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Abstract
Aberrant glycosylation plays a critical role in tumor aggressiveness, progression, and metastasis. Emerging
evidence associates cancer initiation and metastasis to the enrichment of cancer stem cells (CSCs). Several
universal markers have been identified for CSCs characterization; however, a specific marker has not yet been
identified for different cancer types. Specific glycosylation variation plays a major role in the progression and
metastasis of different cancers. Interestingly, many of the CSC markers are glycoproteins and undergo differential
glycosylation. Given the importance of CSCs and altered glycosylation in tumorigenesis, the present review will
discuss current knowledge of altered glycosylation of CSCs and its application in cancer research.
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troduction
very cell has a unique glycome signature dictated by specific timing,
pression, and location of glycogenes, and is dependent upon the
tent and availability of carbohydrates [1]. Glycosylation is one of
e important co- and/or posttranslational modifications required for
e normal biological functioning of cells [1]. Glycosylation takes
ace by the covalent modifications of proteins (glycoproteins) or
ids (glycolipids) with carbohydrates by the action of glycosyltrans-
rases (GFs) and glycosidases in the endoplasmic reticulum (ER) and
olgi [1–3]. Further, glycoproteins and glycolipids (glycoconjugates)
gulate a diverse range of biological and cellular activities, including
uripotency, embryogenesis, cell-to-cell and cell-to-environment
teractions, signal transduction, protein folding, and immune
odulation [4–7]. Alterations in glycosylation have been linked to
mor development and progression [5]. Aberrant glycome of tumors
ight also explain the heterogeneity seen in numerous cancers.
akomori and Kannagi postulated that there are two main
echanisms for expression of tumor-associated carbohydrate anti-
ns, specifically, incomplete synthesis (truncated glycans; Tn, sTn)
d neosynthesis [de novo expression; sialyl Lewis a (sLea) and sialyl
ewis x (sLex)] [5, 8–10].
Recent studies support the involvement of CSCs in tumor
velopment, metastasis, chemoresistance, and recurrence [11, 12].
SCs or tumor-initiating cells are the rare, small subset of cells in the
mor with the ability to give rise to complete tumor masses [12].
SCs can self-renew, can undergo asymmetric or symmetric cell
vision, and are associated with cellular heterogeneity [11–14]. They
e thought to be derived from mutations in the stem or progenitor
ll and hence tend to have the same stem cell markers [15], and
rious CSC markers are defined in many cancers to identify and
olate CSC populations [11]. Research has exploited membrane
ycoproteins (CD44, CD24, ESA, CD133, etc.) to identify and sort
SC populations by using fluorescent antibody labeling and
orescence activated cell sorting [16–18]. Another well-known
ethod for isolating CSCs is Hoechst staining, the method by which
lls are analyzed and sorted according to their ability to efflux the
342 dye out of the cell. CSCs efflux the Hoechst dye due to higher
vels of ABC transporters and appear as side populations (SP) in
oechst red versus Hoechst blue plot in flow analysis [18, 19]. In
cent years, researchers worldwide have accepted the existence of
SCs mainly because of tumor heterogeneity, chemoresistance, and
mor relapse. Present available drugs are efficient in only killing the
lk of tumor mass, sparing CSCs and leading to tumor recurrence
d metastasis [12, 20]. There is thus an urgent need to develop new
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ays to characterize and understand the molecular mechanism of
emness of the CSCs in detail to target them. However, the role of
ycosylation alterations in stemness and aggressiveness of CSCs has
t been much explored.
In the present review, we discuss current knowledge of glycan
odification of CSCs markers and its significance. We further
esent the significance of mucins in CSCs and finally discuss the few
ell-studied reports showing the role of GFs in regulating the self-
newal and stemness of CSCs.

rotein Glycosylation
rotein glycosylation is the attachment of carbohydrate to the amino
id (aa) residue of the protein backbone. There are many types of
ycan modifications present in the cell, specifically, the N-, O-, C-
ked, and O-GlcNAc modifications (Figure 1) [1]. The abundant
d commonly occurring types of protein glycosylation include the N-
ked, O-linked, and O-GlcNAclyation.

-linked Glycosylation
N-linked glycosylation, a glycan moiety (Glc2Man9GlcNAc2-) is
ded to the amino group of an asparagine residue (Axn-X-S/T, X=
y amino acid except proline) of the polypeptide contained in the
R. The newly formed protein additionally undergoes proper folding
llowed by trimming, and the diversification of glycans takes place
gure 1. Glycan modifications on proteins. Depiction of different glyc
ycoproteins (highmannose, Hybrid, complex type, β 1-6 branched), O-
-GlcNAc glycoproteins, glycosylphosphatidylinositol-anchored glycop
quentially in the ER and Golgi, resulting in the synthesis of three
ain types of N-linked glycans: the high mannose, hybrid, and
mplex types (Figure 1) [2, 21].

-linked Glycosylation (Mucin-Type O-Glycosylation)
ucin-type O-linked glycosylation takes place by the addition of
alNAc to the hydroxyl group of serine or threonine (in the region of
oline-rich) of the polypeptide in the cis-Golgi and subsequent
dition of glycans in medial and trans-Golgi by the action of
fferent GFs [1, 22]. This gives rise to the production of many core
-glycan structures, i.e., Core structures 1 through 8. Core 1-4O-glycan
ructures are seen more abundantly in mammalian cells than are other
re structures (Cores 5-8) [22] (Figure 1).

-GlcNAcylation
O-GlcNAcylation, GlcNAc is added to the serine or threonine residue
protein in the cytoplasm. Two enzymes regulate this type of glycan
odification: O-GlcNActransferase adds the GlcNAc andO-GlcNAcase
moves it. O-GlcNAcylation is commonly seen in the proteins that
uttle between the cell cytoplasm and nucleus (nucleocytoplasmic
oteins). It has shown that phosphorylation and O-GlcNAcylation
mpete for the same serine or threonine residue in the polypeptide
ckbone of some proteins, such as P53, Myc, Pdx1, CREB1, and
hers, and that they regulate their differing functions (Figure 1) [4, 23].
an modifications occurring in normal and cancer cells- N-linked
linked glycoproteins (Core-1, Core-2, O-Man, Tn, sTn, T, sT, sLeX),
roteins.
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luripotency and reprogramming are regulated by O-GlcNAc
odification of pluripotency-associated core proteins in embryonic
em cells (ESCs) [4].

tem Cells and Glycosylation
em cells are undifferentiated cells that can convert into differen-
ated and specialized cell types. Two of the most critical features of
e stem cells are pluripotency and self-renewal [24]. Stem cells are
ually identified and sorted by the specific markers expression, and
ese markers may be cell surface or intracellular proteins,
anscription factors, enzymes, etc. [25]. The role played by
ycosylation in the embryonic development has been studied. Yan
al. have demonstrated O-fucosylation of Notch receptors to control
ood lineage commitment [26]. In another study by Seth et al., they
ve demonstrated that core O-fucosylation of apolipoprotein B is
quired for proper midline patterning during zebrafish development
modulating the sonic hedgehog signaling [27]. These studies

splay the significance of glycosylation in mediating the embryonic
velopment process.

SC Markers and Its Glycosylation Variation
any of the pluripotency-associated markers of ESCs are known to
glycoproteins or glycolipids, namely, TRA-1-60 and 1-81 and,

age-specific embryonic antigen 3 and 4. The glycans of these
arkers could be the potential modulator of pluripotency and
emness, which need to be explored in detail [28, 29]. A recent study
Jang H and colleagues has demonstrated the importance of

ycosylation in regulating cellular pluripotency and reprogramming
modulating the core pluripotency-associated stem cell transcrip-
n factors in mouse ESCs [4]. This study also demonstrated that
ecific O-GlcNAc modification of pluripotency markers Oct4 and
x2 occurs in the undifferentiated mouse ESCs and this glycan
odification is lost upon differentiation. The O-GlcNAc modified
ct4 shown to enhance its transcriptional activity and regulate
anscription of pluripotency-associated genes, resulting in mainte-
nce of the pluripotent state of mouse ESCs and reprogramming of
ouse embryonic fibroblasts [4]. The significance of glycosylation
d glycan modification of stem cell transcription factor in regulating
uripotency in human ESCs and CSCs needs to be addressed.

dult Stem Cell (ASC) Markers and Its
lycosylation Variation
dult stem cells replace cells upon injury and maintain the tissue
meostasis, and it is not clear whether all the tissues of the body
ntain stem cells [30]. The role played by glycosylation in the
aintenance of stemness in ASC has been studied. ESC marker LeX

SEA-1) is shown to express specifically on adult mouse neural stem
lls (NSCs) [31]. Expression of LeX antigen is identified on both
ycolipid and glycoproteins and is shown to regulate the function of
ural precursors cells [32]. Yagi and colleagues have demonstrated
at N-glycans modified with LeX to regulate mouse NSCs through
odulating Notch signaling. Authors have shown that undifferen-
ated NSCs express the higher amount of LeX carrying N-glycans
mpared to differentiated cells and are controlled by pax6 via
regulation of FUT-9 levels [33]. A detailed report on the role of
ycosylation in stemness and differentiation of NSCs has been
viewed [34]. Hamouda et al. have characterized the N-glycans
ofile of undifferentiated and adipogenically differentiated in human
ne marrow mesenchymal stem cells (MSCs). They have shown that
-glycans H6N5F1 and H7N6F1 are significantly higher expressed
undifferentiated than differentiated MSCs and identified as
tential candidate markers [35]. In another study, CD44 modified
eX glycans on MSCs showed to facilitate their trafficking to bone
6]. A cell surface marker, CD133 is expressed and identified as a
em cell marker in hematopoietic stem cells (HSCs), progenitor cells,
SCs, and prostate stem cells [37–39]. The role of CD133 glycosylation
described in the glycosylation of CSC markers section. Another cell
rface marker, CD44, is also identified as a stem cell marker of HSCs
0], and the importance of its glycosylation is described in the
ycosylation of CSC markers section.

lycosylation and Self-Renewal Pathways
lf-renewal is an essential phenomenon in which stem cells divide to
ve rise to more stem cells and maintain the undifferentiated state.
aintenance of self-renewal is attributed to the activation of many
gnaling pathways like leukemia inhibitory factor (LIF)/signal
ansducer and activator of transcription (STAT3), bone morpho-
nic protein 4 (BMP4)/Smad, Wnt/β-catenin and fibroblast growth
ctor 2 (FGF2), and activin/nodal in mouse ESCs and human ESCs
1]. Studies have shown the significance of glycosylation in the
gulation of self-renewal pathways in ESCs. Sasaki et al. demon-
rated that specific cell surface glycan LacdiNAc (GalNAcb1-
lcNAc) contributes to self-renewal of mouse ESCs by regulating

IF/STAT3 signaling. Authors in this study showed that B4GalNAc-
3 mediated LacdiNAc expression on LIFR and gp130 is required for
duction and maintenance of self-renewal in undifferentiated mouse
SCs [42]. In another study, self-renewal and pluripotency of mouse
SCs are known to be regulated by cell surface proteoglycan heparin
lfate (HS). RNA interference-mediated knockdown of HS chain
ongation resulted in the loss of self-renewal and differentiation of
ouse ESCs. They also showed that HS regulates the expression of
anog through auto/paracrine Wnt/β-catenin signaling [43].
ultiple studies have shown that HS is required for lineage
mmitment of ESCs and to modulate pluripotency [44]. Ligands
volved in the activation of self-renewal pathways are known to be
odified with glycosylation. Glycan modification of Wnt3a is required
r its active form production and in turn activation of β-catenin–
pendent Wnt signaling [45]. N-linked glycosylation of FGFR1 is
own to regulate its binding to ligand and co-receptor HS and, FGF
naling [46].

lycosylation and Epithelial-Mesenchymal
ransition (EMT) in Cancer
MT is a remarkable phenomenon, which was initially observed to
ay a significant role in embryonic development and organ formation
7]. In the process of EMT, cells lose apical to basal polarity, change
to fibroblastic nature, and display reduced epithelial markers and
creased mesenchymal markers [47]. Several lines of research show
e involvement of EMT in pathogenesis, particularly in tumor
etastasis [48, 49]. The importance of glycosylation in regulating
e EMT and cell migration process has been studied. Guan and
lleagues have demonstrated decreased expression of GSLs, Gg4,
d/GM2, and Gg4 synthase was observed in TGFβ-induced
MT process in mouse and human epithelial cells [50, 51].
esearch by Freire-de-Lima and colleagues showed a direct
rrelation of O-glycosylation in regulating EMT process in
man prostate epithelial cells. Authors have demonstrated TGFβ
eatment to induce the expression of oncofetal fibronectin (onfN),
ALNT-3, and GALNT6 activity and, in turn, O-glycosylation of
fFN resulting in the induction of EMT process [52]. A systemic
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view by the same author has been published on the importance of
errant glycosylation in cancer cells undergoing EMT process [53].
uanna et al. have demonstrated that GALNT14 regulates the cellular
oliferation, migration, and invasion by inducing the expression
esenchymal EMT genes and by stimulatingMMP-2 activity in breast
rcinoma [54]. In another study, O-GlcNAcylation of GNB2L1
otein is shown to regulate the metastasis via modulating the EMT
oteins translation in the chemoresistance of gastric cancer [55].
ucena et al. demonstrated a link between EMT and altered
ycosylation through activation of hexosamine biosynthetic pathway.
he authors have shown that cancer cells uptake more glucose during
MT through hexosamine biosynthetic pathway activation and in turn
duce aberrant cell surface glycosylation (sialylationα2-6, poly-
acNAc, and fucosylation) andO-GlcNAcylation [56]. Role of specific
-glycan structures regulating the different function in tumor
etastasis process has been reviewed. Tsuobai et al. have reported
at core 2O-glycans are helping in tumormetastasis by evading natural
ller cells in circulation; in contrast, Core 3 O-glycans or O-mannosyl
ceptors suppress tumor metastasis by modulating integrin-mediated
gnaling [8]. Collectively, these studies display the significant role
ayed by altered glycosylation in EMT and cellular migration process.

lycosylation of CSC Markers
SC markers are those molecules expressed at higher levels and used
identify and isolate CSCs from tumors [11]. CSC markers

entified in numerous tumors are mainly cell surface glycoproteins,
ith the functional role of these glycan modifications being largely
known [57].

D44 and Its Glycosylation Variation
D44 is a transmembrane glycoprotein that mediates lymphocyte
oming and HA (hyaluronan)-dependent cell adhesion. The
andard CD44 isoform (CD44s) is highly expressed in various
lls types, including hematopoietic system. In contrast, the
pression of variant CD44 isoforms (CD44v) is more limited. Both
e standard and variant forms of CD44 actively contribute to the
aintenance of stem cell populations by generating, embedding, and
ming into a niche, establishing maintenance of quiescence and
sistance to apoptosis [40]. Overexpression of CD44 in many tumors is
plicated in tumor development [58], with CD44 identified as a
iversal CSCmarker in many cancers, alone or with other markers such
CD24 and ESA [59].
The CD44 standard and its variants have been shown to be
odified with N- and O-linked glycan modification. Moreover, the
fference in the molecular weight of each isoform is linked to its
fferential glycosylation [60, 61]. Bartolazzi et al. demonstrated that
ve potential N-linked glycosylation sites on CD44 are required for
D44-mediated adhesion to HA in human cell lines [62].
lycosylation of CD44 has been shown to regulate HA binding in
arian tumors [63]. It has also been shown that glycosylation of
D44 has both stimulatory and inhibitory effects on cell surfaces and
luble CD44 binding to HA in the Chinese Hamster Ovary cell line
l-D [64]. The N-linked N-acetylglucosamine residue, O-linked
ycans (N-deglycosylated), and N-acetylgalactosamine incorporation
to non–N-linked glycans on CD44 are importantly shown to
plify the binding of cell surface CD44 to HA. In contrast, α 2, 3-
ked sialic acid on N-linked glycans inhibits CDD44 binding to
A [64]. Further studies showed that inhibition of N- and O-linked
ycosylation of CD44 by tunicamycin (TM) and benzyl 2-
etamido-2-deoxy-α-D-galactopyranoside reduces the attachment
endometrial cells to peritoneal mesothelial cells [65]. Expression of
eX glycans on CD44 in MSCs also facilitates their trafficking to
ne [36] (Figure 2A).
Expression of CD44 splice variants and their altered glycosylation
e associated with metastatic properties of human tumors [58]. For
stance, H-type glycan modification on CD44v6 produced by
erexpression of the α1-2 fucosyltransferase gene resulted in increased
mor cellmotility and tumorigencity in rat colon carcinoma cells [66, 67].
odification of T and sTn antigens (O-linked glycosylation) was also
en in CD44v but not CD44s in colon cancer [68]. Further,
odification of the T antigen on CD44 was also seen in higher amount
lung, breast, and liver cancer–initiating cells [69]. In breast cancer–
itiating cells, co-expression of fucosylated Histo-Blood Group
ntigens, CD173 (H2), and CD174 (Lewis Y), and CD44 has been
ported [15, 70] (Figure 2A).

portance of CD133 Glycosylation
D133 (Prominin-1) is a cell surface marker that is expressed in
SCs and progenitor cell subpopulation but not in adult tissues [37].
eregulated expression of this antigen was observed in several
alignant hematopoietic diseases and in myelodysplastic syndrome.
D133 is widely used as a CSC marker in several malignancies [37].
omparative genomics analysis on prominin-1 has shown that
ndem TCF/LEF binding sites were conserved in PROM1 orthologs
human chimpanzee, mouse, and rat. The study proposes the

volvement of CD133 in activation of WNT signaling in ESCs,
ult, and CSCs [71]. Two monoclonal antibodies, AC133 and
C141, recognize glycosylated epitopes (undefined) of CD133 on
e cell surface. These antibodies have been used to analyze and
olate CSC populations in many cancers, and a study demonstrated
at, along with protein expression, the glycosylation status of CD133
ay play a critical role in stem cell maintenance [72]. Further, studies
owed that binding of AC133 is lost when CSCs differentiate and
se their stemness, but that this does not affect the change in mRNA
d protein levels of human prominin-1 [73] (Figure 2B). In the same
ar as this study, Zhou and colleagues showed α2,3-sialylation to
gulate the stability of stem cell marker CD133 in NSCs and glioma-
itiating cells. They reported that CD133 was modified withN-linked
ycans, with the terminal via α2,3-sialylation and desialylation with
euraminidases accelerating its degradation through the lysosome-
pendent pathway [38]. AC133-negative glioblastoma cells have
en shown to express a truncated prominin-1 variant protein,
D133, which is truncated with a molecular mass corresponding to
6 kDa as detected by C24B9 (the anti-CD133 antibody) in the
toplasm [74].
Another study demonstrated that N-linked glycan modification on
D133 regulated its cell surface localization and recognition by AC133.
ifferential glycosylation of N-glycan modification profiles was
served between CD133+ and CD133− cells. Enrichment of bi-
tennary complex-type glycans and increase in the high-mannose type
d terminal α2, 3-sialylation (ST3GAL6 overexpression) ofN-glycans
CD133+ cells were observed [75]. Hypoxia was shown to induce
e expression of CD133 by upregulation of OCT3/4 and SOX2
rough HIF alpha signaling in human lung cancer cells [76]. In
other study, hypoxia was shown to enhance glycosylation of
D133 in GSCs, and it was hypothesized that hyperglycosylated
D133 helped survival and invasiveness in GSCs [77] (Figure 3A).
iu et al. characterized the glycan sites of CD133 and demonstrated
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Figure 2. Glycan modification of CD44 and CD133. (A) Glycosylation of CD44 regulates its function in normal cells and cancer. N- andO-linked
glycosylation of CD44 regulates HA binding. N-linked glycans with terminal α 2-3 sialic acid on CD44 inhibit binding to HA. H-type glycans on
CD44v6 enhances cell motility and tumorigenicity. sLeX modified CD44mediates mesenchymal stem cells trafficking to bone. CD44 in cancer-
initiating cells is shown to express truncate glycans like Tn, T, sT, and lewis Y andCD173. (B) CD133 glycosylation regulates its function in cancer
andCSCs.N-linkedglycanswithα2,3-sialic acidsonCD133 regulate its cell surface retentionandstability, anddesialylation induces its lysosomal
degradation. N-linked glycosylation at Asn548 enhances tumor growth through β-catenin signaling.
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at loss of N-glycosylation at Asn548 reduced prominin-1,
omoted cell growth and its association with β-catenin, and in
rn inhibited β-catenin signaling in liver cancer. N-liked glycosyl-
ion sites of CD133 identified by mass spectrometry analysis were
sn206, Asn220, Asn274, Asn395, Asn414, Asn548, Asn580,
sn729, and Asn730 [78]. Co-expression of T antigen and CD133
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Figure 3. Glycan modification of CD133, CD24, and ESA. (A) Hypoxia enhances survival and invasiveness by inducing expression and
hyperglycosylation of CD133 through Hif1α/Hif2α/OCT3/4/SOX2 signaling axis. (B) Glycosylation of CD24 mediates metastasis. CD24 is
modified with N- andO-linked glycans. sLeX modifies CD24-mediated, P-selectin-mediated rolling and lung colonization. (C) Glycosylation
of ESA regulates its function in cancer. N-linked glycosylation at Asn198 on ESA regulates its surface retention and stability. ESA is
hyperglycosylated in cancer compared to normal tissue.
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as seen in lung, breast, and liver cancer–initiating cells [69]. Co-
pression of CD173 (H2) and CD174 (Lewis Y) with CD133 has
so been reported in breast cancer–initiating cells [70].
urface Marker CD24 and Glycosylation Variation
mice, CD24 was discovered as a heat-stable antigen and identified as
marker to differentiate hematopoietic cells and neuronal cells [79, 80].
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D24 (B cell differentiationmarker) is a cell surface glycoprotein linked
glycosylphosphatidylinositol, mainly expressed on human B cells and
many tumors. It consists of a small protein core of 27 aa’s that are
avily glycosylated with N- and O-linked type of glycans [81, 82].
xpression of CD24 was observed in higher levels in various human
ncers and was involved in the cell adhesion, tumor progression, and
etastasis [83–86]. CD24 was identified as a ligand for an adhesion
ceptor, P-selectin, on platelets and endothelial cells [87], through
hich it helps in extravasation of tumor cells in circulation. Further,
D24 increases tumor cell proliferation, and it shows increased
hesion to fibronectin, collagen, and lamin [84]. Cells expressing
D24+ are identified as CSCs in ovarian and colorectal cancers [88].
yriad studies have shown vital role of CD24 in ovarian cancer
etastasis, establishing it as a potential new CSC marker [89–92]. Gao
al. demonstrated that 5000 CD24+ cells form tumors in animal
odels with higher expression of stemness genes and found no
morigenicity with the same number of CD24− cells [91]. Similarly,
0 CD24+ cells were shown to form tumors in mice models and
press stemness genes, and were identified as CSCs in human
sopharyngeal carcinoma [93]. In another study, human ovarian
ncer cell lines with phenotypes of CD44+CD24+EpCAM+ showed
richment for stem/progenitor cells clonogenic capacity. A total of
5% to 1% of CD44+CD24+EpCAM+ cells were identified as CSCs
pancreatic cancer cells [94]. In contrast, CD44-high and CD24-low
lls were identified as CSCs in breast and prostate cancer [95, 96]. The
portance of CD24 glycosylation in regulating its function in cancer
s been studied. CD24 modified with sLex was shown to meditate P-
lectin–dependent rolling in breast carcinoma in vitro and in vivo [87].
D24 with sLex modification also mediates P-selection–dependent
lling and lung colonization of human A125 adenocarcinoma cells [97].
D24 further mediates the development of lung metastasis of bladder
ncer [98] (Figure 3B), further showing the involvement of glycans on
D24 to mediate tumorigenesis and metastasis.

ole of Epithelial Cell Adhesion Molecule (EpCAM)
CSCs Maintenance and Glycosylation Variation

pCAM or epithelial surface antigen (ESA) is a cell surface
ycoprotein overexpressed in multiple tumors and in CSCs [99].
pCAM promotes cell cycle and proliferation by upregulating the
oto-oncogene c-myc and cyclin A or E [100]. EpCAM also
gulates cellular metabolism by upregulating the fatty acid-binding
otein E-FABP and contributes to carcinogenesis [101]. EpCAM is
volved in the maintenance of hESCs in the undifferentiated
enotype by directly regulating few reprogramming genes, including
MYC, OCT-4, NANOG, SOX2, and KLF4 [102]. In contrast, one
udy identified EpCAM only as a surface marker to identify
differentiated hESCs as silencing of this gene did not affect the
vels of pluripotent marker [103]. EpCAM was shown to be N-
ycosylated at the three-glycosylation sites: Asn74, Asn111, and
sn198 in human epithelial cells. In another study, EpCAM was
own to be N-glycosylated at Asn88 and Asn51 expressed in insect
lls [99, 104]. In head and neck cancer, EpCAM has been reported
be hyperglycosylated with N-linked glycans compared to

tologous normal epithelia [105]. EpCAM hyperglycosylation at
sn198 regulates its protein stability and cell surface retention in
EK293 cells [106]. Furthermore, N-glycosylation of EpCAM has
en shown to regulate apoptosis in breast cancer cells, as de-
ycosylation of EpCAM promoted apoptosis and inhibited cell
oliferation of breast cancer cells [107] (Figure 3C).
SCs and Mucins
ucins are heavily glycosylated proteins carrying greatly O-linked
ycans with few N-linked. O-linked glycosylation mainly takes place
serine, threonine, and proline-rich regions of variable tandem

peat regions of mucins. Mucin expression is commonly seen on
ithelial cells, where they have primary protective functions against
icrobial infections [5, 108]. Deregulated mucin expression has been
ked to the pathogenesis of many diseases, including cancer. Mucins
ch as MUC1, MUC4, MUC5AC, and MUC16 are some of the
ell-studied O-linked glycoproteins for tumor-promoting potential
09–113]. Aberrant glycosylation of mucins has been associated with
ncer development and progression [5, 9, 114]. The role of mucins
d their altered glycosylation in CSCs has not been explored.
MUC1, a transmembrane glycoprotein, is overexpressed and
errantly glycosylated in many cancers. MUC1 contains mainly core
its elongated glycan structures in normal cells; however, expression
truncated and neo-glycan structures is observed in cancer. This
errant glycosylation of MUC1 activates oncogenic signaling in
ncer [115]. N-terminal cleaved mucin 1 (MUC1 ) is expressed only
undifferentiated human pluripotent stem cells and mediates its
owth by acting as a growth factor receptor [116]. MUC1 expression
s been observed in the CD44+CD24+ESA+ and CD133+ CSCs of
ncreatic cancer [117]. Overexpression of MUC1 has been reported
human stem cells fraction of cord blood cells and in many acute
yeloid leukemia (AML) cases. MUC1 has been shown to increase
equencies of progenitor and long-term culture-initiating cells [118].
UC1 overexpression is seen only in AML stem cells and not in
rmal stem cell counterparts; targeting of MUC1C by GO-203 has
en shown to deplete AML in vivo [119]. Expression of the
poglycosylated form of MUC1 expression was reported in the SP of
CF7 breast cancer cells [120]. MUC1 overexpression and CD44+/
D24− cancer stem-like cell enrichment were observed in response to
posure of tumor-associated macrophages to breast cancer MCF7
lls [121]. Apoptosis of MCF7 cells triggered by staurosporine has
en shown to activate CD44+/CD24− cancer stem-like cells by
creasing expression of ESA and MUC1 [122] (Figure 4A).
Mucin 4 is also aberrantly expressed in many cancers and has been
entified as a diagnostic cancer marker [114, 123]. MUC4 maintains
SC population in ovarian cancer by stabilizing Her2 expression. Its
erexpression increases the SP and CD133+ CSCs of ovarian cancer
24]. MUC4 overexpression also increases the CD133+ CSCs
pulation of pancreatic cancer and was shown to provide
mcitabine resistance [125] (Figure 4B).
Another transmembrane glycoprotein, MUC16 (CA125), a heavily
ycosylated and large mucin, is implicated as having a tumor-promoting
le in many cancers, including ovarian and pancreatic [110]. MUC16-
pressing cells are identified as the source of CSCs in ovarian cancer.
udies showed that only CA125+/lineage− cells form tumors but not
A125‐/lineage‐ cells in mouse orthotopic implantation [126]. In
other study, the role ofMUC16 in the enrichment of CSC populations
d in tumorigenesis, and its metastatic potential in pancreatic cancer
ere demonstrated [110]. MUC16-cter mediates upregulation of
emness genes such as NANOG and LMO2 through JAK2 nuclear
anslocation and histone 3 phosphorylation, and it maintains stemness
27] (Figure 4C).

Fs in Stemness of CSCs
xpression of a specific set of glycogenes at a time in a particular cell
pe determines the resultant signature of glycome on protein or lipid
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Figure 4. Role of mucins in CSCs. (A) Mucin 1 is overexpressed in human pluripotent stem cells and CSCs. Mucin 1 is hypoglycosylated in
a CSC population. (B) Mucin 4 expression increases CSC population and provides drug resistance by Her2-mediated signaling. (C) Mucin
16 expressing cells identified as CSCs and Mucin 16 expression shown to regulate stem cell transcription factors LMOA2 and NANOG
through the JAK/STAT pathway.

820 Glycosylation of Cancer Stem Cells Barkeer et al. Neoplasia Vol. 20, No. 8, 2018
olecules. The different glycans on the cell membrane drive
e diverse cellular signaling. Expression of glycogenes, specifically
Fs, has been linked to the development and progression of many
ncers [9].
One well-studied GF for the stemness of CSCs is glucosylcer-
ide synthase (GCS). GCS is highly upregulated in breast, colon,

ukemia, and various drug-resistant cancer cells. GCS catalyzes
ramide glycosylation, the rate-limiting step in glycosphingolipid
nthesis. Reports have shown that inhibition of GCS sensitizes
ncer cells to anticancer drugs and eliminates CSC population by
odulating gene expression, reducing MDR1, and restoring
pression of p53 via RNA splicing [128]. In breast CSCs,
creased expression of ceramide glycosylation and globotriosylcer-
ide (Gb3) was observed with the overexpression of GCS. This

igher level of Gb3 was also shown to upregulate FGF-2, CD44
pression, and Oct4 and to maintain stemness of breast CSCs
rough c-Src/β-catenin signaling. Silencing of GCS was also shown
disrupt Gb3 and kill breast CSCs [129] (Figure 5A). Liu YY and
lleagues reported that inhibition of GCS led to increased
ramide levels in cells and restoration of the expression of wild-
pe p53 resulting in activation of p53-dependent apoptosis [130,
1]. Liu’s group has also shown that inhibition of GCS led to the
pression of wild-type p53 and that it abolished the p53 R273H
utant-derived EMT and induced pluripotency of colon cancer
32] (Figure 5A).
β1,4-N-acetylgalactosaminyltransferase III (B4GALNT3) is over-
pressed in the colon CSCs, which is involved in the synthesis of
acdiNAc structures. A study indicated that LacdiNAc structures play
role in the self-renewal of mouse ESCs [42]. B4GALNT3 was
ported to modify N-glycans of EGFR with LacdiNAc and regulates
emness, migration, and invasiveness of CSCs. The knockdown of
4GALNT3 also decreased expression of the stem cell markers
CT4 and NANOG in colon cancer cells [133] (Figure 5C).
nother GF, MGAT5 (GnT-V), is also shown to promote tumor
velopment in many cancers, including colon carcinoma [9].
GAT5 synthesizes N-glycans with β-(1,6)-branching and is
volved in the development of many tumors by the way in which
modulates the function of various cell surface receptors and their
tracellular signaling pathways [9]. In colon CSCs, MGAT5 was
own to modify the Wnt receptor, FZD-7, with β-(1,6)-branched
-glycans, thus affecting Wnt signaling, CSC compartments, and
mor progression [134]. Reduced colon (intestine) CSC populations
NOD/SCID mice were also interrelated with lower levels of
GAT5. Significantly reduced adenoma size and survival of MAGT5
ockout APCmin/+ mice were also observed in the study [134]
igure 5C). Pancreatic CSCs were reported to overexpress the
zymes involved in the synthesis of fucosylated glycans such as
cosyltransferases (Fut1-4), GDP-fucose synthetic enzymes (FX,
MDS), and GDP-Fucose transporters [135]. In this study, authors
ported an increase in the expression of α1,2- and α1,3-/α1,4-
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cosylated glycans by lectin array [135]. In pancreatic and ovarian cancer,
6Gal-1, which addsα 2-6 sialic acid on substrate glycoproteins, is shown
confer CSC phenotypes by regulating the stem cell transcription factors
x9 and Slug and to augment tumor-initiating potential and resistance to
mcitabine [136] (Figure 5B). In bladder CSCs, GALNT1 has been
own to regulate the self-renewal and maintenance of bladder CSCs
CMab1+CD44+) and bladder tumorigenesis by modifying O-linked
ycosylation and activating SHH signaling through Gli1. Inhibition of
adder tumor growth was also observed by the intravesical instillation of
ALNT1 siRNA and cyclopamine, an SHH inhibitor [137] (Figure 5D).
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onclusion and Future Prospective
the present review, we have provided current knowledge of the

ycosylation of CSCs in the maintenance of stemness, tumor
velopment, and metastasis. In CSCs, glycan modification of specific
arkers plays several roles, including adhesion, survival, invasiveness,
etastasis, pluripotency, stemness, drug resistance, and apoptosis. Mucin
ycoproteins and GFs also regulate stemness, tumorigenesis, drug
sistance, and metastasis in CSCs. However, the glycan modification on
ese mucins by specific GFs and its involvement in CSCs maintenance
e unclear and require exploration.
Glycome, the total glycan signature of a cell, is unique for each cell
pe. Glycans play a critical role in regulating diverse cellular
nctions, and it is therefore prudent to study the glycome of normal
em cells, CSCs, and non-CSCs so as to exploit the differences in
ycomes. The aberrant glycosylation can be used as a biomarker for
rly detection or to specifically target CSC populations. Under-
anding the role of CSC-specific GFs, the tumor-associated
rbohydrate antigens on CSC markers, and glycoproteins, including
ucins, will further open opportunities to identify new targets and
rategies for early detection and targeted therapeutics. Altered glycans
CSCs, for example, can be transferred clinically to a glycopeptide-
sed vaccine. These vaccines, in combination with FDA-approved
totoxic drugs, will help to eradicate CSCs and cancer cells in present
ncers and, critically, to inhibit tumor recurrence in many
sceptible cancers.
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