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Abstract

Motivation: Data normalization is essential to ensure accurate inference and comparability of gene expression
measures across samples or conditions. Ideally, gene expression data should be rescaled based on consistently
expressed reference genes. However, to normalize biologically diverse samples, the most commonly used reference
genes exhibit striking expression variability and size-factor or distribution-based normalization methods can be
problematic when the amount of asymmetry in differential expression is significant.

Results: We report an efficient and accurate data-driven method—Cosine score-based iterative normalization
(Cosbin)—to normalize biologically diverse samples. Based on the Cosine scores of cross-condition expression pat-
terns, the Cosbin pipeline iteratively eliminates asymmetric differentially expressed genes, identifies consistently
expressed genes, and calculates sample-wise normalization factors. We demonstrate the superior performance and
enhanced utility of Cosbin compared with six representative peer methods using both simulation and real
multi-omics expression datasets. Implemented in open-source R scripts and specifically designed to address nor-
malization bias due to significant asymmetry in differential expression across multiple conditions, the Cosbin tool
complements rather than replaces the existing methods and will allow biologists to more accurately detect true
molecular signals among diverse phenotypic groups.

Availability and implementation: The R scripts of Cosbin pipeline are freely available at https://github.com/MinjieSh/
Cosbin.

Contact: yuewang@vt.edu

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

High-throughput gene expression profiling provides the ability to
study many genes in an organism under different biological condi-
tions (Clarke et al., 2008). Between-sample normalization is essen-
tial to ensure accurate inference and comparability of gene
expression measurements across samples or conditions. Ideally,
such normalization should be based on a subset of consistently
expressed reference genes (CEGs) to correct for technical differen-
ces (non-biological) among samples (Evans et al., 2018).
Inaccurate normalization can significantly bias downstream

analysis, potentially rendering the choice of test statistics for hy-
pothesis testing (Zhao et al., 2020).

We and others have recognized that the direct application of
size-factor-based or distribution-based normalization methods to
biologically diverse samples can be problematic due to two major
as-yet unresolved problems. First, the most commonly used refer-
ence genes are unreliable as internal controls for normalization be-
cause of their striking expression variability in both experimental
and bioinformatic analyses (Jo et al., 2019). Second, while it is con-
ceptually logical to determine scaling factors or global transforma-
tions based on the global distribution of many expressed genes when
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the amount of asymmetry in the differential expression is high, this
global adjustment (scaling or transformation) strategy may bias true
differential expression toward the null (Fig. 1a) (Evans et al., 2018;
Hicks and Irizarry 2015; Johnson and Krishnan 2022). The data-
driven assessment tool quantro was developed to guide the choice of
an appropriate normalization method using global transformations
(Hicks and Irizarry 2015). A few normalization-by-testing strategies
have also been proposed to mitigate the impact of asymmetrically
and differentially expressed genes (aDEGs) with limited success
(Evans et al., 2018; Sun et al., 2013; Wang et al., 2002).

To specifically address the impact of significant asymmetry in
the differential expression on normalizing biologically diverse sam-
ples, we report here a Cosine score-based iterative normalization
(Cosbin) method that eliminates aDEGs, identifies ideal CEGs
(iCEGs) and calculates sample-wise normalization factors by equili-
brating expression levels of iCEGs (Fig. 1). The Cosbin tool per-
forms reference-free multiple normalizations across different
biological conditions and is applicable to multi-omics data. As a
novel normalization-by-testing strategy (Evans et al., 2018), the
Cosbin framework makes no assumption that the total expression is
the same or that differential expression across differential experi-
mental conditions is approximately symmetrical and thus comple-
ments rather than replaces existing methods (Evans et al., 2018;
Johnson and Krishnan 2022). One additional benefit of the Cosbin
tool is the concurrent detection of marker genes (MGs) and iCEGs
(Lu et al., 2022) (Supplementary Information).

The Cosbin software is implemented in open-source R scripts
(Fig. 1). We demonstrate the effectiveness of the Cosbin strategy,
in comparison with six representative peer methods (three size-
factor-based, two global-adjustment and one normalization-by-
testing) (Evans et al., 2018; Johnson and Krishnan 2022), using
realistic mixture simulations and quantitative accuracy measures
against ground truth. We also report biomedical case studies
where Cosbin is used to normalize gene expression and proteo-
mics data from biologically diverse samples (Herrington et al.,
2018; Parker et al., 2020). The Cosbin tool will allow biologists
to more accurately detect true molecular signals among diverse
phenotypic groups.

2 Methods

2.1 Eliminating asymmetric DEG and interim

normalization
Because a few highly expressed genes can account for a large share
of total expression, overall differential expression is asymmetric
across conditions (e.g. grouped or diverse samples) when the num-
ber or magnitude of up/down-regulated expressions in each condi-
tion is unequal (Fig. 1a, Supplementary Fig. S1) (Evans et al., 2018).
In the problem formulation, for simplicity, we focus our discussions
on the basic yet challenging case of multiple grouped samples.
However, our results hold for diverse individual samples.

Mathematically, an aDEG iaDEG; k associated with group k is
defined as a gene expressed significantly high in group k while uni-
versally low in any other groups (expressed in group k as exclusively
as possible), approximately

xk iaDEG; k

� �
� 0;

xl 6¼k iaDEG; k

� �
� 0;

(
(1)

where, xk iaDEG; k

� �
and xl 6¼k iaDEG; k

� �
are the averaged expressions

of gene iaDEG; k in groups k and l, respectively (Fig. 1). Accordingly,
the cross-group expression pattern of an aDEG can be represented
concisely by the Cartesian unit vectors êk, readily serving as the
ground reference for scoring de novo aDEGs (Fig. 1b). Fundamental
to the efficiency of Cosbin is the newly proposed score cos x ið Þ; êk

� �
that measures directly the similarity between the cross-group expres-
sion pattern x ið Þ ¼ x1 ið Þ; x2 ið Þ; . . . ; xK ið Þ

� �
of gene i and the refer-

ence aDEG expression patterns of constituent groups in scatter
space, where K is the number of constituent groups. Specifically, for
gene i and group k, the aDEG score is given by

taDEG ið Þ ¼ argmax
1� k�K

cos x ið Þ; êk

� �
¼ argmax

1� k�K

xk ið ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
j¼1 xjðiÞ
� �2q ; (2)

where the ‘max’ operation in (2) is applied to address significantly
asymmetric differential expressions among multiple groups. Because

Fig. 1. Cosbin concept and framework. (a) Toy illustration of asymmetric differential expression and resulting biased individual readouts: Genes 1 and 2 (green) are iCEGs,

Gene 3 (orange) is aDEG, while common total readout count produces biased between-sample normalization where two iCEGs become differentially expressed and one aDEG

becomes less differentially expressed. (b) Geometrical locations of significant aDEGs (red, corners), iCEGs (green, center) and general DEGs (blue, the rest), in the scatter sim-

plex of data matrix. (c) Overall workflow of Cosbin algorithm with two major consecutive iterative loops
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x ið Þ is confined within the first quadrant where the central vector is
the ‘all-ones’ vector 1

!
, we have 1=

ffiffiffiffi
K
p

< taDEGðiÞ < 1.
Impactful aDEGs with higher scores are sequentially identified

and removed then interim normalization is performed by equilibrat-
ing expression levels for the remaining genes, and Cosbin iterates to
the next round of aDEG identification and interim normalization
(Wang et al., 2002). Sequential elimination of impactful aDEGs
should ease the asymmetry in differential expression across groups,
reduce normalization bias and improve the efficiency of identifying
the next aDEG. Iterations continue until aDEG identification or in-
terim normalization converges at a stable point.

2.2 Identifying ideal CEGs and final normalization
We finalize normalization by identifying iCEGs and determining
normalization factors across groups and individual samples.
Mathematically, the cross-group expression pattern of an iCEG can
be represented concisely by the ‘all-ones’ vector 1

!
(Evans et al.,

2018), serving as the ground reference for scoring CEGs (Fig. 1b).
Accordingly, the iCEG score is given by

tiCEG ið Þ ¼ cos x ið Þ; 1
!� �

¼
PK

j¼1 xj ið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K
PK

j¼1 xj ið Þ
� �2q ; (3)

where 1=
ffiffiffiffi
K
p

< tiCEGðiÞ < 1. Once iCEGs are identified, normaliza-
tion is refined by equilibrating expression levels for iCEGs and the
algorithm iterates to the next round of iCEG identification (Evans
et al., 2018; Wang et al., 2002). The iterations between iCEG identi-
fication and re-normalization continue until iCEG identification or
re-normalization converges at a stable point.

2.3 Cosbin workflow and software
The Cosbin workflow consists of six major analytic steps (Fig. 1c):

1. Initial normalization. An initial between-sample normalization

is performed using total count (Evans et al., 2018; Wang et al.,

2002).

2. Data cleaning. Genes whose norms x ið Þ
		 				 		 are lower or higher

than pre-fixed thresholds are removed as noise or outliers.

3. aDEG score and removal. For each remaining gene, score

argmax1� k�K cos x ið Þ; êk

� �
is calculated and the top ranked

aDEG is iteratively eliminated.

4. Interim normalization. The rescaling factor per condition/sample

is determined by the total count of non-aDEGs and used to nor-

malize the remaining genes.

5. iCEG score and selection. For each remaining gene, score

cos x ið Þ; 1
!� �

is calculated and the top iCEGs are selected.

6. Final normalization. The rescaling factor per sample is deter-

mined by the total count of iCEGs and used to normalize all in-

dividual genes. Within the loop comprising Steps 5 and 6, a

sequence of increasing score thresholds may be applied to stabil-

ize normalization.

We implemented the Cosbin workflow in R script and performed
a community-trial software testing (Supplementary Information).
The R script is open-source at GitHub and is distributed under the
MIT license. The Cosbin software tool is easy to use and applicable
to multi-omics data. Importantly, a group label on each sample is
required in the input, and the output file contains the scores for indi-
vidual genes belonging to either aDEGs or iCEGs.

2.4 Performance index
We emphasize that the Cosbin strategy aims to address normalization
bias due to the impact of significant aDEGs. In simulation studies, we
proposed four quantitative criteria to comparatively evaluate the per-
formance of Cosbin and peer methods against the ground truth
embedded in realistic simulations (Supplementary Information). To de-
termine the location correctness of iCEGs against ground truth, we

used the (i) average Cosine score in degree and (ii) average mean-
squared-error of log-fold-change (LFC-MSE), which measure the dis-
location of iCEGs from the ground truth after normalization by
Cosbin and peer methods (Supplementary Fig. S8) (Evans et al., 2018).
As these genes are iCEGs, if normalization is performed correctly then
both the average Cosine score in degrees and LFC-MSE between sam-
ples of different conditions should be close to 0. For studying the im-
pact of various normalization strategies on downstream differential
analysis, we used (iii) the whole or partial receiver operating character-
istics (ROC/pROC) curve and (iv) the area under ROC curve (AUC/
pAUC) in order to assess the sensitivity and specificity of detecting gen-
eral DEGs after normalization by Cosbin and peer methods (Evans
et al., 2018; Jo et al., 2019). In our benchmarking studies, we proposed
two quantitative criteria to evaluate the impact of different normaliza-
tion methods on downstream marker gene (MG) detection among bio-
logically diverse samples (Parker et al., 2020), namely (v) P1 index and
(vi) average deviation degree (ADD).

3 Results

We conducted three phased experiments to evaluate the perform-
ance of Cosbin and its R software tool, Specifically, we performed
comparisons between Cosbin and six peer methods using realistic
simulation data, assessment of the impact of Cosbin on detecting
MGs among many groups using benchmark gene expression data,
and a biomedical case study applying Cosbin to real proteomics
data.

3.1 Comparative evaluation of Cosbin and peer

methods using simulation data
We conducted extensive experiments to evaluate the performance of
Cosbin and six peer methods using simulation data (Evans et al.,
2018) (Supplementary Information). As is widely recognized, the
evaluation of biased normalization due to aDEGs in real data is very
difficult in practice (Zhao et al., 2020). Thus, the performance of
methods addressing the impact of aDEGs must be quantitatively
evaluated using simulation data embedded with ground truth (Sun
et al., 2013). The six peer methods in our comparison consisted of
three size-factor-based approaches (i) Total Count (Evans et al.,
2018), (ii) Trimmed Mean of the M-values in edge R (TMM/edgeR)
(Robinson and Oshlack 2010), (iii) Differential Expression analysis
of RNA-Seq (DESeq2) (Love et al., 2014); one normalization-by-
testing approach, (iv) Differentially Expressed Gene Elimination
Strategy (DEGES) (Sun et al., 2013); and two global-adjustment or
transformation approaches, (v) Cumulative-Sum Scaling (CSS)
(Paulson et al., 2013) and (vi) smooth quantile normalization
(qsmooth) (Hicks et al., 2018). DEGES is not a self-contained nor-
malization method but an add-on preprocessing step to improve the
TMM/edgeR method (Sun et al., 2013).

Simulation data were generated either from a mixture of
Dirichlet and truncated normal distributions (mixture simulation) or
by using the simulateReadCounts function in Tag Count
Comparison (TCC) R package (TCC simulation) (Sun et al., 2013).
Each simulated data matrix contained 1000 genes with 168 iCEGs
(green, 16.8%), 232 general DEGs (blue, 23.2%) and 600 aDEGs
(red/orange/pink, 60%), across 3 groups with 10 replicates per

group. The iCEGs are determined by cos x ið Þ; 1
!� �

� 0:95, and the

percentages of upregulated aDEGs were 10%, 30% and 60% for
each of the three groups, respectively. The aDEGs are generated
from a truncated normal distribution centered at êk in the mixture
simulation (Supplementary Fig. S2) and are generated with a pair-
wise fold-change of 10 in TCC simulation (Supplementary Fig. S5)
(Sun et al., 2013).

The average deviation-in-degree of cos x ið Þ; 1
!� �

values were
used to evaluate the accuracy of iCEG restoration and discriminative
accuracy was evaluated using both ROC/pROC curves and AUC/
pAUC values to assess ability to distinguish between general DEGs
and iCEGs (e.g. blue versus green) after normalization by Cosbin
and six alternative and previously published (peer) methods
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(Supplementary Information). The experimental results are summar-
ized in Table 1, Supplementary Table S1 and S2, Figure 2, and
Supplementary Figure S4. In both mixture and TCC simulation stud-
ies, Cosbin consistently outperforms all six peer methods in terms of
lower average dislocation of iCEGs (Table 1, Supplementary Tables
S1 and S2) and higher AUC/pAUC of detecting DEGs (Table 1,
Fig. 2h, Supplementary Fig. S2). Note that the relative performances
of the six peer methods assessed in our experimental comparisons
are consistent with previous reports in similar comparison studies
(Evans et al., 2018; Johnson and Krishnan 2022; Sun et al., 2013).
Notably, in terms of addressing the significant asymmetry in differ-
ential expression across multiple conditions, three popular
size-factor-based methods (Total count, TMM/edgeR and DESeq2)
perform relatively well, while two popular distribution-based meth-
ods (CSS and qsmooth) do not perform well. The poor performance
of CSS is expected because CSS was designed specifically to normal-
ize ‘sparse’ expression profiles (marker-gene survey data) (Paulson
et al., 2013) (Supplementary Information).

While DEGES performed comparatively well in the TCC simula-
tion study (Supplementary Fig. S2, Supplementary Table S2), it per-
formed poorly in the mixture simulation study (Fig. 2d and h, Table 1,
Supplementary Table S1). This outcome was expected because TCC

simulation may not represent a typical case of biologically diverse sam-
ples, see Supplementary Figure S1 (more blue-DEGs in mixture simula-
tion) versus Supplementary Figure S5 (fewer blue-DEGs in TCC
simulation). However, TCC simulation may not represent a mature
simulation tool for analyzing multiple conditions, as acknowledged
previously by its authors (Sun et al., 2013). Additional experimental
results and discussion are presented in Supplementary Information
(Supplementary Figs S3, S6 and S7, Supplementary Tables S1 and S2).

We next assessed how the performance of Cosbin changes as the
number of iCEGs changes, such as when the iCEG subset is very small
in either total number or as a proportion. To this end, we have con-
ducted additional experiments using different numbers (50, 100 and
150) and proportions (5%, 10% and 15%) of iCEGs identified and
used for determining normalization factors in the Cosbin pipeline
applied to our simulation studies. The experimental results are sum-
marized mainly in Figure S4, and additionally in Figure 2 and Table 1
(# iCEGs¼168, the fixed number of simulated iCEGs). These results
show that the performance of Cosbin remains robust even when using
a small number of iCEGs, as was quantitatively measured by both the
accuracy of iCEG restoration (average dislocation) and AUC values of
DEG detection. To evaluate how the performance of global adjustment
methods changes with different amounts of asymmetry in differential
expression, we conducted simulation studies with varying level of
aDEG imbalance. The experimental results on CSS and qsmooth are
summarized in Supplementary Figures S11 and S12.

3.2 Assessment of Cosbin impact on marker gene

quality using benchmark dataset
We assessed the impact of between-sample normalization by Cosbin
and two peer methods (Total Count and DEGES/TCC) on MG quality
using a benchmark gene expression dataset (GSE28490 comprised of
K¼5 groups). Total Count represents the baseline method and
DEGES/TCC represents the most competitive peer method (Evans
et al., 2018; Zhao et al., 2020). The definition of MG and related dis-
cussion are given in Supplementary Information. The quality of MGs is
evaluated quantitatively by:

P1 ¼
1

MðK� 1Þ
XM

i¼1

XK

j¼1

xj iMGð Þ
maxkxk iMGð Þ � 1


 �
(4)

where, M is the number of MGs, and 0 � P1 � 1. By the definition
of MG (Parker et al., 2020), an ideal MG expression matrix corre-
sponds to a row-permutation matrix with its minimum zero value

Table 1. Average dislocation of iCEGs (no. of iCEGs¼ 168) in

degree and AUC of detecting general DEGs (no. of DEGs¼ 232)

after normalization by Cosbin and six peer methods, summarized

from mixture simulation studies

Methods Average dislocation

of iCEGs in degree

(mixture simulation)

AUC of detecting

general DEGs

(mixture simulation)

Total count 18.29� 0.75

TMM/edgeR 17.46� 0.81

DESeq2 15.28� 0.82

DEGES/TCC 17.63� 0.80

CSS 28.81� 0.65

qsmooth 18.91� 0.73

Cosbin 1.42� 0.99

Note: Note that the maximum possible iCEG dislocation in this case is

about 55�.

Fig. 2. Comparative evaluation of Cosbin and six peer methods using mixture simulation data. (a–g) The location of iCEGs (green, # iCEGs¼168), significant aDEGs (red/or-

ange/pink, # aDEGs¼ 600), and general DEGs (blue, # DEGs¼232), restored by Cosbin and six peer methods after normalization. (h) The ROC curves of detecting general

DEGs against iCEGs by Cosbin and six peer methods
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attained using the P1 index. The larger the P1 value, the poorer the
quality of MGs.

The top 144 MGs were detected after normalization by total count,
TCC and Cosbin; the geometric proximity of these MGs to the vertices
of the scatter simplex is shown in Figure 3a (color-coded). Results
show that Cosbin outperforms the Total Count and DEGES/TCC in
terms of higher MG quality. Notably, Cosbin achieves a lower
P1; Cosbin ¼ 1:566� 10�2 when compared with P1; TCC ¼ 1:929�
10�2 and P1; total�count ¼ 1:925� 10�2. These improvements by
Cosbin correspond to a relative reduction of 18.8% over TCC and
18.6% over total count in terms of P1 index. We further calculated the
ADD of the top 144 MGs in relation to the ideal reference, which is
summarized in Supplementary Table S4. Again, Cosbin achieves a
much lower ADD1; Cosbin ¼ 2:4210 when compared with
ADD1; TCC ¼ 2:7330 and ADD1; total�count ¼ 2:6980. These improve-
ments by Cosbin correspond to a relative reduction of 11.4% over
TCC and 10.3% over total count in terms of the ADD.

This benchmarking study also indirectly shows consistent rela-
tive performances of these methods, as was also observed in the mix-
ture simulation study, and that DEGES/TCC appears to be less
effective for normalizing biologically diverse samples. Additional ex-
perimental results and discussion are presented in Supplementary
Information (Supplementary Fig. S9, Supplementary Table S4).

3.3 Case study of Cosbin on subtype signature genes

using vascular proteomics data
We further demonstrated the utility of Cosbin on normalizing experi-
mentally acquired proteomics data from biologically diverse samples
for the purpose of detecting subtype signature genes (SSGs). The data-
set was obtained from a cohort of ‘pure’ fibrous plaque (FP, n¼4),
fatty streak (FS, n¼3), and normal (n¼3) vascular specimens (Fig. 3b)
(Parker et al., 2020). After normalization over 824 proteins by Cosbin,

31 SSGFP, 23 SSGFS and 18 SSGNL, are detected. The corresponding
heatmap is shown in Figure 3c, the scatter simplex with color-coded
SSG is given in Supplementary Figure S10, and the protein names are
listed in Supplementary Table S3.

Closer interrogation of the functions associated with the 72 SSG
linked to each subtype underscores the biological validity of this
analysis. Excitingly, this analysis allowed us to find some very inter-
esting hits in FS with a convincing link to Nuclear Factor of kappa B
(NFjB), an established mediator of early atherogenesis. The 14 of
23 SSGFS could be associated with NFjB signaling, including regu-
lators of NFjB activation such as MCAM, CAST, KTN1 and
NDRG1; coactivators of NFjB transcriptional activity DHX9 and
DDX1; and numerous known NFjB response genes UGDH,
CPNE3, ACAN, TMOD1, GNB2, CYBRD1, SND1 and TUBB6.
The NFjB pathway is implicated in early atherogenesis as a medi-
ator of proinflammatory signaling due to the retention of oxidized
lipid species. Of particular note, MCAM/CD146 is known to be a
major NFjB coactivator and has been identified as a key molecule
in the promotion and retention of foam cells, which are the defini-
tive feature of the FS tissue samples. The FP stage of the disease has
been well characterized by our group (Herrington et al., 2018;
Parker et al., 2020), to be upregulated in expression of proteins asso-
ciated with the acute phase (e.g. C7, A2M and SAA4), immune (e.g.
immunoglobulin genes), and apolipoprotein accumulation (e.g.
APOB, APOD, APOE, APOA1/2 and APOC3). The SSGNL have
functions related to cell adhesion (LIMS1, ITGA7, SPARCL1,
SPON1 and TLN2), muscle cell biology (KRT8, MYL9 and
SLMAP) and cytoskeletal organization (PDLIM1, SYNM, VASP
and NEXN).

Overall, the SSGs identified here reflect the established biological
distinctions between a quiescent contractile healthy normal artery,
the early stages of inflammatory response observed in FSs and the
late-stage inflammatory and immunogenic biology of later-stage

Fig. 3. Case study of Cosbin impact on the quality of MGs and SSGs using gene expression and proteomics data. (a) Scatter simplex of GSE28490 superimposed by the top

144 MGs (color-coded) detected after normalization by total count, DEGES/TCC and Cosbin, respectively; where black triangle indicates the ideal MG references.

(b) Anatomic description of the specimens. (c) Heatmap of top 72 SSGs detected after normalization by Cosbin on vascular proteomics data
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FPs. Furthermore, these data support prior contentions that early
intervention at the level of FS accumulation by the use of NFjB
modulating drugs may be a viable strategy for slowing atherosclerot-
ic progression.

4 Discussion

The Cosbin R package provides an efficient and accurate tool for
normalizing biologically diverse samples, specifically addressing the
challenge of bias due to significant asymmetry in differential expres-
sion across multiple conditions (Evans et al., 2018; Johnson and
Krishnan 2022). Our study demonstrated that the elimination of sig-
nificantly aDEGs is essential for obtaining good normalized data
across biologically diverse samples. The proposed cosine-based test
scores cos s ið Þ; êk

� �
or cos x ið Þ; 1

!� �
matched exactly the definition

of significantly aDEGs or iCEGs. The experimental results show
that Cosbin outperforms existing peer methods, particularly for
addressing biased normalization due to significant asymmetry in dif-
ferential expressions. While the case studies here involve only tran-
scripts and proteins, the Cosbin method and software tool are
readily applicable to other omics data types.

Biologically diverse samples may be defined by two subtly differ-
ent factors: a large portion of symmetric differential expression or a
large portion of asymmetry in differential expressions (Evans et al.,
2018). Global adjustment methods have been developed specifically
for use when there are many symmetrically and differentially
expressed genes. We thus recommend that users apply the quantro
tool in a first attempt prior to Cosbin in order to readily assess
whether some existing global adjustment methods designed for nor-
malizing biologically diverse samples (containing many general
DEGs but not aDEGs) are readily applicable (Hicks and Irizarry
2015; Hicks et al., 2018).

In relation to previous work, our goal of eliminating significant
DEGs from determining normalization factors has also been
addressed in prior work (Sun et al., 2013; Wang et al., 2002). For
example, pairwise fold change has been used to detect and eliminate
DEGs, and an iterative total count on remaining genes is calculated
to normalize samples between two groups (Wang et al., 2002).
Similarly, in DEGES, conventional statistical testing is first applied
to detect and eliminate DEGs; various size-factor-based methods are
then used to perform normalization (Sun et al., 2013). The unique
property of Cosbin is that two cosine scores are specifically designed
and used, one to detect and eliminate aDEGs and another to detect
iCEGs, across multiple conditions and the final sample-wise normal-
ization factors are determined only by the total count of iCEGs.
Furthermore, Cosbin is readily applicable to datasets containing
missing values, with the assumption that a sufficient number of
iCEGs contain no missing value, where normalization factors are
calculated by Cosbin using a complete data matrix and then used to
normalize the full data matrix in both interim and final
normalizations.

Potential limitations associated with the assumptions made by
the current Cosbin design include that no excessive global shift in
expression occurs (Evans et al., 2018), the distribution of remaining
general DEGs is approximately ‘symmetric’, a sufficient number of
iCEGs exist and technical effects impact iCEGs and general DEGs
alike across all biologically diverse samples. As a follow-up step,
batch effect adjustment may be performed when needed (Clarke
et al., 2008). For normalizing samples across multiple conditions, a
two-stage phased normalization strategy is recommended in which

within-condition samples (biologically similar) are firstly normalized
using Total Count and then between-condition samples (biologically
diverse) are then normalized using Cosbin (Zhao et al., 2020). For
evaluating normalization performance, while PCR data are often
used as a ‘gold standard’ to determine ‘true’ differential expression,
we note that the practice of treating PCR as the ‘ground truth’ may
not always be justified: there has been concern over possible errors
in PCR data (Evans et al., 2018).
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