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Abstract: Many of the molecular mechanisms underlying the pathological aggregation of proteins ob-
served in neurodegenerative diseases are still not fully understood. Among the aggregate-associated
diseases, Amyotrophic Lateral Sclerosis (ALS) is of relevant importance. In fact, although under-
standing the processes that cause the disease is still an open challenge, its relationship with protein
aggregation is widely known. In particular, human TDP-43, an RNA/DNA binding protein, is a
major component of the pathological cytoplasmic inclusions observed in ALS patients. Indeed, the
deposition of the phosphorylated full-length TDP-43 in spinal cord cells has been widely studied.
Moreover, it has also been shown that the brain cortex presents an accumulation of phosphorylated
C-terminal fragments (CTFs). Even if it is debated whether the aggregation of CTFs represents a
primary cause of ALS, it is a hallmark of TDP-43 related neurodegeneration in the brain. Here, we
investigate the CTFs aggregation process, providing a computational model of interaction based on
the evaluation of shape complementarity at the molecular interfaces. To this end, extensive Molecular
Dynamics (MD) simulations were conducted for different types of protein fragments, with the aim of
exploring the equilibrium conformations. Adopting a newly developed approach based on Zernike
polynomials, able to find complementary regions in the molecular surface, we sampled a large set
of solvent-exposed portions of CTFs structures as obtained from MD simulations. Our analysis
proposes and assesses a set of possible association mechanisms between the CTFs, which could drive
the aggregation process of the CTFs. To further evaluate the structural details of such associations,
we perform molecular docking and additional MD simulations to propose possible complexes and
assess their stability, focusing on complexes whose interacting regions are both characterized by a
high shape complementarity and involve β3 and β5 strands at their interfaces.

Keywords: molecular dynamics simulation; protein aggregation; binding regions; TDP-43; Amy-
otrophic Lateral Sclerosis

1. Introduction

The investigation of the molecular mechanisms that lead to the accumulations of
aggregated proteins is crucial for understanding the pathophysiology of many neurode-
generative diseases [1]. Indeed, the accumulation of aggregates containing the DNA-
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and RNA-binding protein TDP-43 in the central nervous system is a common feature in
diseases, such as Amyotrophic Lateral Sclerosis (ALS), Frontotemporal Dementia (FTD),
and Alzheimer’s Disease (AD) [2,3]. However, the mechanisms of aggregation are not yet
fully understood and various aggregation models have been proposed [4]. In this scenario,
the involvement of TDP-43 C-terminal fragments (CTFs) in the molecular mechanisms
causing the formation of aggregates has already been widely confirmed [5–10].

TDP-43 is composed of an N-terminal domain (NTD), two RNA recognition motifs
(RRMs), and a long C-terminal (CTD) glycine-rich region [5], as one can see from Figure 1a.
During neurodegenerative diseases, TDP-43 undergoes a wide array of post-translational
modifications, including phosphorylation, acetylation, ubiquitination, oxidation, and cleav-
age [11]. In this study, we are going to focus on two cleavages of the full TDP-43, which
give rise to two different CTFs [12]. The CTFs are formed by either residue range 209–414
or 220–414 of TDP-43 [8], corresponding to a portion of the full protein including only
the CTD together with a truncated RRM2 fragment (see Figure 1b). Two main categories
of CTFs can be usually found, depending on the type of RRM2 constituting them [13]:
one is truncated at the residue in position 208 and the other is truncated at residue 219.
We call the corresponding truncated RRM2 Fragment A and B, respectively. We note that
Fragment A and B comprise two residues that are found to be targeted by post-translational
modifications, i.e., cysteine 244 and lysine 263 [11,12].

In normal conditions, the NTD-driven head-to-tail oligomerization spatially sepa-
rates the high aggregation-prone CTDs of consecutive TDP-43 monomers, antagonizing
aggregation [7]. However, if a proteolytic cleavage releases CTFs, these free portions of
the protein are able to aggregate [8]: according to current knowledge, the formation of
inclusions seems indeed related to this disruption of the physiological oligomerization of
TDP-43. Furthermore, the removal of the N-terminus increases the cytoplasmic localization
since it deprives the CTF of the Nuclear Localization Signal (NLS) [5].

Although the interaction mechanisms among TDP-43 proteins are still poorly under-
stood, it is presumed that aggregation involves the CTD, which is intrinsically disordered
and aggregation-prone, and harbors most of the mutations related to ALS [10]. Thus, it has
been discussed how the CTD is necessary for cytoplasmic aggregation and toxicity but not
sufficient, as it requires an intact RRM, i.e., the RRM2 fragment in the CTFs is fundamental
for this model of aggregation [14]. In physiological conditions, RRM2 is a highly stable
domain, due to a cluster of twelve connected hydrophobic residues in its core [9]. However,
the cleavage deprives RRM2 of its stabilizing interactions with RRM1. In fact, a study
of the RRM2 unfolding after separation from RRM1 found that the mutually stabilizing
interaction between RRM1 and RRM2 reduces the population of an intermediate state
of RRM2 [15] linked with pathological misfolding. This intermediate state may enhance
the access to the Nuclear Export Signal (NES) within its sequence, which increases the
transport to the cytoplasm and serves as a molecular hazard linking physiological folding
with pathological misfolding and aggregation.

A second effect of the RRM2 cleavage is the exposure to the solvent of its aggregation-
prone β-strands [8,16]. These strands are normally buried in the native state, but have been
found to form fibrils in vitro [9]. These processes confirm the role of the RRM2 fragment
in the CTFs for the aggregation [16]. Since their possible causative role in the formation
of the pathological condition is unclear, more investigations are needed. In particular,
the β-strands could be at the core of the aggregation, because they are able to form steric
zippers that, following a typical atomic model for amyloid fibril structure formation, give
rise to amyloid structures [8]. Amyloid fibrils are formed by packed β-sheets that interact
with each other through side chains. The side chains of neighboring sheets, projected
roughly perpendicular to the fibril axis, interdigitate forming the so-called steric zipper [8].
In particular, it has been hypothesized that, specifically, the β3 and β5 strands form the
steric zippers that originate the CTFs aggregation [8].
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Figure 1. Structural organization of TDP-43 and hypothesized model for CTFs aggregation. (a) TDP-43 comprises an NTD,
two RRM domains, a nuclear export signal (NES), a nuclear localization signal (NLS), and a disordered C-terminal domain.
The cartoon representation of the structure of the NTD portion comprising residues 1–88 (PDB ID: 2N4P) is shown in blue,
the structure of residues 96–269 of the tandem RRM1-RRM2 domains (PDB ID: 4BS2) in yellow. Two fragments of the CTD
are reported in violet, counting residues 288–319 (PDB ID: 6N3C) and 311–360 (PDB ID: 2N3X). (b) Schematic representation
of the two possible cleavages of TDP-43 (at sites 208 or 219) from which the CTFs can be originated. The two truncated
RRM2 fragments are called Fragment A and B, respectively. (c1) After the cleavage, the CTF is split from the whole TDP-43,
which, in physiological conditions, forms dimers. (c2) Scheme of the hypothesized aggregation model. The RRM2 fragment
resulting from the cleavage exposes its β-strands; the β-strands from different CTFs allow the formation of aggregates
to happen.
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In support of the hypothesis that this kind of structure is at the base of the CTFs
aggregation, as shown in Figure 1c1,c2, it has been recently found that some regions
of RRM2 can form different classes of steric zipper structures [10,13] at the core of the
formation of these amyloid fibrils [17].

Here, we use molecular dynamics (MD) simulations to explore the possible conforma-
tions of the ordered RRM2 regions of the CTFs. Leveraging on the MD simulation results,
we suggest possible binding regions belonging to RRM2, which may be responsible for
the fragment aggregations. The choice to analyze the conformational variation of each
fragment independently from other possible partners is based on the hypothesis of the
conformational selection model [18,19] validity. According to this theory, the bound confor-
mations can be sampled by the protein even when it is not bounded to its corresponding
partner: in other words, the conformational change of a protein can occur before a binding
event, rather than being induced by the event itself [20].

This model also suggests that the right partner might act as a ‘molecular chaperon’
by stabilizing a non-pathological state: among the conformations of the dynamically
fluctuating protein, this partner selects the one compatible with binding and shifts the
conformational ensemble towards this state [21]. Moreover, the aggregation of TDP-43
is also influenced by the interaction with DNA and RNA [18]: indeed, RNA molecules
can interfere with the aggregation kinetic, as a function of their nucleotides composition,
binding affinity, and length [19].

To better understand the CTFs aggregation, here, we aim at finding the possible
binding regions between the fragments.

To identify these binding regions, we use a method we have recently developed
based on the mathematical formalism of the Zernike polynomial in two dimensions [22,23].
The method, characterized by a low computational cost compared to the commonly used
version in three dimensions, examines portions of the molecular surface of two hypotheti-
cally interacting protein structures in terms of their local shape complementarity. Through
an extensive sampling analysis of molecular patches, this superposition-free method is able
to associate the probability of interaction between a patch and any other of the correspond-
ing molecular partner. Using this formalism, we study the shape compatibility between
different β-sheet regions as emerged from molecular dynamics frames. Moreover, to find
the complexes binding poses, we perform docking selecting the poses whose binding
regions met two requirements: a high number of involved β3 and β5 (two beta-sheets of
the RRM2 domain) residues and high shape complementarity between the two surfaces,
as calculated by Zernike descriptors. Finally, we perform additional 20 ns-long MD simu-
lations to better characterize these interactions and analyze the molecular stability of the
predicted complexes.

2. Results and Discussions
2.1. Molecular Dynamics Simulations and Equilibrium Conformations

To begin with, we carried out a standard MD simulation of 10 µs on both the consid-
ered fragments (see Methods section for details). In particular, the first fragment, Fragment
A, corresponds to the residues 209–269 of TDP-43, while the second one, Fragment B,
corresponds to the residues 220–269. Note that, for such small systems, the simulated
time span could allow us to observe possible (perhaps intermediate) configurations that
the fragments may explore after the cleavage in the cell, while this may not assure an
exhaustive sampling of the configuration space at equilibrium of a typical protein.

Indeed, as we will discuss in the next section, we managed to observe a conforma-
tional transition passing through an unfolded state for Fragment B within the performed
10 µs simulation.

As a first analysis, we looked at the Root Mean Square Deviation (RMSD). Figure 2a1
shows that the RMSD of Fragment A has a steady behavior, with a mean value of
0.598± 0.065 nm. On the other hand, the RMSD of Fragment B, shown in Figure 2b1,
is characterized by a sudden peak between 5.5 · 102 ns and 6.5 · 102 ns; this behavior is
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discussed in Section 2.2. To reduce the computational cost and facilitate the interpreta-
tion of the results, we selected the most representative structures in accordance with a
clustering analysis. In particular, we firstly performed a Principal Component Analy-
sis (PCA) of the covariance matrix of the atomic positions explored during the two MD
simulations. Projecting each MD frame on the plane defined by the two first principal
components, we obtained an essential representation of the fragment’s motions, shown in
Figure 2a2 and Figure 2b2 for Fragment A and B respectively. Then, we executed a cluster-
ing analysis of the MD frames, according to such projection. Our aim is to find the most
representative conformations, i.e., those closest to any other explored one, assumed by each
simulated fragment at equilibrium. The appropriate number of clusters is evaluated by
maximizing the Silhouette Coefficient (SC), a measure of cluster cohesion and separation
(see Section 4.3 for more details).

Therefore, we selected the structures corresponding to the centroids of the clusters and
studied such structures to search for possible binding regions with the Zernike polynomial
formalism [22–25]. We found five equilibrium conformations (cluster centroids) for Frag-
ment A (A1, A2, A3, A4, A5) and two for Fragment B (B1, B2). As shown in Figure 2a3,b3,
conformations A2, A3, and A4 have similar secondary structures including a single α helix
and three β strands. In particular, the β strands of A2 comprise residues 218–221, 229–234,
and 254–256, for A3 218–221, 229–234, and 245–257, and for A4 218–221, 229–234, and
254–259. The α helix in all three conformations is at residues 237–244. Conformations A1
and A5 instead differ: the former with two α helices (at residues 237–244 and 267–260)
and three β strands (at residues 218–221, 229–233, and 254–256), the latter with a single
α helix (at residues 237–245) and four β strands (at residues 218–221, 229–234, 248–250,
and 253–257). Conformation B1 has a α helix (237–245) and two β strands (229–231 and
256–258), whereas B2 has two α helices (237–246 and 253–258).

Figure 2. Analysis of the Molecular Dynamics simulations. (a1) Root Mean Square Deviation (RMSD) as a function of time
for Fragment A structure with respect to its starting state. (a2) Two-dimensional projection of the sampled conformations in
the subspace spanned by the first two Principal Components (PCs) of the covariances of the atomic positions during the
simulation. Points are colored from red to blue as simulation time goes from zero to 10 µs. White circles mark the most
representative conformations according to cluster analysis (see Section 4.3). (a3) Cartoon representation of representative
conformations marked in (a2). (b1–b3): same as in (a1–a3), respectively, but for Fragment B.

2.2. Unfolding Process of Fragment B

Looking at the time evolution of the RMSD in Figure 2b1, we can see that a peak is
present around 6500 ns for Fragment B, which indicates the formation of an unstructured
conformation. Indeed, we can observe in Figure 3 that, at the same time, the evolution of
the total gyration radius Rg also shows a peak. Since the Rg of a protein is a measure of its
compactness, this confirms the loss of the ordered structure of Fragment B and, therefore,
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the presence of a transition from the folded state to the unfolded state. While the fragment
is stably folded (for about the first 5.5 µs and last 3.5 µs of the simulation), it maintains a
relatively steady value of Rg. On the other hand, in the interval between 5.5 and 6.5 µs, the
Rg abruptly increases, highlighting the unfolding process.

Interestingly, the fragment returns with rapid kinetics to a new equilibrium confor-
mation. This result validates the advantages of working with small systems since the
observation of fold-unfold transitions is computationally accessible. The transition causes a
major conformational change, again characterized by a well-ordered structure, which could
play a key role in the formation of the aggregation. Therefore, the structural rearrange-
ment of fragment B, caused by protein cleavage, suggests investigating further possible
fold-unfold transitions.

Figure 3. Analysis of the unfolding process of Fragment B. Time evolution of the Radius of Gyration
(Rg) and Root Mean Square Deviation (RMSD) for Fragment B. The time span is divided into three
parts (marked by the dotted lines at approximately 5.5 and 6.5 µs), according to the different overall
organization displayed by the fragment during the dynamics. Representative cartoon representations
of the fragment structure are reported on the upper side of the figure.

2.3. 2D Zernike Polynomial Expansion for Binding Regions Prediction

Recently, a new method based on the Zernike 2D polynomial expansion has been
developed to evaluate whether and where two proteins can interact with each other to
form a complex, based on their shape complementarity [22,23].

By expanding the solvent-exposed molecular surface patches in terms of 2D Zernike
polynomials, it is possible to rapidly and quantitatively measure the geometrical comple-
mentarity between interacting proteins by comparing their molecular surfaces.

Here, we apply it to all the possible pairings between the 3D surfaces of the two
CTFs RRM2 fragments, to find the binding regions on each surface. More specifically,
for each point i belonging to the molecular surface, we define a molecular surface region
(patch), which can be described through 2D Zernike formalism with a set of invariant
descriptors. Two similar patches, if defined by the same reference point, have a small
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distance between the Zernike vectors, since perfectly complementary patches are equal
under roto-translation. For each point i of one of the two surfaces, the distance between
the Zernike descriptors of its patch and all the patches built on the points of the other
surface is computed. The minimum of these values is selected, and, after all points had
been studied, these minimum values are mapped in [0, 1] and inverted. At the end of the
process, points whose corresponding patches have high complementarity with the other
surface are associated with a value of binding propensity (BP) near one. Thus, with a
smoothing procedure, each point is associated with the mean BP value of the points in
its neighborhood: the interacting regions should be made up mostly of elements with
high complementarity and, therefore, a high average value of BP. Finally, we associate to
each residue the mean BP value of the corresponding points in the surface. We apply this
procedure to each surface in all the possible pairings.

At the end of this process, we obtain a set of BP profiles that we re-normalize comput-
ing the Z-score for each profile to identify more clearly the residues that are involved in
the interaction.

Then, for each conformation in each pairing, we compute three means: the mean Z-score
of the residues included in the β3 and β5 strands mβ3,β5, the mean Z-score of all the β-strands
residues mβ, and the mean Z-score of the residues that are not part of β-strands mr. This is
because, while β-strands could, in general, give rise to amyloid structures, β3 and β5 are at
the core of the interaction between CTFs according to our starting model [8]. The results are
shown in Figure 4a, which reports the mβ3,β5, mβ, and mr values for each conformation in
each pairing, or a wording when no β3 or β5 strands, or any kind of β-strand, are present.
It can be observed that, except when A2 (which has not conserved the original β3 and β5
strands) and B2 (which has lost any β-strand) are considered, mβ3,β5 tends to have a higher
value, whereas mr has always the lowest value. These results confirm our theory.

To describe the CTFs aggregation process, we are interested in finding the pairings
in which both conformations have high mβ3,β5 values. With this aim, for each pairing, we
compute the mean µβ3,β5 of the mβ3,β5 values of the two involved conformations. The result
is depicted in Figure 4b. The pairings with the highest µβ3,β5 are the ones with a higher
probability to be at the core of the CTFs aggregation according to the discussed model.

2.4. Molecular Docking for Complexes Binding Poses Prediction of Different Conformations

Since the procedure based on the Zernike method does not give us the complexes’
binding poses, we used the H-dock algorithm [26] on our best five pairings (with the
highest µβ3,β5) to find possible bound conformations. For each pairing, we look at the first
20 docking poses of the two corresponding conformations (i.e., the ones obtained with our
MD simulations) provided by the H-dock server. To select the docking predictions that
present β3, β5 residues in the binding sites, we perform a contact analysis (see Methods
for details). We then compute the percentage of β3, β5 residues involved in the bond
and select the complexes associated with the highest values. The results are shown in
Figure 5a. To associate these complexes to the pairings found with the Zernike algorithm,
we search for the ones whose mean Z-score of the residues involved in the bonds (mB) is
higher than the mean Z-score of the residues not involved (mnB), thus selecting the regions
with the highest probability of interacting in accordance with the method based on the
Zernike formalism (see Figure 5b). These results show that the binding sites identified
with our method are not always predicted in the best complexes of the docking algorithm.
Therefore, docking provides a set of possible molecular complexes but does not represent a
replaceable solution to the approach used in this work, which is specifically based on the
shape complementarity at the binding interface. However, by exploiting the optimization
process of the binding pose performed by the docking method, we can propose structures
derived by molecular docking in which the interacting regions are characterized by a high
binding propensity predicted by the Zernike-based method.
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Figure 4. Analysis of the shape complementarity between the sampled MD conformations. (a) Comparison between all
possible pairings of the five extracted conformations for Fragment A (green labels) and the two extracted conformations for
Fragment B (yellow labels). For all possible pairings between conformations, we compute the BP of the residues of both
surfaces and report the mean of the Binding Propensity (PB) Z-score of the residues that are part of the β3 and β5 strands
(mβ3,β5, in dark blue for the first surface in the pairing and in dark purple for the second one), of all the β-strands (mβ,
in blue for the first surface and in purple for the second) and of the residues that are not part of β-strands (mr, in light blue
for the first surface and light purple for the second). An example of a Z-score profile for all the residues of conformation
A4 compared with itself is shown in the zoom. Cartoon representations of the Fragments’ conformations are shown in
correspondence with the reported scores. For each conformation, the β3 and β5 residues are colored in cyan or blue,
respectively. The remaining β residues are marked in purple, while the α residues are colored in red. (b) From left to right,
bar plots representation of the mβ3,β5 and mβ values computed for the first conformation in each pairing of (a), for the
second, and means (µβ3,β5, µβ), over the two conformations. The pairings are ordered from left to right according to
increasing µβ3,β5 values.
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a) 

Interacting Non interacting Interacting mean Z-score Non interacting mean Z-score b) 

Figure 5. Analysis and selection of Fragments’ binding poses. (a) Percentages of β3, β5 residues involved in the bond over
the total number of β3, β5 residues for the top 20 docking-predicted complexes comprising the top five Zernike-selected
pairings. Predictions with the highest percentages are underlined in red, while colored boxes point out the complexes
characterized by a mean Binding Propensity (BP) Z-score of the residues involved in the bond (mB) higher than the one
computed for the non-interacting residues (mnB). (b) Probability distribution of BP Z-scores for interacting (cyan) and
non-interacting (orange) residues for each prediction marked by a colored box in panel (a). Vertical blue and red line
represent the mB and mnB values, respectively. Cartoon representation of the analyzed complexes are reported below the BP
Z-score distributions.
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2.5. Refining and Stability Analysis of the Selected Docked Complexes through MD Simulations

To characterize each proposed molecular complex, composed of two different frag-
ment configurations, we performed statistical analysis on the dynamical behavior of each
system, since it is known that good models have usually higher stability during MD
simulations [27,28]. To this end, we performed 20 ns-long MD simulations [27] and ana-
lyzed the RMSD at equilibrium and the percentage of Cα binding atoms in the docking
complex that are preserved at the end of the simulation (as a function of increasing cut-off
distance).

The results are shown in Figure 6, together with the interacting residues of the post-
simulation complexes. These residues are defined as the ones including the Cα atoms that
are at a maximum distance of 8 Å from the other surface and are listed in Table 1. We
note that, among the residues forming the binding region of the proposed complex A1–A3
(prediction 3), there is a target of post-translational modifications, specifically residue 263.
In future work, it will be worth exploring the effects that those modifications can exert
on both the fragments dynamics and their possible interactions, hopefully improving the
understanding of the mutations’ role in the CTFs aggregation, which is still unclear [10].
Moreover, the effects of the RRM2 mutations, to the best of our knowledge, have not
been studied specifically in the fragments constituting the CTFs, even if post-translational
modifications can have distinct effects on different TDP-43 species [29].
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Docking complex 

Post-refinement complex 

Binding residues (8Å) on the first conformation 

Binding residues (8Å) of the second conformation 

RMSD (nm)  

μ=0.334 σ=0.041 
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μ=0.300 σ=0.083 
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μ=0.324 σ=0.116 
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μ=0.347 σ=0.117 
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Final RMSD 

0.456 nm 
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0.344 nm 

Final RMSD 

0.315 nm 

Final RMSD 

0.511 nm 

Final RMSD 

0.604 nm 

Figure 6. Comparison between docking complexes before and after the MD simulation. Cartoon representation of each of
the seven Zernike-selected docking complexes (grey) and of the corresponding structure obtained after a MD simulation of
20 ns (red). Zooms display the binding residues on the first (blue sticks) and second (green sticks) conformation after the
MD simulation. For each complex, the mean (µ) and standard deviation (σ) of the RMSD during the simulation (excluding
the first two ns) are reported. Light-red boxes show, instead, the RMSD value of the structure at the end of the simulation. A
bar-plot with the percentage of the Cα binding atoms in the docking complex that are preserved at the end of the simulation
(as a function of increasing cut-off distance) is reported as well.
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Table 1. List of the residues found in contact in the post-MD simulation complexes. Interacting
residues are defined as the one whose Cα atoms have a distance lower than 8 Å with the partner
Cα atoms.

A1–A3,
prediction 3

I conformation 223, 259, 260, 261, 262, 263
II conformation 225, 226, 227, 228, 229, 256

A1–A3,
prediction 13

I conformation 224, 225, 259, 260, 261, 262
II conformation 227, 228, 229, 247, 248, 249, 252, 253, 254, 267, 268, 269

A1–A3,
prediction 14

I conformation 227, 259
II conformation 229, 246

A1–A1,
prediction 4

I conformation 221, 223, 231, 260
II conformation 258, 259

A3–A3,
prediction 5

I conformation 260, 261
II conformation 227, 228, 229

A1–A5,
prediction 1

I conformation 221, 223, 259
II conformation 221, 222, 225, 226

A1–A4,
prediction 3

I conformation 223, 224
II conformation 247, 254

Predictions 3 and 13 of the complex A1–A3 seem to be the most promising ones since
they both preserve a high percentage of binding Cα atoms and maintain a constant low
value of the RMSD.

Indeed, MD simulations are a common tool to improve the quality of docking com-
plexes by refining them [30–32], since they can account for conformational changes needed
for binding at different levels, particularly on the scale of atoms, sidechains, loops, small
molecules, or interfaces [27]. Thus, even complexes that lose part of initial (docking pose)
contacts may assume a stable conformation during the dynamics refinement.

3. Conclusions

In this work, we aim at determining whether the portions of TDP-43 CTFs containing
RRM2 fragments might be leading factors in their aggregation process.

Since the conformations that these fragments can assume have not yet been fully
investigated, we began by studying the time evolution of the two possible RRM2 fragments
constituting the CTFs, i.e., Fragment A and B, with MD simulations. Analyzing the trajec-
tories of these two fragments, we found five representative conformations for Fragment A
and two for Fragment B at equilibrium. Furthermore, we observed and characterized the
unfolding of Fragment B.

Next, we searched on the surfaces of these equilibrium conformations possible regions
of interaction, by verifying their shape complementarity, and associated each of these
parings with a complex structure via a docking algorithm. We hypothesize that these
complexes correspond to the structures most likely to be found in CTFs aggregates. Finally,
to study the stability of these structures we performed additional MD simulations of 20 ns.
We point out that almost all the proposed complexes have high stability compared to previ-
ous studies that used post-docking simulations to identify native conformations. Moreover,
we note that even if several approaches to computationally predict a protein structure from
its primary sequence have been developed, efficient exploration of the conformational
space proteins can visit remains a hard task. In this respect, the reduced size of TDP43
fragments allowed us to exploit unbiased MD simulations to obtain conformations and to
find a set of possible bound configurations, which may constitute the seeds for aggregation.

4. Materials and Methods
4.1. Dataset

The two starting structures for the MD simulations of Fragment A and Fragment B
were extracted from the Protein Data Bank [33]. From the Nuclear Magnetic Resonance
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(NMR) structure of the TDP-43 tandem RRMs in complex with UG-rich RNA (PDB id:
4BS2) [34], we removed both the RNA and the RRM1 domain. The resulting structure,
to which we refer as ‘whole RRM2’, contains residues from 192 to 269 of TDP-43. Next,
to obtain the molecular structure of Fragment A, we removed residues up to the 208th,
whereas, to obtain Fragment B, we removed the residues up to the 219th.

4.2. Molecular Dynamics Simulations

For both fragment structures, we carried out one molecular dynamics simulation of
10 µs. All steps of the simulation were performed using Gromacs 2019.3 [35].

The topologies of the system were built using the CHARMM-27 force field [36],
the standard force field for proteins. Each fragment was placed in a rhombic dodecahedron
simulative box, with periodic boundary conditions, filled with TIP3P water molecules [37].
The system of Fragment A and Fragment B included 4607 and 4668 water molecules,
respectively. The rhombic dodecahedron box is built so that each atom of each fragment
is at least at a distance of 11 Å from the box borders. This guarantees that approximately
five layers of solvent molecules surround the fragment. The final system of Fragment A,
consisting of 14,777 atoms, was minimized with 102 steps of steepest descent, whereas the
system of Fragment B, consisting of 14,759 atoms, was minimized with 346 steps. Each step
had a size of 0.01, while the force limit value was set to max(|Fn|) < 103 kJ/mol/nm.

The thermalization and pressurization of the systems in NVT and NPT environments
were run each for 0.1 ns at 2 fs time-step. The temperature was kept constant at 300 K
with a Modified Berendsen thermostat and the final pressure was fixed at 1 bar with
the Parrinello-Rahman algorithm [38]. A time constant of coupling between the system
and the barostat of τP = 2 ps guarantees an average water density of 1006± 5 kg/m3

and 1002± 4 kg/m3, for Fragment A and B, respectively (close to the experimental value
1008 kg/m3). LINCS algorithm [39] was used to constraint h-bonds.

Finally, the systems were simulated with a 2 fs time-step for 10 µs in periodic boundary
conditions, using a cut-off of 12 Å for the evaluation of short-range non-bonded interactions
and the Particle Mesh Ewald method [40] for the long-range electrostatic interactions.

For all these steps, the Leap-Frog integrator and the Verlet cut-off scheme were used.
The same settings were used for the 20 ns simulations that were performed starting

from the Zernike-selected docking complexes.

4.3. Principal Component Analysis and Clustering Analysis

To obtain an essential representation of the dynamics, we applied on the fragments’
trajectories a Principal Component Analysis (PCA) over the covariance matrix of the atomic
positions [41]. To estimate the information preserved by projecting the trajectory on an
essential d-dimensional space, we evaluated the Explained Variance Ratio (EVR) for each
eigenvalue λi:

EVR(λi) =
λi

∑3N
j λj

, (1)

where N is the number of atoms. Since for both Fragment A and B, the first two eigenvalues
result in a much higher EVR value compared to the other ones, we chose a two-dimensional
projection (d = 2). To find the most representative conformations of the projection of each
trajectory on its first two PCs, we implemented the k-means clustering algorithm. This
algorithm has recently been employed on many MD simulations studies to reduce the
dimensionality of the trajectories [42,43], by decreasing the number of structures while
preserving essential structural/dynamical information. It results in the grouping of the
MD conformations in similar structures, that are assumed to behave similarly. In particular,
we selected the centroid of each cluster as a representative conformation for that class of
structures. To evaluate the appropriate number of clusters (i.e., the value of k), the k-means
clustering maximizes the Silhouette Coefficient (SC), which quantifies how well a data
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point fits into its assigned cluster. For each point i in a cluster Ci, it defines a silhouette
value:

s(i) =


b(i)−a(i)

max
(

a(i),b(i)
) , if |Ci| > 1

0, if |Ci| = 1,
(2)

where a(i) is called similarity and is defined as

a(i) =
1

|Ci| − 1 ∑
j∈Ci
i 6=j

d(i, j), (3)

with d(i, j) the distance between data points xi and xj in the cluster Ci. b(i) is the dissimi-
larity and is defined as

b(i) = min
k 6=i

∑
j∈Ck

d(i, j). (4)

s(i) ranges between −1 and 1; a value near one indicates that the point has been clustered
appropriately. The mean s(i) over all data of the entire dataset, s̃, is a measure of how
appropriately the data have been clustered. The maximum value of the mean over all data
of the entire dataset is the SC.

Table 2 shows the mean silhouette value s̃ for different k number of clusters, for the
two fragments.

Table 2. Mean Silhouette Coefficient, s̃, for different number of clusters, k, for Fragment A and B.

Number of Clusters Fragment A Fragment B

k = 2 0.4489 0.7095
k = 3 0.4568 0.7066
k = 4 0.5023 0.6795
k = 5 0.5148 0.6393
k = 6 0.4833 0.6735

4.4. Computation of Molecular Surfaces

The molecular surfaces were obtained starting from the PDB files found after the
clustering of the PCA of the trajectories resulting from the MD simulations. To compute the
solvent-accessible surface for the considered structures, we used DMS [44], with a density
of 5 points per Å2 and a water probe radius of 1.4 Å. For each surface point, we calculated
the unit normal vector with the flag −n.

4.5. Evaluation of Shape Complementarity

The first step of this algorithm is to select from the surface a patch Σ, defined as the
set of surface points that fall within a sphere of radius Rzernike = 6 Å centered on one point
of the surface. The points contained in this sphere are divided, with a clustering from a
random point that includes only the points closer than a distance Dp, in points belonging to
the surface and points not directly connected to it (for example coming from a protuberance
included in the sphere). Only the former will constitute the patch. Once the patch has
been selected, the mean vector of the normal vectors of the patch points is computed and
oriented along the z-axis. Thus, given a point C on the z-axis, we define θ as the largest
angle between the z-axis and a secant connecting C to any point of the patch Σ. C is then
set so that θ = 45◦, and each surface point is labeled with its distance r from C. As a next
step, a square grid is built, where each pixel is associated with the mean of the r values
associated with the points inside each pixel. The resulting 2D function is then expanded
on the basis of the Zernike polynomials. Indeed, each function of two variables f (r, ψ)
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defined in polar coordinates inside the region of the unitary circle can be decomposed in
the Zernike basis as

f (r, ψ) =
∞

∑
n′=0

n′

∑
m=0

cn′mZn′m(r, ψ), (5)

with

cn′m =
n′ + 1

π

∫ 1

0
dr r

∫ 2π

0
dψZ∗n′m(r, ψ) f (r, ψ), (6)

and
Zn′m = Rn′m(r)e

imψ. (7)

cn′m are the expansion coefficients, while the complex functions Zn′m(r, ψ) are the Zernike
polynomials. The radial part Rn′m is given by

Rn′m(r) =

n′−m
2

∑
k=0

(−1)k(n′ − k)!
k!
( n′+m

2 − k
)
!
( n′−m

2 − k
)
!
. (8)

Since, for each couple of polynomials, it is true that

< Znm|Zn′m′ >=
∫ 1

0
dr r

∫ 2π

0
dψZ∗nm(r, ψ)Zn′m′(r, ψ) =

π

n + 1
δnn′δmm′ , (9)

the complete sets of polynomials form a basis, and knowing the set of complex coefficients
cn′m allows for a univocal reconstruction of the original patch. Once a patch is represented
in terms of its Zernike descriptors, the similarity between that patch and another one can be
simply measured as the Euclidean distance between the invariant vectors. The norm of each
coefficient zn′m = |cn′m| constitutes one of the Zernike invariant descriptors. Since zn′m does
not depend on the phase (i.e., it is invariant for rotations around the origin of the unitary
circle), two patches can be assessed by comparing the Zernike invariants of their associated
2D projections, without considering their orientation. On the other hand, the relative
orientation must be taken into account: if we search for similar regions we must compare
patches that have the same orientation once projected in the 2D plane, i.e., the solvent-
exposed part of the surface must be oriented in the same direction for both patches (for
example as the positive z-axis). If instead, we want to assess the complementarity between
them, we must orient the patches contrariwise, i.e., one patch with the solvent-exposed
part toward the positive z-axis (‘up’) and the other toward the negative z-axis (‘down’).

Thus, to assess whether two surfaces have regions with a relevant shape comple-
mentary, we (i) compute the Zernike descriptors of the patches centered in all the points
of the two surfaces up to the selected maximum expansion order n (The two surfaces
have to be oriented in opposite verse along the z-axis.). (ii) For each point i of the two
surfaces, we compute the distance between the Zernike descriptors of the patches of one
surface and all the patches built on the points of the other surface. The minima of these
values are selected. Next, the found minima values are normalized in the range [0, 1] and
inverted so that higher values correspond to higher shape complementarity matches [22].
(iii) Finally, we perform a smoothing process, where each point is associated with a final
binding propensity (BP) computed as the mean value of the points in its neighborhood,
defined as all the points having a spatial distance from it smaller than 6 Å.

4.6. Contact Analysis

To recognize the interaction interface residues in the H-dock predicted complexes, we
looked at the position of Cα atoms. For each structure in the complex, we selected the Cα
atoms that are at a distance smaller than 9 Å from the Cα atoms of the other structure [45,46].
To determine the interacting patches, we select the residues corresponding to the atoms
included in a sphere of radius 3 Å centered on these Cα atoms.
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