2 Tetracalcium phosphate TTCP

XRD is a powerful method for the crystal phase and structure analyses of inorganic
compounds. The basic method for the crystal identification of inorganic compounds
through a database is XRD, and if the results are combined with the identification of
major elements using EDS elemental analysis, the elements can be identified with high
reliability [14]. XRD revealed that all diffraction peaks were consistent with those of
CPPD. Even small peaks were thought to be derived from hydroxyapatite, and the main
crystals were strongly considered to be derived from CPPD (Figure 9). XRD can help
distinguish crystal phase identification and form, but cannot correctly quantify the chemical
composition. This method uses a “standardless method,” but SEM/EDS can be used for
pseudo-analysis. Thus, the accuracy of the numerical value is questionable.

In this study, we focused on ICP-AES analysis to further accumulate evidence. Bones
and teeth are not purely composed of calcium phosphate and often contain divalent cations
of Mg, Sr, and Zn instead of Ca (for example, Sr exists at a concentration of one hundred to
several hundred parts per million) [15]. Additionally, ICP-AES can help reliably quantify
the Ca/P ratio and confirm CPPD based on the chemical composition of the specimen. In
CPPD, the Ca/P ratio was 1, which was lower than that of HAp and TCP (Table 1). In our
results, the Ca/P ratio in the upper and lower joint cavities was 0.94 and 1.04, respectively.
The analysis value retention Ca/P ratio obtained through ICP-AES was approximately 1.
These results indicate that there is no possibility that other calcium phosphate compounds
are present, which supports the diagnosis of CPPD deposition from the perspective of
the chemical composition. In addition, only cations contained in the human organism
were detected in our case. In other words, heavy metals and other substances are unlikely
to accumulate or be the cause of the problem. Assuming that all the aforementioned Ca
values were associated with CPPD deposits, the weight ratio of CPPD in the tissue was
estimated to be 40.6 wt% on the upper side and 33.0 wt% on the lower side. Considering
this number as wet weight, most of the tissue was CPPD, which corresponds reasonably
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well with the SEM observations. Thus, we diagnosed CPPD deposition disease of the
right TMJ. The diagnosis of CPPD deposition disease by chemical analysis is not simple
considering the special equipment and the number of specimens required for analysis. For
this reason, in this study, we preoperatively suspected CPPD, consulted with pathologists
and engineers, and used chemical analysis for postoperative diagnosis. Collaborating with
pathologists and engineers on preoperatively suspected CPPD deposition disease was
effective in obtaining a more reliable diagnosis.

4. Conclusions

In summary, the diagnosis of CPPD deposition disease of the TMJ is based on the
presence of rhomboid positively birefringent crystals; however, because it is considered as
a weak diagnostic criterion, performing chemical analyses such as SEM/EDS, XRD, and
ICP-AES offers a reliable method for the diagnosis of CPPD deposition disease.
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