
Mechanobiological Implications of
Cancer Progression in Space
Hyondeog Kim1, Yun Shin2 and Dong-Hwee Kim1,3*

1KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea, 2Division of Life
Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea, 3Department of Integrative Energy
Engineering, College of Engineering, Korea University, Seoul, South Korea

The human body is normally adapted to maintain homeostasis in a terrestrial environment.
The novel conditions of a space environment introduce challenges that changes the
cellular response to its surroundings. Such an alteration causes physical changes in the
extracellular microenvironment, inducing the secretion of cytokines such as interleukin-6
(IL-6) and tumor growth factor-β (TGF-β) from cancer cells to enhance cancer malignancy.
Cancer is one of the most prominent cell types to be affected by mechanical cues via active
interaction with the tumor microenvironment. However, the mechanism by which cancer
cells mechanotransduce in the space environment, as well as the influence of this process
on human health, have not been fully elucidated. Due to the growing interest in space
biology, this article reviews cancer cell responses to the representative conditions altered in
space: microgravity, decompression, and irradiation. Interestingly, cytokine and gene
expression that assist in tumor survival, invasive phenotypic transformation, and cancer
cell proliferation are upregulated when exposed to both simulated and actual space
conditions. The necessity of further research on space mechanobiology such as simulating
more complex in vivo experiments or finding other mechanical cues that may be
encountered during spaceflight are emphasized.
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1 INTRODUCTION

During interstellar transportation, astronauts are exposed to a variety of environmental challenges,
such as irradiation, microgravity, and decompression. One study addressing mortality during the
space mission for 301 astronauts indicated 53 deaths, of which cancer accounted for 30%, with
secondary frequent cases following external causes (including aircraft, spacecraft, and automobile
accidents) accounted for 38% (Reynolds et al., 2019). In particular, irradiation has been considered as
a carcinogen. For example, one experiment utilizing a linear accelerator-generated X-ray revealed
that it induced stiffening in breast cancer, with a significant increase in collagen production through
activation of the Wnt signaling pathway (Yakavets et al., 2020). However, accelerator-based
experiments were limited to single-ion beams at fixed energies, as most radiobiological studies
are. According to the National Aeronautics and Space Administrate (NASA), there are three types of
space irradiation: particles trapped in the Earth’s magnetic field, particles shot into space during solar
flares (solar particle events), and galactic cosmic rays, all of which are ionizing irradiation. Among
them, galactic cosmic rays (GCRs) or solar particle events (SPEs) are the main contributors to
irradiation-induced pathogenesis, including cancer, and they consist of diverse ion species with a
continuous range of energies, thus forming a radiation spectrum (Norbury et al., 2016).
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Unfortunately, facilities on Earth are unable to fully simulate the
dynamic aspect of space radiation. Moreover, relatively little
research has been conducted on carcinogenesis within a space
environment using a systematic approach. Rather, the resultant
cellular responses, such as proliferation, migration, and gene
expression, generally have been measured without attention to
the underlying mechanism.

While there are technical limitations, experimental techniques
that can mimic the conditions of space have been recently
developed. For instance, multiple artificial-gravity research
system (MARS) has been applied to test mice behaviors (Shiba
et al., 2017), where mouse cages mimicking the space
environment, e.g., a transportation cage unit, habitat cage unit
(HCU), centrifuge-equipped biological experiment capacity, and
artificial-g-section capacity were newly developed to clarify the
effect of partial gravity and microgravity on mouse activity. This
research not only demonstrated that the additional gravity could
prevent reduction in bone density and muscle mass but further
provided a novel insight on the molecular pathways regulating
the microgravity-dependent cellular processes. The rapidly
growing application for dimensional (3D) in vitro culture
system can be another promising experimental approach.
Recently, 3D printing of compound cell scaffolding has shown
the enhanced cellular experience of in vitro extracellular
environmental conditions, which results in a sustained tissue
regeneration (Garlet and Santos, 2014). Since the flight
experiments have provided a broad range of relevant findings
for the application of biomedical goals to muscle/bone neurology
and physiology, a variety of innovative tools have been applied,
which results in new perspectives on the accurate effect of
microgravity on animal body. An experimental rodent system
with the caging environment of flight hardware was studied to
explore the health condition of extended spaceflight (Choi et al.,
2020). By monitoring the targeted locomotion of the rodents
through the entire habitat, this study provided novel insights on
the onset of chronic stress during the extended space flight.
Housing in the animal enclosure module in spaceflight could
further provided this notion (Lloyd et al., 2013). Housing
experimental technique of animal enclosure module space
hardware mimics the space conditions, where rodents were
housed in particularly designed cages termed animal enclosure
module (AEM) equipped with the waste management and
gravity-independent nutrient distribution systems as well as
12-h light/darkness cycle, Time-lapse monitoring of animal
behaviors in this system enabled to test physiological
alteration of animals such as trabecular mouse bone tissues.

In this review, the effects of environmental change,
i.e., irradiation, microgravity, and decompression, from Earth
to space on cancer are discussed in terms of mechanical stress. We
focus on the microenvironment of cancer cells in various tissues
and their physical properties that affect cell migration,
proliferation, and invasion. Furthermore, we scrutinize the
morphological behavior of cancer at a single-cell level,
associating the mechanotransduction, in which certain
molecules sense the microenvironment and mediate the
response, to adaptation. Based on previous studies considered
representative of the physiological response to these changes, we

suggest a potential physiological mechanism that results in the
generation of cancer during space missions.

2 EFFECT OF DISTINCT ENVIRONMENTAL
DIFFERENCES BETWEEN EARTH AND
SPACE ON HUMAN BODY
2.1 Reduced Gravitational Force
Human homeostasis is adapted to Earth’s gravity, which is 1 g
(9.8 m/s2). For instance, the cardiovascular system (Hughson
et al., 2018), nervous system (Kohn and Ritzmann, 2018), and
bone and muscle mass (Miyamoto et al., 1998) tend to be
upregulated as the gravitational force increases. Gravitational
force in space is non-zero, but reduced to 10–6 fold as the
orbiting spacecraft forms an accelerated environment, and
therefore termed “microgravity” (Herranz et al., 2013).
Exposure to decreased gravity reduces membrane viscosity,
decreases the open-state probability of ion channels, and

FIGURE 1 | Inner pressure change by interstitial fluid shift under
microgravity and its effect on the human body. Under normal gravitational
force (∼1G), the pressure of interstitial fluid maintains a head-to-foot
hydrostatic gradient (left). Under microgravity (∼1 µG), the interstitial fluid
and pressure shifts upward, and such alteration induces optic disc stress,
spherical heart, puffy face, kidney stone formation, bird leg, and muscle
atrophy (right).
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increases the threshold of peripheral nerve stimulation
(Ritzmann et al., 2017).

The concept of a head-to-foot hydrostatic gradient is not
applied in space where gravity is considerably low. Without
sufficient gravitational force, interstitial fluid is reduced by
approximately 40% in the thigh and shifted to the head,
altering the pressure of body parts (Baisch, 1993). Leg swelling
generally occurs due to an abnormal interstitial fluid retention
known as “edema,” inducing occlusion or compression and
resulting in deep-vein thrombosis and inferior vena cava
complication, among other complications. However, in space,
where pressure on the head is higher and on the leg is lower than
on Earth, forehead and facial tissue swelling occurs (Alexander
et al., 2012). Such an interstitial fluid shift leads to spaceflight-
associated neuro-ocular syndrome (SANS), which results in optic
disc edema developed by prolonged exposure to microgravity
(Figure 1) (Huang A. S. et al., 2019). Approximately 60% of
astronauts experience impaired near and distant vision after long-
term space missions, and five out of seven astronauts had disk
edema and globe flattening after 6 months of long-term
spaceflight, as assessed by a magnetic resonance imaging
(MRI) scan (Mader et al., 2011). Space gravity-induced
interstitial fluid shift could also increase the risk of kidney
dysfunction and renal stone formation. Upward fluid shifts
stimulate fluid-loss signal in the kidney and alter glomerular
filtration by increasing the secretion of vasopressin, renin, and
aldosterone, which have anti-diuresis, water reabsorption
through the renin-angiotensin-aldosterone system, and sodium
conservation functions, respectively (Liakopoulos et al., 2012).
The serum of astronauts who participated in the Mir mission was
extracted and analyzed, and the renin, vasopressin, and
aldosterone concentrations were found to be consistently
elevated during the entire metabolic ward period (Drummer
et al., 2008). Combined with altered hormones and glomerular
filtration, astronauts have a higher risk of proteinuria and calcium
oxalate stone formation, as well as uric acid accumulation in post-
flight, and a greater risk of calcium oxalate, calcium phosphate,
and sodium urate stones during spaceflight.

Human muscles increase in volume and become stronger after
exercise, e.g., lifting, loading 2–10 times the gravitational force
(Harridge et al., 1998). However, several changes in muscle
characteristics and function were altered after 6 months of
long-term spaceflight (Lambertz et al., 2001). For example,
maximal activation of the muscle decreased by 39%, and
stiffness of the musculotendinous junction increased by 25%,
resulting in an increase in impairment by limiting muscle
movement (Lambertz et al., 2001). The decrease in muscle
volume differed by body part, exhibiting −6% in calf and −3%
in thigh, and decreased isometric and isokinetic strength in the
knee, ankle, and elbow were observed in the range of −10.4 to
−24.1%, −4 to −22.3%, and −7.5 to −16.7%, respectively
(Gopalakrishnan et al., 2010). Recent evidence has shown that
simulated or actual microgravity induces muscle atrophy in
animals and humans by shifting myosin heavy chain (MHC)
type I to II, thereby decreasing in muscle fiber size (Trappe et al.,
2009). MHC is the major structural and contractile protein and
consists of one slow phenotype (type I) and three fast phenotypes

(type IIA, IIX, and IIB), depending on its twitching speed
(Graziotti et al., 2001). The decrease in muscle mass due to
transition of MHC type is termed slow-to-fast muscle fiber
transition, and it has been observed in 5 and 11 days of short-
term spaceflight (Edgerton et al., 1995). In 2001, it was suggested
that muscle atrophy during spaceflight can be attributed to
ubiquitination after the detection of 1.4- to 2.8-fold
upregulated polyubiquitin mRNAs and ubiquitinated MHC
(Ikemoto et al., 2001). When the rat soleus muscle was
exposed to unweighted conditions, 55% of atrophy and 66%
elevated protein breakdown were detected, with increased mRNA
levels of the ubiquitin-conjugating enzyme E2, which plays a key
role in the attachment of ubiquitin (Ub) to cellular proteins
(Taillandier et al., 1996). Furthermore, 91 days of long-term
spaceflight exhibited increased expression of muscle-specific
E3 ubiquitin ligase, which recruits an E2 that has been loaded
with ubiquitin, as well as the muscle RING-finger protein-1
(MuRF-1) and atrogin-1 (MAFbx), which are two genes of the
ubiquitin-proteasome system (Sandona et al., 2012). Reduced
muscle mass is directly associated with the risk of cardiovascular
disease (CVD) (Srikanthan et al., 2016). Astronauts who
participated in the Apollo lunar mission had 4–5 times higher
CVD mortality risk than the non-flight control group, suggesting
that exploration into deep space involves hazardous
considerations (Delp et al., 2016).

Skeletal muscles excrete myokines such as myostatin and
interleukins, which modulate the size of adipose tissue and
inhibit proinflammatory adipokines that increases the risk of
type 2 diabetes, cardiovascular disease, and cancer (Srikanthan
et al., 2016; Sargolzaei et al., 2018). Muscle stimulation through
physical exercises produces myokines that regulates autocrine,
paracrine, and endocrine systems. Accordingly, muscular
contractions extracts energy by spending glucose and lipids of
white adipose tissue to balance whole-body metabolism, which,
therefore negatively regulates the size of adipose tissues (Levy
et al., 2018). However, myokine excretion is decreased as muscle-
mass loss occurs under microgravity, and thus, the capacity of fat
oxidation by skeletal muscles is reduced as well (Kelley, 2005).
Since skeletal muscles take up fatty acids as fuel to provide the
energy needed for movement and intestinal activity, reduction of
muscle mass restrains the ability to inhibit triacylglycerol
accumulation in adipocytes, leading to the incidence of obesity
and related chronic diseases (Frayn, 2010; Barbat-Artigas et al.,
2014).

2.2 Decompression
The atmospheric pressure within the troposphere decreases
following the equation:

p(h) � p0e
−ρ0gh/p0 � p0e

−h/H H � p0

ρ0g
� RT

Mg
� kT

mg

where p(h), p0, g, ρ0, R, T,M, m, and H indicates the atmospheric
pressure at altitude h, atmospheric pressure at h � 0, gravitational
acceleration, mass density of air at 0 altitude, gas constant,
temperature, average molar mass of dry air, molecular mass of
ideal gas, and scale height, respectively (Berberan-Santos et al.,
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2010; Lente and Osz, 2020). This equation indicates that the
overall atmospheric pressure decreases as the altitude increases,
which also means that the partial pressure of oxygen is lower and
causes hypobaric hypoxia (Du et al., 2019). For example, the
atmospheric pressure and pO2 at average sea level, h � 0 m, is
101.3 and 21.3 kPa, respectively, while at the top of Mt. Everest,
h � 8,850 m, is 33.7 and 7.1 kPa, respectively (West et al., 1983).

In outer space, where the altitude h is above 4 × 106 m, the
atmospheric pressure falls below 10–7 kPa with the constituents of
oxygen and nitrogen, as well as highly reactive oxygen and
nitrogen (Horneck et al., 2010). Rapid elevation of altitude
and decreased atmospheric pressure cause decompression
sickness (DCS). DCS occurs when dissolved nitrogen (N2) in
blood vessels evaporates, causing bubbles due to the
decompressed atmosphere, which also occurs commonly to
scuba divers. Evaporation expands the volume of N2 gas and
damages or blocks the blood vessels, leading to neurological
symptoms or pulmonary rupture in severe cases (Tawar and
Gokulakrishnan, 2019). To prevent DCS, astronauts undergo
decompression from 101 kPa to 70.3 Pa with a slightly
increased percentage of oxygen at least 24 h before space
exploration and breathe 100% of pure oxygen 1 hour before
launch.

Hypobaric hypoxia, also known as high altitude hypoxia, is a
condition in which deoxygenated blood is transferred to other
organs, including the brain, due to a lack of both oxygen pressure
and density, causing asphyxiation (Choudhury, 2018). Hypoxic
conditions induce the production of reactive oxygen species
(ROS) and increase oxidative stress. Reduced pO2 limits the
availability of oxygen that functions as an electron acceptor
inside the cell (Chen et al., 2018). The electron accumulation
produces energy to excite the ground state of O2 and produces
super oxide anion (·O2

−), hydrogen peroxide (H2O2), and
hydroxyl radicals (·OH−) (Chen et al., 2018). Another
hypothesis connecting hypoxia with increased ROS is that low
concentrations of nitric oxide (NO·) bind to cytochrome c
oxidase and inhibit its function (Turrens, 2003). Therefore, the
Michaelis constant, Km for oxygen is increased and interferes with
the electron transporter of terminal oxidase, resulting in ·O2

−

formation at low oxygen concentration. Once deoxygenated
tissues generates ROS, reperfusion of oxygen could induce the
oxidative injury, generally termed ischemia-reperfusion injury
(Chouchani et al., 2014). Hypoxia incudes ischemic succinate
accumulation because oxidation into fumarate by succinate
dehydrogenase is inhibited in the citric acid cycle. However,
the accumulated ischemic succinate rapidly converts to
fumarate by succinate dehydrogenase after reperfusion, which
drastically generates ROS at mitochondrial complex I that is the
main site of ROS production (Chouchani et al., 2014).

2.3 Radiation
Radiation is classified into two groups: non-ionizing
radiation and ionizing radiation. Non-ionizing radiation is
the low-frequency part of the electromagnetic spectrum that
carries insufficient photon energy to cause ionization, which
is lower than 10 eV, as defined by the International
Commission on Non-Ionizing Radiation Protection

(ICNIRP) (Ziegelberger and Icnirp, 2020). Non-ionizing
radiation includes radiowave, microwave, near-infrared,
and ultraviolet rays, which can adversely affect health,
causing cataracts and corneal damage after expose for long
periods (Wegener, 1994). The transmission power of
radiation decreases as the wavelength becomes shorter and
cannot permeate deeper. Therefore, ultraviolet (UV) rays
cause diseases on the surface, such as keratitis and
conjunctivitis, while visible and infrared rays cause
cataracts, which have a deeper origin (Izadi et al., 2018).
However, non-ionizing radiation is still considered safer than
ionizing radiation (IR), which has a short wavelength and
high frequency with energy higher than 13.8 eV, the energy
required to ionize a substance. The quantity unit that
indicates the absorbed dose of IR is Gray (Gy � Joule/kg)
in the international system of units (SI) that measures the
energy deposited by ionizing radiation in a unit mass of
matter being irradiated (Mills, 2010). However, the degree
of biological damage does not always correspond to the
quantity of IR, but instead depends on factors such as
linear energy transfer (LET) and type of radiation, such as
gamma rays (X-rays), neutrons, or heavy ions, which
determines the quality of IR (Hall and Giaccia, 2006). To
measure the varying biological damage effect of IR, sievert
(Sv) is the SI unit for absorbed dose equivalent, representing
the equivalent dose and biologically effective dose of the
deposit of a joule of radiation energy into a kilogram of
human tissue (Hall and Giaccia, 2006).

The individual radiation exposure dose on Earth is
approximately 3.0 millisieverts (mSv) annually because most
radiation is screened out by Earth’s magnetic field and the
atmosphere (Lerner and Gorog, 2021). However, during space
exploration, astronauts are exposed to higher radiation by galactic
cosmic rays (GCRs) and solar particle events (SPEs), resulting in a
maximum effective dose of 150 mSv per half-year on the
International Space Station (ISS) (Cucinotta, 2015). Since these
radiations have low linear-energy transfer (LET), the amount of
energy that an ionizing particle transfers to the material traversed
per unit distance, their effect on human body are similar to
gamma and X-rays, but containing higher charge and energy
(HZE) particles and producing secondary neutrons that damage
cells and tissues by inducing energy deposition (Cucinotta et al.,
2001). GCR and SPE are high-energy protons and heavy ions,
respectively, two types of IR. IR has the ability to remove electrons
from their orbit directly and indirectly and cause oxidative
damage to genetic materials, as well as oxidative metabolic
stress (Azzam et al., 2012; Reisz et al., 2014). For instance,
mitochondria, which consume up to 90% of oxygen in the
body, are affected by ROS that damage the mitochondrial
respiratory system, and such defects in mitochondrial
functions result in rapid aging and pathological conditions,
e.g., neurodegenerative and cardiovascular diseases and
diabetes (Azzam et al., 2012). During long-term exposure to
GCE and SPE, high-energy protons generate ROS by exciting
cellular water, inducing circulatory disease and metabolic
syndrome (Tapio et al., 2021). Furthermore, tissue fibrosis is a
prominent side effect of IR exposure, which stimulates
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transdifferentiation into myofibroblasts that excessively secrete
collagen types IV, V, and VI, as well as other extracellular matrix
(ECM) proteins such as glycoproteins, fibronectin, laminin, and
tenascin (Judge et al., 2015).

Edema is the second most common symptom of irradiation
after fibrosis (Johansson et al., 2002). Radiation-induced tissue
damage triggers acute inflammation and activates coagulation
factor XII, the major protein that causes angioedema by
increasing permeability and leakage of blood vessels (Dewald
and Bork, 2006). Coagulation factor XII, also known as hemagen
factor, in addition to its vascular coagulation functions, plays a
central role in triggering the proinflammatory kallikrein–kinin
system, leading to the formation of bradykinin, a peptide
hormone that causes inflammation (Gobel et al., 2016). The
thorax, salivary gland, brain, and neck are the major
vulnerable points of radiation-induced swelling. This swelling
leads to early injury of brain tissue and cognitive impairment
within a day of irradiation, stimulating neuroinflammation, and it
is characterized by somnolence, short-term memory loss, and
attention deficits (Lumniczky et al., 2017). When tested in mice,
acute exposure to 16O or 48Ti radiation particles significantly
reduced cortical and hippocampal performance, causing a
decrease in dendritic complexity and spine density (Parihar
VK. et al., 2015). Radiation-induced degeneration exhibited
comparable dose-dependent changes in the morphology of
dendritic branches, number, and length of branch points
(Parihar V. K. et al., 2015).

In addition to the effects of weightlessness, high-energy
radiation in space can further contribute to bone loss. For
example, IR stimulates early loss of bone vasculature by
causing swelling, which directly disrupts blood flow to the
bone and leads to avascular necrosis in severe cases (Watson
and Adams, 2018). Furthermore, high-energy photon radiation
has been connected to osteoporosis, causing an approximately
30% reduction in the mineral density of bone within 5 weeks of
exposure to ionizing radiation of approximately 22.5 Gy or 45 Gy
(Nishiyama et al., 1992). When exposed 20–50 cGy of GCR
containing iron ion, mouse trabecular and cortical bone
showed 17% lower bone volume fraction and 4% lower
thickness (Bandstra et al., 2009). These results demonstrate the
negative effect of space IR on bone systems through mechanical
blocking or damage, emphasizing the importance of conducting
further study to safely explore the space beyond Earth.

3 CANCER MECHANOMODULATION

3.1 Tumor Microenvironment
Cancer is a group of diseases characterized by dysregulation of
cell division cycle caused by mutations or damage to tumor
suppressor p53, which is central in regulating cell cycle and
apoptosis, leading to abnormal proliferation (Vousden and
Lane, 2007). Cancer cells actively interact with their
microenvironment by chemical and physical signaling. Tumor
cells and their neighboring microenvironments are highly
interactive. Thus the changed physical settings in the space
not only affect physiological features of tumor cells but their

cellular and subcellular interactions with tumor
microenvironment could be also altered. Since cancer cells
reveal highly dynamic and bidirectional interactions with their
microenvironment, we need to note the changes in following cell
behaviors: 1) cell-cell contact and cell-ECM assembly, and 2) the
biochemical mediators that modulate these contacts. These
combinatorial effects of space can lower the immune
responses in the tumor microenvironment. However, space-
related signals have the possible effects of gene mutation,
genomic instability, over-activated oncogenes, deactivation of
tumor suppressors, as well as epigenetic modulation and
abnormal metabolism due to deformed microenvironments.
For instance, tumors affect their surroundings by secreting
extracellular signaling molecules such as tumor growth factor-
β (TGF-β), carbonic anhydrase IX (CA IX), and interleukin-6 (IL-
6) that stimulate cancer progression (Figure 2) (Vidlickova et al.,
2016). The tumor microenvironment (TME) includes the
surrounding stromal cells, signaling molecules, blood/lymph
vessels, and extracellular matrix (ECM). The tumor stroma
itself is non-malignant, but it assists tumor growth, initiation,
progression, chronic inflammation, angiogenesis, invasion, and
metastasis, and configures approximately 90% of the TME
(Denton et al., 2018). While the tumor stroma is composed of
heterogeneous cells, the most abundant cell type is fibroblasts,
particularly cancer-associated fibroblasts (CAFs), followed by
endothelial cells, lymphocytes, pericytes, mesenchymal stem
cells, and macrophages (Guo and Deng, 2018).

Morphologically similar to normal fibroblasts but greater than
those cells, CAFs exhibit metabolic and transcriptomic activity, as
termed “active fibroblasts” (Liu et al., 2019). CAFs are one of the
main factors known to promote metastasis by interacting with
cancer cells, but the criteria for distinguishing them from normal
fibroblasts are still not well established due to their heterogeneous
origin (Xing et al., 2010; Sahai et al., 2020). Up to 40% of CAFs
exhibit the same markers as endothelial cells, such as PECAM/
CD31, indicating its origin; the remainder show similarities to
stromal cells, including bone marrow mesenchymal stem cells
(MSCs) and adipocytes (Potenta et al., 2008; Lecomte et al., 2012;
Bochet et al., 2013). Some molecules, e.g., alpha-smooth muscle
actin (α-SMA), vimentin, fibroblast activation protein (FAP),
metastasis-associated protein S100A4, and platelet-derived
growth factor receptors PDGFRα/β, have been utilized as
traditional biomarkers, although none are expressed
exclusively by CAFs (Han et al., 2020). The expression of
α-SMA depends on the concentration of TGF-β1, and is
usually abundant in fibroblasts near a scar to assist in scar
contraction (Huang et al., 2001; Shinde et al., 2017). The
contractile protein α-SMA induces transdifferentiation of
fibroblasts into myofibroblast, which excrete ECM compounds
such as collagen I and III, as well as play a key role in wound
closure and ECM contraction (Ruiz-Zapata et al., 2020).
Myofibroblasts, also known as contractile cell, increase ECM
rigidity by enhancing integrin binding, and cause tissue
fibrosis in severe cases (Klingberg et al., 2013). The
mechanism by which CAFs promote tumor progression is still
not clear, but they are known to contribute through either
paracrine signaling molecules or mechanical stimulation. For
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instance, carcinoma-produced TGF-β1 is known to play a key
role in recruiting MSCs and transdifferentiating into CAFs. These
MSCs produce hepatocyte growth factor (HGF) and tenascin C,
which enhances tumor proliferation and promotes
transformation into invasive phenotypes (Barcellos-de-Souza
et al., 2016; Davies and Albeck, 2018).

In addition, IL-6 secreted from cancer cells facilitates
angiogenesis and stromal changes to the CAF phenotype,
increasing the levels of matrix metalloproteinase-2 and -9
(MMP-2 and MMP-9), which trigger ECM proteolysis
(Nagasaki et al., 2014; Cancemi et al., 2020). These MMPs
were expressed in neither epithelial cancer cells nor stroma-
derived fibroblasts when each was solely cultured but detected
in the fibroblasts co-cultured with the cancer. This result
demonstrates that their expression in fibroblasts is induced
by the intercellular interaction between epithelium and
stroma, a key characteristic of epithelial-to-mesenchymal
transitions (EMT) (Singer et al., 2002). The activated
fibroblasts also produce CA IX, which lowers the pH of the
TME, further increasing EMT, along with the invasiveness and
metastatic ability (Fiaschi et al., 2013). Transfection of the
tumor-associated isoform of CA IX into Madin-Darby Canine
Kidney (MDCK) epithelial cells showed lower extracellular pH
than did mock-transfected cells 48 h after incubation in

hypoxia, in contrast to normoxia, which produced no
significant difference in either group (Svastova et al., 2004).
MDCK cells transfected with the mutant CA T443G, a known
phosphorylation site activated by protein kinase A (PKA) in
the intracellular domain of CA IX, exhibited restriction of the
extracellular acidification during hypoxia. CA IX was
concentrated and co-localized with sodium bicarbonate
cotransporter-1 (NBC1), as well as the phosphorylated PKA
substrates, in leading-edge membranes of the migrating
hypoxic lung carcinoma A549 cells (Ditte et al., 2011).
Because the transmembrane CA catalyzes the conversion of
CO2 to bicarbonate and a proton on the extracellular side,
these findings suggest that the coordination between the CA
and NBC1 for regulation of bicarbonate metabolism in
hypoxia is critical for extracellular acidification and cell
migration. Conversely, TME acidification influences tumor
physiology, as well. MCF7 mammary carcinoma cells
cultured for 24 h at pH 6.0 showed more than 30% decrease
in both cell viability and proliferation relative to those cultured
at pH 7.2 (normal physiological condition). Both 24 and 48-h
growth at the acidic pH exhibited more than 50% reduction in
migration, examined as the percentage of the area of the cells
covering the wound, compared to cells grown at normal pH
(Ralph et al., 2020).

FIGURE 2 | Role of the cancer-associated fibroblast (CAF) and tumor microenvironment (TME) in enhancing tumor malignancy. Tumor-secreted TGF-β activates
and recruits mesenchymal stem cells and induces transdifferentiation into CAFs. Activated CAFs generate MMP-2 and MMP-9, which mechanically contract and
remodel ECM to soften the basal membrane. Furthermore, CAF also secretes CA IX, which causes acidification of ECM and promotes epithelial-to-mesenchymal
transition (EMT transition). Tumors also secrete IL-6, which plays a key role in angiogenesis. Contractile protein α-SMA in CAF promotes transdifferentiation of
fibroblasts to myofibroblasts that excessively secrete collagen type 1 and 3, leading to fibrosis of the TME.
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Moreover, 24-h incubation of MCF7 cells at pH 6.2 resulted in
four-fold production of extracellular vesicles compared to that at
pH 7.2, although no significant difference in size was observed
(Ralph et al., 2020). Addition of the conditioned media
containing these vesicles to non-transformed human
fibroblasts at pH 6.2 showed a migration rate equivalent to
that of cells cultured in nascent media at pH 7.2, five-fold
higher than the acidic pH without the vesicle supplement
(Ralph et al., 2020). These results imply the impact of
extracellular pH on the exocytosis of tumorigenic cells during
secretion of certain signaling molecules that activate the
associated fibroblasts. Besides lowering pH, CAFs also use
mechanical forces induced by actomyosin contractility to
stretch the gaps of the basement membrane (BM), which was
found to be independent of MMPs. Mesenteric basement
membrane was co-cultured for 8 days with human colon
cancer cells and CAFs (the latter derived from the patient with
the low MMP expression), then laser-ablated to generate gaps
within the membrane. 12 h after ablation, treatment with
blebbistatin, an inhibitor of myosin II-dependent contractility,
did not result in a significant change in the pore size, comparable
to the untreated sole BM without the co-culture. In contrast,
treatment of the co-cultured BM with the MMP inhibitor
(GM6001) produced a notable increase in the pore size,
similar to the extent of the untreated co-culture. Although BM
stiffness was not affected by blebbistatin, the widening of gaps
within the BM by actomyosin contractility is a contributor to
cancer cell invasion (Glentis et al., 2017). Indeed, overcoming the
stiffness of either the ECM or BM, which act as a barrier, is also
essential for invasion.

ECM is composed mainly of collagens. Processing of collagens
from procollagens by post-translational modification is required
for their secretion (Winkler et al., 2020). It has been shown that
the ECM of pancreatic ductal adenocarcinoma contains high
levels of fibrillar collagens with incompletely cleaved C-terminal
domains, suggesting a contribution of procollagens to tumor
malignancy (Tian et al., 2021). The processing of pro-peptides
is mediated by proteolytic enzymes such as lysyl oxidases (LOX),
which are known to cross-link various ECM substrates and
enhance the mechanical stability of ECM (Rosell-Garcia and
Rodriguez-Pascual, 2018). Sensing stiffened ECM triggers the
activation of focal adhesion kinase (FAK), a mechanosensing
component of focal adhesion clustering (Xue and Jackson, 2015;
Yeh et al., 2017) which stimulates its various downstream
effectors through their phosphorylation. For example, activated
FAK by vascular endothelial growth factor (VEGF) directly
phosphorylates tyrosine residue of vascular endothelial
cadherin (VEC-Y658), located at the cell junctions, which
results in enhanced permeability of the endothelial cells by
transmitting tumor cells through the attenuated cell-cell
junctions (Jean et al., 2014).

To sum, tumors stiffen surrounding tissue by inducing
fibrosis, and this stimulates tumor progression either by
mechanically breaching BM or by secreting molecules that
increase the permeability of cell barriers. The mechanism by
which cancer cells penetrate stiff matrices better than normal cells
is that cancer cells activate invadopodia when sensing matrix

rigidity and contractile forces through Rho-associated kinase
(ROCK) signaling (Jerrell and Parekh, 2016). Invadopodia are
actin-rich protrusions of cancer that assist in the degradation and
penetration of highly cross-linked BM by generating membrane
type 1-MMP (MT1-MMP), a collagen-degrading protease, for
invasion and metastasis (Enderling et al., 2008). Along with its
proteolytic activity, MT1-MMP also exerts mechanical force to
align the scaffolding protein Tsk5 and push the plasma
membrane in the ECM direction (Ferrari et al., 2019). The
coordination of physical regulation for invadopodia
morphology, as well as the chemical modification of ECM,
further promotes efficient invasion.

3.2 Cancer Invasion and Metastasis
Cancer invasion refers to the indication of malignancy,
penetrating the neighboring tissue, and eventually causing
metastases that form secondary tumors (Mareel and Leroy,
2003). Invasion is the primary step of metastasis, beginning
with the loss of E-cadherin, which mediates cell-cell adhesion,
resulting in dissociation from the primary tumor. E-cadherin
expression is downregulated during carcinogenesis in Langerhans
pancreatic islet β-cells (Perl et al., 1998). Furthermore, integrin β1
and MMP2 are known to be key factors in regulating cancer cell
adhesion to ECM, and are therefore highly associated with
invasion and metastasis (Wang et al., 2013). Invasive
migration of tumor cells is classified into two types: collective
migration and single cell migration (Krakhmal et al., 2015). Both
migratory features are regulated by mechanical cues and cell-
ECM adhesive integrin, but crowding, cohesion, and constraints
are factors that determine collective migration (Chang et al.,
2013). In collective migration, E-cadherin-mediated cell-cell
junction domains within the group modify front-rear polarity.
Although the junction is a prerequisite for establishment of
collective migration, it is not necessary for its maintenance.
Rather, the mechanical properties of each cell coordinate the
front-rear polarity with the extension of a lamellipodium-based
structure on the front cells (Jain et al., 2020). Polarization initiates
the activation of cytoskeleton regulating Rho GTPase that results
in transition of leader cells by utilizing shear stress on nearby cells
and development of traction force to pull follower cells
(Venhuizen and Zegers, 2017). Collective cell migration has
been observed in the development and progression of breast,
prostate, colorectal, and melanoma cancers, as well as in most
squamous cell carcinomas (Krakhmal et al., 2015).

Single-cell migration also requires front-rear polarity within
each cell, but differs from collective migration in that it does not
require cell-cell junction (Jain et al., 2020). Single cell migration is
further divided into two types of migratory modes: amoeboid and
mesenchymal motions. Amoeboid movement is characterized by
a tendency to appear in the soft matrix, weak cell-ECM adhesion,
and high-velocity motion (Eichinger et al., 2005). In addition,
cell-surface protrusion and blebs, which result from hydrostatic
pressure generated in the cytoplasm by the contractile
actomyosin cortex, appear during amoeboid locomotion by
elevating myosin contractility through ROCK activation
(Paluch and Raz, 2013). The suggested mechanism by which
blebs play a critical role in migration is by determining the
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cytoplasmic flow direction to the protrusive site and anchoring
the cell-ECM with E-cadherin at the neck of the bleb (Paluch and
Raz, 2013). Single-cell cancer invasion effectively squeezes into
the pores of the ECM in combination with lamellipodia and blebs,
or in exclusive form. In contrast, mesenchymal migration is
characterized by stress fibers and appear in a rigid matrix,
where the cells displaying the mesenchymal migration deforms
approximately 43%more ECM than cells following the amoeboid
migration and performs strong myosin II-mediated anterior
contraction through F-actin polymerization (Doyle et al., 2021).

In the metastasis cascade, cancer invasion is followed by
angiogenesis that involves the formation of new blood vessels,
controlled by oxygen and nutrient supply, into the hypoxic core
of solid tumors, or invasion of other organs by forming
circulating tumor cells (CTCs) (Zhao et al., 2017). The central
signaling proteins of angiogenesis belong to the VEGF family,
which consists of VEGF, VEGF-B, VEGF-C, VEGF-D, and
placental growth factor (PlGF), and is strictly controlled by
oxygen availability (Neufeld and Kessler, 2006). Each VEGF
protein type differs in function, but shares the same
mechanism of stimulating cellular responses, binding to three
types of tyrosine kinase: VEGF receptors VEGFR1 (VEGF
receptor 1), VEGFR2, and VEGFR3, which are embedded in
the cell membrane and transduce intracellular signaling pathways
through transphosphorylation (Pandey et al., 2018). VEGF can
bind to VEGFR1 and 2, activating angiogenesis,
lymphangiogenesis, vascular permeability, and vascular
homeostasis through phosphotidylinositol-3 kinase/protein
kinase B (PI3K/Akt) when bound to VEGFR2 (Pandey et al.,
2018). Besides VEGF, mechanical stress can also mediate tumor
angiogenesis. For example, an increase in ECM density and
stiffness promotes an angiogenic sprouting response from
multicellular spheroids upon MMP activation (Bordeleau et al.,
2017). This was due to the expression of protein kinase C beta
type 2 (PCK βII), a pro-angiogenic factor that contributes to cell
proliferation and motility through mitogen-activated protein
kinase (MAPK) activation, which increases more than 2-fold
in stiffer matrices (Bordeleau et al., 2015). Furthermore, stiffness
downregulates the VEGF 165b isoform, which has anti-
angiogenic function through competitively inhibiting
angiogenic VEGF binding to VEGFR 2; it also has a
distinguishing C-terminal exon coded for SLTRKD (Bordeleau
et al., 2015).

3.3 Cancer Mechanomodulation
Extracellular physical cues induced by ECM deformation and
alteration of ECM rigidity are transmitted through integrins,
cytoskeletons, and the nuclear membrane (Broders-Bondon
et al., 2018). Mechanical tension promotes attachment to
specific molecules in the extracellular matrix (ECM), and Yes-
associated proteins (YAP) are essential for the adhesion-mediated
pathways, activated by phosphoinositide 3-kinases (PI3Ks)
(Spencer et al., 2021). Specifically, adhesion to extracellular
fibronectin induces YAP translocation in the nucleus through
the FAK-Src-PI3K-PDK1 pathway (Kim and Gumbiner, 2015).
Cells plated on adhesive islands of ECM tend to proliferate,
whereas those on the narrow island go through apoptosis

(Dupont et al., 2011). However, cells lacking nuclear
translocation of YAP consistently showed the reduced
proliferation, as well as the enhanced apoptosis rate, regardless
of the island size (Dupont et al., 2011). Regulation of proliferation
and apoptosis is dependent on the cell adhesion-mediated
mechanotransduction that results in the nuclear YAP
translocation. When the tumor reaches the late progression
stage with continuous proliferation, hypervascularization and
compactness increases, leading to increased interstitial fluid
pressure, which can be elevated up to 10 times compared to
the normal state (Heldin et al., 2004). Growth-induced solid stress
compresses in the direction of the blood vessel, blocking blood
flow and restricting nutrition and oxygen accessibility. Such
mechanical forces induce hypoxia, which is a prominent factor
in malignant cancers (Li et al., 2021).

The family of hypoxia-inducible factors (HIFs) is composed of
α and β subunits: HIF-1α contains a proline residue (P564) that is
hydroxylated by the prolyl hydroxylase (HIF-PH), which utilizes
oxygen as a co-substrate. The von Hippel-Lindau tumor
suppressor (pVHL) ubiquitinates the hydroxylated subunit,
leading to its degradation (Jaakkola et al., 2001). However,
under hypoxic conditions, HIF-1α is stable, so the entire
heterodimer serves as a transcription factor for target genes
that control the metabolic switch from oxidative
phosphorylation to anaerobic fermentation (Seagroves et al.,
2001). As a result, HIF1 enables tumors to adapt to hypoxia
triggered by the excessive respiration of proliferative cells.
Hypoxia-activated HIF-1α was also shown to induce the
expression of collagen prolyl 4-hydroxylases (P4HA1 and
P4HA2) and procollagen-lysine, 2-oxoglutarate 5-dioxygenases
(PLOD2) in breast cancer-associated fibroblasts that promoted
the ECM stiffness, where hydroxyproline-collagen expression was
diminished in the fibroblast culture upon shRNA-knockdown of
P4HA1 and P4HA2 (Seagroves et al., 2001). Although PLOD2 did
not affect the amount of the extracellular hydroxylated collagen as
much as those collagen prolyl hydroxylases, it promoted
construction of the integrated collagen fiber under hypoxia
(Gilkes et al., 2013a). Co-localization of PLOD2 with fibrillar
collagens supports its function as the inter-fiber crosslinking,
which leads to increase in the matrix stiffness as well as
invasiveness of the tumors (Gilkes et al., 2013b). The HIF1-
induced collagen secretion and organization under hypoxic
condition entail the stiffness gradient in ECM, which could
play a role in migration of cancer cells.

Cell placed on compliant matrix migrate to the rigid
matrix, a tendency termed durotaxis that depends on the
focal adhesion turnover and detachment of the rear edge from
the matrix by myosin 2–mediated contractility (Maiuri et al.,
2015; Lachowski et al., 2017). In particular, myosin-IIB
(MIIB) showed increased concentration and polarization at
the rear side of the mesenchymal stem cell on the stiff matrix
(Raab et al., 2012). Upon activation of the myosin light chain
(MLC), MIIBs self-assemble with their C-terminal domains,
leading to the formation of actomyosin filaments that inhibit
frontal protrusion. In contrast, another isoform, myosin-IIA
(MIIA), consists of filaments in a distinct region of the MIIB
to support the anterior protrusion. More specifically, MIIB

Frontiers in Cell and Developmental Biology | www.frontiersin.org December 2021 | Volume 9 | Article 7400098

Kim et al. Cellular Mechanoadaptation Under Microgravity

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


was found to be incapable of independent formation in the
absence of MIIA expression, unlike the opposite case, in
which MIIA formed filaments thinner than those from
both expression, indicating initial conjugation of actin
filaments with MIIA followed by the subsequent assembly
of MIIB (Vicente-Manzanares et al., 2008). To differentially
regulate MIIA and MIIB for the cytoskeletal assembly, the
function of their upstream activators should be reactive to
ECM stiffness: the matrix rigidity as measured by the
fibronectin density was proportional to the degree of
cellular MLC phosphorylation, along with the traction
force within the cytoskeleton (Polte et al., 2004). Each
myosin activator has distinct substrates, and the pair co-
localizes on a specific site of the cytoskeleton: Rho-associated
kinase (ROCK) co-regulates the physical properties,
including the viscoelasticity, of the central actomyosin
fibers with MIIA, whereas myosin light chain kinase
(MLCK) co-regulates peripheral fibers with MIIB (Chang
and Kumar, 2015). Moreover, ROCK was shown to
generate sufficient force within the actomyosin fibers to
remodel the ECM in the absence of metalloprotease
activity (Wyckoff et al., 2006). To sum up, the front-rear

polarization of cells depends on both the spatial and
functional differentiation of the action of ROCK with
MIIA and MLCK with MIIB.

4 CANCER PROGRESSION IN THE SPACE
ENVIRONMENT

4.1 Decompression and Cancer
Decompression in space causes hypoxia either by induced
nitrogen evaporation or hypobaric conditions. When
sufficient oxygen is not supplied, cells express hypoxia
inducible factor-1α (HIF-1α), a key oxygen-regulated
transcriptional activator that assists in adaptation of tumor
cells to scarce oxygen by upregulating the transcription of
genes related to tumor cell survival, proliferation,
angiogenesis, and anti-apoptosis. Under exposure to low-
pressure atmospheric conditions, such as pO2 at an altitude
of 5,000 m, M2-like tumor-associated macrophages (TAMs)
activate and significantly increase the population of cervical
cancer cells in response to upregulated expression of
neuropilin-1 (Nrp-1) and CA IX (Chen et al., 2019). TAM

FIGURE 3 | Cancer affected by three representative altered environmental conditions in space: decompression, radiation, and microgravity. (A) Decompression of
oxygen activates HIF-1α expression and forms a DNA binding complex with CBP/p300 to VEGF gene transcripts, which have pro-angiogenesis and wound-repair
functions. (B) Microgravity upregulated the expression of cell-to-cell junction proteins, such as IGPR-1 and E-cadhrin, which have barrier functions in drug
resistance. (C) Radiation in space triggers the Wnt signaling pathway, and accumulated β-catenin bind to T-cell factor/lymphoid enhancer factor family (TCF/
LEF), leading to transcription of EphB/EphrinB, which regulates cell migration and cytoskeletal dynamics.
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is known to create an immunosuppressive TME and facilitate
metastasis and angiogenesis (Lin et al., 2019). In addition,
hypobaric hypoxia increases radio resistance in space by
repairing damaged DNA radicals with an antioxidant that
contains sulfhydryl groups (Wang et al., 2019). When
cervical cancer cells are exposed to high IR, tumor size and
cell survival are higher under hypoxia than under normoxia
(Fu et al., 2015). This is due to protection by HIF-1α inhibition
of the irradiation-induced apoptotic protein, p53, a
mechanism that has been verified by silencing HIF-1α (Fu
et al., 2015). Structural recruitment of the C-terminal
transactivation domain (CTAD) of HIF-1α and cysteine/
histidine rich domain 1 (CH1) of CBP/p300 leads to
transcription of VEGF genes, prominent for pro-angiogenic
functions in tumor progression (Figure 3A) (Kwon et al.,
2012). VEGFs known to stimulate tumor progression such
as angiogenesis and metastasis significantly decrease the
survival rate of gastric cancer patients by increasing cancer
cell survival rate (Ozdemir et al., 2006).

Under hypoxic conditions, energy metabolism through lactic
acid fermentation domains, rather than the tricarboxylic acid
(TCA) cycle in mitochondria, results in acidosis. Sensing
acidification of ECM, carcinoma cells increase expression of
the lactate/H+ symporter monocarboxylate transporter (MCT)
family, consisting of MCT1, MCT2, MCT3, and MCT4 (Kim
et al., 2015), where, MCT1 and MCT4 contribute to cancer
malignancy by shuttling lactate within tumor, which serves as
a respiratory fuel in tumor metabolism (Gao et al., 2015). TME
acidosis increases myeloid-derived suppressor cells (MDSCs),
heterogenic clusters of immune cells during cancer, by
stimulating neutrophils through activating PI3K/Akt, which
regulates proliferation, and ERK/MAPK pathways, which
produce proinflammatory cytokines (Martinez et al., 2006;
Gabrilovich and Nagaraj, 2009). Among four classes of PI3Ks
(class I, class II, class III, and class IV), class I PI3K exhibits
oncogenic activity by converting phosphatidylinositol 4,5-
bisphosphate (PI4,5P2) to phosphatidylinositol 3,4,5-
trisphosphate (PIP3), and recruited PIP3 activates Akt that
induces oncogenic activity by inducing cell growth,
proliferation, and resisting to apoptosis (Zhao and Vogt,
2008). Taken together, these results indicate that hypoxic
condition during deep-space exploration increase the survival
rate of cancer cells.

4.2 Microgravity and Cancer
Microgravity suppresses immune activity and increases the risk of
cancer (Jhala et al., 2014). Even independently of immune cells,
microgravity increases cancer survival and progression.
Microgravity is sensed by cells and stimulates biochemical
changes, which are classified as mechanical stressors that can
alter cancer progression (Aventaggiato et al., 2020). For instance,
when MCF7 cells are exposed to reduced gravity, they exhibit
rearrangement of actin and microtubule architecture (Nassef
et al., 2019), and they form multicellular spheroids after 24 h
(Kopp et al., 2016). Using a random positioning machine, which
is a two-axis form of the clinostat that reduces the gravity vector
averaging to zero (Wuest et al., 2015), could downregulate gene

expression patterns, such as those of vascular endothelial growth
factor-A (VEGFA), vascular endothelial growth factor receptor 2
(FLK1), caspase-9 (Casp9), caspase-3 (Casp3), and protein kinase
C alpha (PRKCA), which interfere with 3D cell aggregation
(Kopp et al., 2018). However, VEGF release was clearly
upregulated in MCF-7 cells under microgravity conditions.
These conflicting results indicate that some factors may act
differently under stimulated and real microgravity,
underscoring the need for future research on real
microgravity. A similar phenomenon was observed in thyroid
cancer cells (FTC-133), and researchers found that decreased
integral membrane protein caveolin-1, due to stimulated
microgravity, enhances spheroid forming (Riwaldt et al., 2015).
Cancer cells form spheroids to resist cytotoxic and anti-cancer
drug effects, which is termed “multicellular resistance” when
tested on adenocarcinoma cell lines. The mechanisms of
reversible MCR are based on contact resistance, because
forming 3D aggregates minimizes tumor cell-cell contact and
cell-ECM contact, and cells with high expression of junction
proteins such as E-cadherin and integrin exhibit drug resistance
(Desoize and Jardillier, 2000). In human colorectal cancer cells,
immunoglobulin-containing and proline-rich receptor-1 (IGPR-
1), which mediates endothelial barrier function and cell-to-cell
interaction, is upregulated and increases survival under
chemotherapeutics such as SB203580, a p38 inhibitor, by
causing multicellular aggregation (Figure 3B) (Woolf et al.,
2017).

Increased CD44+ and CD133+ expression was observed
under both simulated microgravity and 3D culture in non-
adherent 96-well plates (Arun et al., 2019). CD44 is a
multifunctional transmembrane protein that mainly
mediates tumor metastasis, as well as cell-cell interaction;
various metastatic cancer cells exhibit increased expression
of CD44 and its isoform (Basakran, 2015). CD133, also known
as prominin-1, is known to be positively correlated with
chemoresistance, metastasis, invasion, and stemness of
tumors (Zhang et al., 2013). Colorectal stem cells highly
expressing CD44+/CD133+ exhibited carcinogenic
proliferation and cell cycle characteristics compared to
those with low expression (Zhou et al., 2016). However,
culturing under simulated microgravity exhibited nuclear
localization of YAP and abnormally increased the size of
cancer cells, while 3D culture under normal gravity did not
produce a significant difference. YAP expression induces four
Yamanaka factors: a significant increase in octamer binding
transcription factor 4A (OCT4A), and slight upregulation of
sex determining region box 2 (SOX2), Nanog (homeobox
protein), and NKx-2.5 (NK2 homeobox 5). These
upregulated factors are known to play a significant role in
maintaining the stemness of cancer cells by disturbing the
tumor-suppressive Hippo pathway (Basu-Roy et al., 2015).
These data strongly support the opinion that space
microgravity increases the malignancy of cancer cells,
maintains stemness, and leads to an abnormal tumor size.
The genetic expression of thyroid cancer cells (UCLA RO82-
W-1 cell line), grown as an adherent phenotype under normal
gravity and forming spheroids under microgravity, was
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compared. The result was the upregulation of MMP3 and
connective tissue growth factor (CTGF), and
downregulation of plasminogen activator inhibitor-1 (PAI-
1). CTGF-rich TME has been implicated in increased
malignancy in gliomas (Edwards et al., 2011). Space
microgravity is known to increase CTGF gene expression,
which detaches surface adhesion and induces 3D
aggregation (Pietsch et al., 2013). Furthermore,
downregulation of PAI-1 contributes to spheroid formation
because plasminogen accumulation is disturbed (Riwaldt et al.,
2016). Further data from the FTC-133 cell line revealed that
microgravity generated using a random-positioning machine
decreased the expression of CAV1 and connective tissue
growth factor (CTGF) after 74 h of simulation in
microgravity-induced spheroids when compared to adherent
cells under both normal and microgravity environments
(Warnke et al., 2014). CTGF expression can be induced by
mechanical stimulation, such as hypertension, and plays an
essential role in tissue remodeling and fibrosis by activating
myofibroblast activation (Lipson et al., 2012).

Adipocytes are closely adjacent to breast cancer cells,
constituting breast tissue and cancer metastases to other
organs after lipid accumulation (Le et al., 2009). Therefore, it
is evident that obese patients whose adipocytes are both
hypertrophic and hyperplastic tend to have more aggressive
cancer progression (Tan et al., 2011). Space microgravity
significantly increased the gene expression of CCAAT
Enhancer Binding Protein Beta (CEBPB), a key regulator of
adipogenic differentiation, by directly inducing expression of
peroxisome proliferator activated receptor gamma (PPARγ2)
(Barlier-Mur et al., 2003; Zhang et al., 2018). Furthermore,
microgravity switches the morphology of adipose-derived stem
cell (ADSCs) from a flat spindle to a round phenotype, resulting
from the destruction of F-actin and tubulin structures, similar to
MCF-7 cells (Ebnerasuly et al., 2017). Increased connective tissue
growth factor in ADSCs under simulated microgravity enhanced
the expression of collagen type I and III, which contribute to
cancer angiogenesis mainly through TME fibrosis (Ebnerasuly
et al., 2017).

Space gravity also upregulates matrix metalloproteinase
(MMP) 1 by approximately 12.94-fold in bone, promoting
bone erosion through upregulation of cysteine-rich angiogenic
inducer 61 (CYR61) via the discoidin domain receptor 2-matrix
metalloproteinase-1 (DDR2-MMP1) signaling pathway (Blaber
et al., 2013; Huang TL. et al., 2019). CYR61, also known as cellular
communication network family member 1 (CCN1), interacts
with cell-surface integrin receptors and regulates cell adhesion,
migration, proliferation, and differentiation induced by
transphosphorylation of DDR2 and activator protein 1 (AP-1)
(Huang TL. et al., 2019). In summary, space microgravity
activates factors that promote fibrosis and adipogenic
differentiation, which contributes to cancer proliferation and
metastasis.

4.3 Ionizing Radiation and Cancer
Radiation is widely used for cancer treatment because it transfers
energy intense enough to destroy cancer cells. However, similar to

other cancer treatments, radiation therapy also causes side effects,
such as fibrosis, increased in vivo toxicity, and apoptosis
(Ratajczak et al., 2013). Irradiation also induces mechanical
changes. For example, the surface of the enamel and the
underlying dentin increased in microhardness by 1.2-fold
when irradiated with a total dose of 60 Gy (de Siqueira
Mellara et al., 2014). However, the indentation hardness of the
deep enamel, dentinoenamel junction, and deep dentin, as well as
the pulp chamber, was not affected by irradiation, indicating the
limit of penetration. Likewise, irradiation induces stiffening in
breast cancer, with a significant increase in collagen production,
and may lead to organ failure. This was shown through co-
culturing breast cancer MCF-7 cells in Matrigel with MRC-5
fibroblasts for in vivo mimicking, and it was found that
upregulated TGF-β induces fibrogenesis through activation of
myofibroblasts by canonical Wnt signaling pathways under 2 Gy
of radiation exposure (Yakavets et al., 2020). Even low-dose,
heavy-ion radiation triggers persistent stress signaling, such as
binding β-catenin, downstream of the Wnt signaling pathway, to
the T-cell factor/lymphoid enhancer factor family (TCF/LEF)
binding site of EphB/EphrinB promoters, inducing DNA damage
and chronic oxidative disease, and finally leading to senescence-
associated secretory phenotype (SASP) (Figure 3C) (Kumar et al.,
2018).

Space radiation, which contains highly ionizing heavy ions
such as iron, silicon, and calcium, downregulates Cdc42, myosin
light-chain kinase (Mlck), Par3, and E-cadherin, and increase
Rock1; these are factors that contribute to cytoskeletal
remodeling, migration, and cell-polarity dynamics (Kumar
et al., 2018). Downregulation of E-cadherin is the primary step
in carcinogenic metastasis and weakens cell-cell adhesion,
resulting in dissociation from the primary tumor. Ionizing
radiation (IR) is known to stimulate radiation-induced
inflammatory responses by activating transcription factors, e.g.,
NF-κB, STAT-3, and HIF-1, which modulate the TME and
promote cancer development (Mckelvey et al., 2018). SASP
generates IL-6, the proinflammatory cytokine, from senescent
fibroblasts, resulting in enhanced invasiveness and facilitated
progression of breast cancer cells (Coppe et al., 2010). These
results prove that radiation induces fibrosis in cancer and
surrounding tissue, either by secreting cytokines associated
with cytoskeletal remodeling, including collagen production
and junction increase, or by inducing proinflammatory reactions.

Histopathologically, an increased number of profibrotic foci
occurred, with 17 upregulated and nine downregulated ECM-
related genes, in connective tissue in mice during spaceflight
(Tian et al., 2010). Profibrotic foci indicate increased ECM
stiffness, which is associated with regulation of cancer
progression (Burgess et al., 2016; Bregenzer et al., 2019). For
instance, the risk of lung carcinoma increases via idiopathic
pulmonary fibrosis (IPF), which is characterized by fibrotic
foci (Park et al., 2001; Burgess et al., 2016). Increased ECM
stiffness mediates phenotypic transition of cancer stem into more
metastatic forms in colorectal cancer (Tan et al., 2019) and breast
cancer (Seewaldt, 2014) by reducing phosphatase and tensin
homolog (PTEN) expression, thereby upregulating the
phosphoinositide 3-kinase (PIP3)-AKT pathway (Mouw et al.,
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2014). Furthermore, ECM stiffening elevates levels of activated β1
integrin, pY397 FAK, and pS19MLC, which tend to increase with
mechanosignaling and promote human breast cancer progression
(Acerbi et al., 2015). However, the mechanism by which radiation
induces profibrotic foci and elevates ECM stiffness has not been
fully elucidated. Further research to reveal mechanisms should be
conducted for future space exploration, since the IR effect is
directly related to both chronic and acute diseases.

4.4 Space Environment Effect on Aging and
Cancer Progression
While the most well-known physiological phenomenon in long-
term spaceflight is decreased skeletal muscle mass, 14.5% of
telomere prolongation compared to preflight has also been
reported by NASA (Garrett-Bakelman et al., 2019). The length
of telomeres shortens with every mitotic cell division by
50–200 bp, which is known as telomere attrition; mice with
short telomeres have shorter lifespan, organismal aging, and a
higher risk of age-related pathologies (Bernardes de Jesus et al.,
2012). In contrast, improved metabolic parameters, less
senescence DNA damage, and increased longevity were
observed in mice with hyperlong telomeres (Bernardes de
Jesus et al., 2012; Munoz-Lorente et al., 2019); thus, short
telomeres are considered a hallmark of aging (Lopez-Otin
et al., 2013). Telomere elongation was discovered earlier in
short-term spaceflight in Caenorhabditis elegans, in which the
length increased from ∼7 to ∼9 kb (approximately 29%) when
measured by single telomere length analysis (STELA) (Zhao et al.,
2006). The space environment also downregulates expression of
genes related with neuronal or endocrine signaling (gar-3, unc-
17, cha-1, F57A8.4, glc-4, shk-1, and ins-35) in C. elegans, and
inactivation of these genes increased lifespan on the ground
(Honda et al., 2012).

Aging and age-related diseases, such as cancer, seem to be
suppressed during spaceflight; however, telomere length rapidly
(within 48 h on Earth) became shorter than preflight, with severe
DNA damage in astronauts after long-term space missions
(Garrett-Bakelman et al., 2019; Luxton et al., 2020b). Plasma
concentrations of interleukins (IL-1a, IL-2, IL-4, IL-5, IL10),
chemokines (CCL4, CCL5, CXCL5), and vascular endothelial
growth factor-1 (VEGF-1) strongly exhibited the same increasing
and decreasing aspects as mean telomere length during the entire
spaceflight mission, i.e., preflight, during the flight, and post flight
(Luxton et al., 2020a). Approximately 80% of human cancer cells
activate telomerase to elongate telomeres and promote unlimited
replication. In contrast, telomere shortening suppresses the
formation and replication of cancer, but promotes tumor
malignancy (Hirashima et al., 2013). For example, in the
dysfunctional telomere group, mTerc−/− mice activate the p53-
dependent senescence pathway, discarding the p53-dependent
apoptosis pathway, thereby suppressing tumorigenesis (Deng
et al., 2008). Telomere length is known to be associated with
cancer incident and mortality. Mice with short telomeres
exhibited incident and mortality rates of 22.5 and 10.6%,
respectively, while the group with longer telomeres displayed
rates of only 5.1 and 0.7%, respectively (Willeit et al., 2010). This

phenomenon is supported by the suggestion that shortening of
telomeres reduces protective function and induces dysfunction,
which eventually causes genome instability by increasing
chromosome fusion, anaphase bridge, and nonreciprocal
translocation frequency (Hackett et al., 2001). The space
environment has a high potential to increase the cancer
incidence rate by microgravity-induced ECM stiffening,
hypobaric hypoxia, increased adipocytes, and irradiation. The
fact that telomeres elongate in space could be due to telomerase
activation by space-induced cancer cells.

The impact of the space environment on biological
characteristics regulating oncogenesis and tumor growth such
as redox stress, telomeres, mutagenesis, and epigenetic
regulations is less studied. Fundamental features of space
biology includes oxidative stress, DNA damage,
mitochondrial dysregulation, genetic and epigenetic
modification, telomere alterations, and microbiome shifts as
well as their associated health risks of space exploration
(Afshinnekoo et al., 2020). Accordingly, aerospace medicine
highlighted in the articles. The health hazards associated with
spaceflight are collectively influenced by space radiation,
microgravity, containment/isolation, distance from Earth, and
a hostile/closed environment. Since the health conditions affect
physiological systems in the human body, including the central
nervous, cardiovascular, musculoskeletal, immune, and hepatic
systems, the space flight could result in the disruption of
circadian rhythms, increased risk of cancer, and genetic
mutations. For instance, recently, space technology merging
the 3D organoid technology has been applied to study early
mutational events in human DNA due to spaceflight exposure
(Larose, 2020). Thus the development of effective counter-
measures and health systems play a key role to explore the
next phase of space exploration. Aerospace medicine will
therefore advantage from longitudinal profiling, multi-omic,
that captures the collective effects from exposures throughout
multiple risks and interactions among multiple organ structures
and biological functions.

5 CONCLUSION REMARK

Unlike on Earth, various environmental factors are altered during
spaceflight. In particular, reduced gravitational force,
decompressed air molecules, and high energy heavy-ion
irradiation are the most prominent current physiological
concerns during spaceflight, as they are known to increase the
risk of illnesses such as cancer and cardiovascular disease.
Accumulating evidences demonstrate that tumors are highly
affected by external physical factors, and such mechanical cues
promote cancer progression during carcinogenesis, proliferation,
invasion, and metastasis, but there is no detailed information on
how cancer cells in the human body are affected by altered
external environments in space. Advances in experimental
methods and analysis tools allowed many researchers to
further study altered environmental cues during spaceflight.
Microgravity, decompression, and ionizing radiation in the
space environment regulate cancer malignancy by altering the
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tumor microenvironment, such as fibrosis, proinflammatory
response, and angiogenesis. Decompressed pO2—translocate
HIF-1α into the nucleoplasm to inhibit the apoptotic protein
p53 and to transcribe VEGF genes, which are the main factors to
promoting angiogenesis, wound repair, cell survival, and
proliferation. Furthermore, high-energy radiation such as GCR
and SPE upregulates TGF-β, which induces fibrosis of the TME
through activation of myofibroblasts. Rigid ECM stimulates
MSCs in the TME to secrete hepatocyte growth factor (HGF)
and tenascin C, factors that promote tumor proliferation and
transform into invasive phenotypes. Tumor cell survival is
increased during spaceflight by telomere elongation, as well as
apoptotic pathway inhibition and compact spheroid formation.
For example, MCF7 breast cancer cells under microgravity
remodeled cytoskeletal organization and formed multicellular
spheroids by increasing cell-cell junctions. The formation of
spheroids minimizes cancer cell exposure to the cytoplasm
and enhances barrier function, providing adhesion-dependent
cytotoxic resistance.

Similar to other chronic diseases such as bone/muscle
atrophy and cardiovascular disease, cancer incidence is
also a major side effect of long-term space exploration.
Since significant alteration of mechanical cues in the space
environment may affect the human body, further
investigation of space mechanobiology and its effect on
both acute and chronic diseases should be conducted.
Comprehension of mechanotransduction processes
compared to Earth is one of the most important challenges
in space mechanobiology. Thus, more complex and delicate
3D in vivomimicry of exposure to space conditions—not only

microgravity, irradiation, and decompression, but also other
possible mechanical cues that differ from those on Earth—are
the key to human advancement into space.
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