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Boundary conductance in macroscopic bismuth
crystals
Woun Kang 1,5, Felix Spathelf 2,3,5, Benoît Fauqué 3, Yuki Fuseya 4 & Kamran Behnia 2✉

The interface between a solid and vacuum can become electronically distinct from the bulk.

This feature, encountered in the case of quantum Hall effect, has a manifestation in insulators

with topologically protected metallic surface states. Non-trivial Berry curvature of the Bloch

waves or periodically driven perturbation are known to generate it. Here, by studying the

angle-dependent magnetoresistance in prismatic bismuth crystals of different shapes, we

detect a robust surface contribution to electric conductivity when the magnetic field is aligned

parallel to a two-dimensional boundary between the three-dimensional crystal and vacuum.

The effect is absent in antimony, which has an identical crystal symmetry, a similar Fermi

surface structure and equally ballistic carriers, but an inverted band symmetry and a topo-

logical invariant of opposite sign. Our observation confirms that the boundary interrupting the

cyclotron orbits remains metallic in bismuth, which is in agreement with what was predicted

by Azbel decades ago. However, the absence of the effect in antimony indicates an intimate

link between band symmetry and this boundary conductance.
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B ismuth is a semimetal with an extremely low density of
highly mobile carriers of both signs1–3. The long Fermi
wavelength of its carriers extends over several tens of lattice

parameters. Therefore, only extended defects (such as disloca-
tions) can decay the charge current. In crystals lacking such
spatially extended disorder, carriers become ballistic4, and their
mobility (and as we will see below their magnetoresistance) easily
exceeds any other solid hitherto explored5.

Recent research has shown that an extended Dirac Hamilto-
nian combined to the Fermi surface structure derived by a tight-
binding model6 can explain the complex angle-dependent Landau
spectrum of electrons and holes7. The approach successfully
accounts for the total evacuation of one or two electron pockets at
strong magnetic fields aligned along different axes8. The angle-
dependent magnetoresistance and its rich structure9 are also
accessible to semiclassical transport theory treating mobility as a
tensor9.

Open questions remain, however. The origin of the loss of
rotational threefold symmetry in presence of strong magnetic
fields9–11 is yet to be understood. Such a ‘nematicity’ was also
observed on the surface of bismuth crystals12, as well as in other
solids13. In addition to ‘valley nemeticity’14,15, other theoretical
possibilities for its origin were proposed16.

Another open question is the topology of the electron wave
function17,18, its consequences for the metallic surface states in
bismuth19 and the evolution of the latter with thickness and Sb
substitutions20. The topology of surface states and their status in
the trivial/non-trivial dichotomy has been a subject of ongoing
debate21–27. A recent popular theory identifies bismuth as a
higher-order topological solid with topologically protected hinge
states23. This hypothesis has been invoked to explain the
experimental observation of ballistic transport in micrometer-
long bismuth nanowires28.

Here, we present a study of magnetoresistance in prismatic
crystals of bismuth with ballistic carriers with unexpected con-
sequences for both these issues. By choosing specific crystal-
lographic planes as faces of the prisms, we uncover a specific
contribution to electric conductivity when the magnetic field is
aligned parallel to a two-dimensional boundary between the
three-dimensional crystal and vacuum. The absence of this effect
in antimony crystals of identical shapes points to the role played
by the band structure topology in tuning the edge-bulk corre-
spondence in macroscopic crystals in the high-field limit
(ωcτ≫ 1). It confirms that the interruption of cyclotron orbits at
the boundary of a macroscopic three-dimensional crystal can
generate a highly conducting boundary state in which bulk
magnetoresistance is absent29,30.

It is known that a periodically driven Hamiltonian can provide
topological protection in the so-called Floquet systems31–33. In
presence of quantizing magnetic fields, cyclotron orbits inter-
rupted at the edge may be conceived as a periodical perturbation
to the local electrons, but we are not aware of any available theory
on this.

Our results identify the source of the loss of rotational sym-
metry and apparent ’nematicity’9–11 in bismuth crystals. The
existence of distinct edge states surrounding bulk states would
also explain why identical bismuth tilted crystals across a twin
boundary can keep different chemical potentials at high magnetic
field7.

Results
Samples, carrier mobility, and orbital magnetoresistance. The
bismuth (Bi) and the antimony (Sb) crystals used in this study are
listed in Table 1. The residual resistivities are remarkably low,
considering the low carrier density of these two semimetals

(n= p= 3 × 1017 cm−3 in bismuth and n= p= 5.5 × 1019 cm−3

in antimony6). For Bi, ρ0= 0.18 μΩ cm corresponds to an average
mobility of <μe+ μh>= 1.2 × 108 cm2 V−1 s−1. For Sb, a residual
resistivity of ρ0= 0.07 μΩ cm corresponds to an average mobility
of <μe+ μh>= 1.7 × 107 cm2 V−1 s−1. These mobilities exceed
those of the samples used in previous studies of magnetoresis-
tance on Bi8–10 and Sb34.

Note that the average mobility deduced from residual
resistivity ignores the fact that in presence of anisotropic Fermi
pockets of electrons and holes, the electrons and holes in different
pockets and along different orientations have different mobilities.
It is safe to assume that some carriers are ballistic given the size
dependence of the residual resistivity35.

Carrier mobility in Bi is probably the highest known in any
solid. Bi crystals with a RRR of ≃600 were reported in old
scientific literature (Supplementary note 1, see Supplemental
Material for more details). However, the high-field magnetore-
sistance of such samples was not reported before. Bismuth
samples subject to pulsed magnetic fields8,36 were small pieces cut
from larger crystals and hosted extended scattering centers such
as twin boundaries and dislocations. The presence of such
disorder led to a shorter electronic mean free path and a
significantly lower magnetoresistance compared to the crystals
studied here.

The typical magnetoresistance in our crystals is shown in
Fig. 1. One can see that the 14 T magnetoresistance of the Bi

Table 1 Details of the samples used in this study.

Sample Cross
section

Face
orientation

RRR ρ0 (nΩ cm)

Bi-Tri-1a Triangle C2 323 400
Bi-Tri-2a Triangle C1 485 270
Bi-Tri-1b Triangle C2 576 220
Bi-Tri-2b Triangle C1 518 190
Bi-Cub-1 Square Low symmetry 393 260
Bi-Cub-2 Square C1/C2 683 180
Sb-Tri-1 Triangle C2 3260 7.1
Sb-Tri-2 Triangle C1 3270 8.7

All cross sections were equilateral. Samples with the same type of cross section had identical
dimensions (triangle: 4 × 4 × 4mm3, square: (5 mm)3). The face orientation refers to the
crystallographic plane of the faces parallel to the orientation of the current which was always
along the C3 axis, i.e., in Bi-Tri-1a, the C2 crystal axis is perpendicular to the three rectangular
faces of the triangular prism. (See the insets of Fig. 4 for the visualization of the four types of
geometry).
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Fig. 1 Amplitude of magnetoresistance. The resistivity increases by 7 to 8
orders of magnitude upon applying a magnetic field of 14 T along a C1 axis.
In Bi, a downward deviation from B2 behavior at high magnetic field is
visible. For Bi-Cub-2, ρ(B= 14 T)/ρ(B= 0)= 1.4 × 108 and for Sb-Tri-2,
ρ(B= 14 T)/ρ(B= 0)= 2.2 × 107.
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sample with RRR= 683 is orders of magnitude higher than what
was observed in WTe2 at 60 T5,37. The latter was dubbed
‘extremely large magnetoresistance’ by many authors38. However,
such a large non-saturating magnetoresistance was reported by
Kapitza back in 192839 and is a generic feature of low-density
semimetals40.

Triangular prismatic crystals: Bi vs. Sb. Bismuth and antimony
crystallize in the rhombohedral A7 crystal structure shown in
Fig. 2a. The three axes of high symmetry are known as trigonal
(or C3), binary (C2), and bisectrix (C1)1,2. As seen in Fig. 2b, in
the trigonal plane, there are three C1 and three C2 axes, which are
equivalent upon 2π/3 rotation. Our experiments consisted in
measuring the magnetoresistance of Bi and Sb crystals with the
electric current applied along C3 and the magnetic field rotating
in the trigonal plane. The orientation of the magnetic field is
given by θ, which is defined as the angle between the field and the
C1 axis. As reported previously9,10, despite the constant angle
between current and field, orbital magnetoresistance varies with
angle reflecting the in-plane anisotropy of the Fermi velocity in
the three electron pockets.

Our main observation is illustrated in Fig. 2c. It shows the
angular dependence of electrical conductivity σ at a magnetic
field of 12 T and 2 K in a pair of Bi crystals tailored identically
as triangular prisms. (Note that since the Hall resistivity is
negligible compared to the magnetoresistance, σ ≈ 1/ρ). The
only difference between the two crystals was that in one case
each of the three square faces of the prism was a binary
(C2) plane, while in the other case, it was a bisectrix (C1) plane.
The angle-dependent magnetoresistance is clearly different in
the two crystals. In one there are conductivity peaks each time
the field is along a bisectrix axis. In the other, there are minima
(instead of maxima) at the same field orientations.

The same experiment was performed in a pair of Sb crystals
tailored in the same way as the bismuth crystals. As one can see in
the figure, no difference is visible between the two crystals.

Thus, angle-dependent magnetoresistance depends on the
choice of specific crystal planes as faces of each prism in bismuth
crystals, but not in antimony crystals. We reproduced this
observation in two other pairs of Bi crystals and one other pair of
Sb crystals.

Identifying the source of excess conductivity in bismuth. The
shape dependence of the orbital magnetoresistance sheds light on
the origin of the loss of the threefold symmetry in bismuth
crystals of various geometry9,10. As reported previously9,10, this
effect emerges only at sufficiently low temperature and high
magnetic field. Let us now consider the amplitude of the required
magnetic field.

Figure 3 shows the change of angle-dependent conductivity
with temperature in a pair of Bi triangular prisms at two different
fields, namely B= 14 T and B= 0.2 T. The non-trivial evolution
of angle-dependent magnetoconductivity can be quantitatively
described by invoking the anisotropy of the effective mass and the
evolution of scattering time and carrier density among pockets
with temperature and magnetic field. At B= 0.2 T and T= 40 K,
angle-dependent magnetoconductivity displays a star-like shape.
With cooling, the anisotropy is lowered due to a partial
compensation of the mass anisotropy by the emerging anisotropy
in the scattering time4. At B= 14 T, the anisotropy of mobility is
compensated by an anisotropy in the distribution of carriers
among the three pockets8,9,41.

As can be seen in Fig. 3, at both fields, the two samples show an
identical angle-dependent conductivity at 40 K, but not at low
temperature. Upon cooling, additional features emerge in the first
triangular prismatic crystal, which are absent in the second one.
Now, at B= 14 T, all electrons are confined to their lowest

Fig. 2 Crystal structure, triangular prisms, and angle-dependent magnetoconductance. a Left: Rhombohedral crystal structure of bismuth and antimony.
C1, C2, and C3 refer to bisectrix, binary and trigonal axes. Note that all atoms are not shown and d1 > d2. Right: Projection to the trigonal plane. The central
atom is surrounded by its first (in green), second (in blue), and third (in yellow) neighbors. Atoms with bold black rings belong to the same sub-lattice.
b Experimental configuration for measuring angle-dependent magnetoresistance. The current electrodes were made large enough to cover most of the
surface and the voltage electrodes were small circles. c Angle-dependent magnetoconductivity in two triangular prism-shaped crystals which are identical
in shape, but whose faces are tilted by 30 degrees. In Bi (left), the low-temperature angle-dependent magnetoresistance is dissimilar in the two samples,
but in Sb (right), they remain identical. Fine features in the angle-dependent conductivity of Sb are caused by evacuation of Landau levels upon rotation.
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Landau level, but not at B= 0.2 T. This implies that the observed
shape dependence of magnetoconductivity does not require
proximity to the quantum limit ℏωc ≈ EF, but the passage to the
high-field limit ωcτ > 1.

As for the high-field limit, two relaxation times are to be
distinguished. The Dingle scattering time τD, extracted from
quantum oscillations is almost fifty times shorter than the
transport scattering rate τtr in Bi42. Such a large difference
between τtr and τD has been observed in several other dilute
metals35,43,44. The semiclassical high-field limit (ωcτtr ≈ 1) is
satisfied when the cyclotron radius becomes shorter than the
mean free path. The quantum high-field limit (ωcτD ≈ 1) is
satisfied when the distance between Landau levels becomes
smaller than the broadening caused by temperature and disorder.
At T= 40 K, the first criterion is satisfied, but not the second and
there is no shape dependence. As the sample is cooled down, the
shape dependence and quantum oscillations emerge concomi-
tantly (Supplementary Note 2 and Supplementary Fig. 1, see
Supplemental Material for more details). Therefore, one can
safely conclude that what matters is the ωcτD ≈ 1 criterion.

The angle-dependent Landau spectrum in each sample is revealed
by taking the second derivative of magnetoresistance. It remains
identical in the two samples in spite of the difference in the sheer
amplitude of the magnetoresistance (Supplementary Note 3 and
Supplementary Fig. 2, see Supplemental Material for more details).
This observation implies that their bulk Fermi surface is identical
and can therefore be excluded as the origin of the shape dependence.

The origin of the additional features in the angle-dependent
magnetoconductivity was pinned down by studying two other
samples with a square cross section. Samples dubbed Bi-Cub-1
and Bi-Cub-2 (see Table 1) were cubic samples with identical
dimensions. Both had two trigonal faces, but their four other faces
were different. In Bi-Cub-2, the four other faces were two pairs of
bisectrix and binary planes. On the other hand, in Bi-Cub-1, the
pairs of faces other than trigonal were not aligned along a high-
symmetry plane. They were rotated by a finite angle (≈π/4)
around the trigonal axis with respect to the two crystallographic
planes (see insets in Fig. 4).

Figure 4 compares the angle-dependent magnetoconductivity
of four Bi crystals with different shapes. The temperature and the
magnetic field are identical in all cases and the current is always
applied along the trigonal axis and the field is rotating in the
trigonal plane. Two samples are prisms with triangular cross
sections and two are cubes as detailed above. The magnitude of
conductance is roughly similar in the four samples, which have
comparable dimensions and mobilities. The striking difference is
the presence of additional peaks in magnetoconductance and
their angular locations. In all the samples, magnetoconductivity
peaks when the magnetic field is along the binary axis (B∥C2). On
top of these peaks, in all the samples there is another set of peaks,
which appear when the magnetic field is parallel to a face of the
sample.

In the two triangular prisms, these peaks appear with a
periodicity of π/3 and there are six of them. The difference
between the two is that in one case the surface peaks and the
binary peaks are concomitant and in the other there is a π/6 shift
between the two sets of peaks. In prisms with a square cross
section, on the other hand, the additional peaks appear with a
periodicity of π/2 and there are four of them. They occur each
time the field is parallel to one of the four faces. If this face
happens to be parallel to the binary axis (i.e., if it is a
crystallographic bisectrix plane), than the peak is more
pronounced, as shown in Fig. 4d. One can also see that when
distinct, the two types of peaks have different angular width and
slightly different amplitudes. The surface peaks (marked by blue
arrows) are typically twice wider and twice higher than the bulk
binary peaks (marked by red arrows).

This observation clearly establishes that the additional
contribution to conductivity emerges when the magnetic field
(kept always perpendicular to the charge current flowing along
the trigonal axis) lies parallel to a two-dimensional boundary of
the three-dimensional sample. Moreover, it does not matter at all
for this boundary to be a specific crystal plane. The magnitude of
the additional contribution remains the same when the boundary
in question is the binary plane, the bisectrix plane, or a low-
symmetry plane.

Fig. 3 The emergence of shape dependence with cooling. The evolution of angle-dependent magnetoresistance with cooling for B= 14 T (top panels) and
for B= 0.2 T (bottom panels). Note the emergence of a difference at low temperatures in both cases.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27721-7

4 NATURE COMMUNICATIONS |          (2022) 13:189 | https://doi.org/10.1038/s41467-021-27721-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


The boundary contribution and its relevant length scales.
Having demonstrated that the boundary conductivity emerges
whenever the magnetic field is parallel to one of the surfaces of a
prismatic crystal, let us now consider its evolution with
magnetic field.

The relative contribution of the boundary conductance to
the total conductivity can be estimated by subtracting the
angle-dependent conductivity in two triangular prisms with
different crystal planes as faces. This assumes that bulk
magnetoconductivity is identical in the two, which is reason-
able, but subject to caution given the slight difference in
mobility, which implies a difference in the expected magni-
tude of orbital magnetoresistance.

Figure 5 a shows the relative change in the conductivity
between sample Bi-Tri-1a and sample Bi-Tri-2a. What is shown
is the evolution of r ¼ σ#1�σ#2

σ#1þσ#2
with magnetic field and the angle

between field and the crystal axes. The dimensionless r
alternates between 0.2 and −0.2. Vertical red stripes show the
excess conductivity in sample 1 and vertical blue stripes show
the excess conductivity in sample 2. Remarkably, the width of
the stripes or their color does not vary with increasing magnetic
field. The relative amplitude of the excess boundary conductiv-
ity does not change even when the field increases by two orders
of magnitude and the amplitude of conductivity decreases by
almost four orders of magnitude.

Figure 5b shows the dependence of r on angle at B= 0.2 T and
B= 10 T. It is striking to observe how the two curves superpose
on each other, in spite of a 50-fold change in magnetic field. Thus,
the correction to conductivity brought by the B ∥ surface
configuration both in amplitude and in angular dependence does

not evolve with magnetic length ‘B ¼
ffiffiffiffi

_
eB

q

, which changes by a

factor of 7 between the two fields.
The data presented in Fig. 5b contains another important

feature. Within an angular window of ±4 degrees, we can fit each
peak with a cosðqθÞ function with q as a free fitting parameter.
The fact that a simple cosine fits the data implies that the excess
conductivity detected here is not singular, as observed in other
contexts45. Moreover, we find that when the surface becoming
parallel to the magnetic field was a bisectrix crystallographic plane
q= 20.3 ± 3 and when it was a binary crystallographic plane, it
was q= 8.1 ± 1. q quantifies the sharpness of the peak,
presumably caused by the anisotropy of the relevant length
scales. Now, the Fermi momentum and wavelength of electrons is
fourteen times longer along the bisectrix (C1) axis than along the
binary axis (C2)6. This is a consequence of the huge (200-fold)
anisotropy of the in-plane electron mass. Therefore, the
significant difference between the angular width of the excess
conductivity brings us to suspect a key role played by the Fermi
wavelength of electron pockets in any plausible scenario.

Discussion
Cyclotron orbits and the ‘static skin effect’. Decades ago, Azbel
and Peschanskii put forward the concept of a static skin effect at
high magnetic fields in metals29,30. This idea provides the
departing point of a plausible scenario to explain our observation.
In the semiclassical picture, the magnetic field bends the electron
trajectory. When the cyclotron radius is shorter than the mean
free path of carriers, there is a large magnetoresistance. In
semimetals, this magnetoresistance does not saturate even in the

Fig. 4 Angle-dependent conductivity peaks in samples with different shapes. Angle-dependent conductivity at T= 2 K and B= 12 T in four different Bi
samples a triangular prism Tri-1b; b triangular prism Tri-2b; c cubic sample Cub-1; d cubic sample Cub-2 (see Table 1). In all cases, conductivity peaks when
the field is along a binary axis (red arrows) and when the field is parallel to a face of the polygon (blue arrows). This implies that the shape dependence is
caused by an excess of conductance arising when the magnetic field is aligned with a flat boundary between the sample and vacuum.
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high-field limit. Now, at the surface of the sample, the cyclotron
orbits are interrupted and what matters is the scattering of the
carriers by the edge. If their collision results in a specular
reflection then the conductivity at the edge is much higher. As a
result, most of the current will flow near the boundaries of the
sample where orbital magnetoresistance is absent. This phe-
nomenon was dubbed ’static skin effect’ in analogy with the skin
effect in metals. The latter refers to the fact that the density of an

alternating current (AC) is largest near the surface of the con-
ductor and decreases exponentially with increasing depth. Note,
however, that the conductivity profile in the ’static’ version of the
skin effect has a completely different origin.

The large magnetoresistance of bismuth can be understood in
the semiclassical picture of cyclotron orbits shrinking with
increasing magnetic field (Fig. 6a). When the magnetic field is
parallel to a surface, within a thickness of the order of cyclotron
radius, electrons can conduct much better than in the bulk and
generate a sizeable contribution to the total conductivity (Fig. 6b).

However, this semiclassical scenario fails to explain two key
observations. The first is the fact that, as we saw above, the
amplitude of the effect is unchanged when the magnetic field is
changed by a factor of 50 (see Fig. 5). This is puzzling in the
‘static skin effect’ scenario where the distribution of current
depends on the ratio of the cyclotron radius and the effective
sample thickness30. As illustrated in Fig. 6c, increasing the
magnetic field will reduce the width of the cyclotron edge and will

Fig. 5 Field and angle dependence of the excess boundary conductance.
a Color plot of

σ#1�σ#2

σ#1þσ#2
at T= 1.55 K. Measurements were simultaneously

performed for both samples in a fixed magnetic field at intervals of 0.1 T
between 0 and 14 T. Values of

σ#1�σ#2

σ#1þσ#2
were calculated at each pair of

angle and field values and put into a matrix of 721 × 141 dimensions. A
commercial software (Origin from OriginLab Corp.) was used to generate
the color contour map. Red and blue stripes represent the excess and the
deficit of conductivity. b Angle dependence of

σ#1�σ#2

σ#1þσ#2
at B= 0.2 T and at

B= 10 T. The relative deficit and excess conductivity caused by field-
boundary alignment does not change significantly in spite of three orders of
magnitude change in the amplitude of bulk magnetoconductance. The angle
dependence also remains roughly identical for B= 0.2 T and B= 10 T.
Insets in panel b show cosðqθÞ fits to the data over a narrow angular
window (see text).

Bulk
B

Cyclotron edge

a)

c)

Smaller field Larger field

uncorrected
corrected

Expected conduc�vity
profiles:

Vacuum 

Fig. 6 Static skin effect. aWhen ωcτ≫ 1, bulk carriers whirl along cyclotron
orbits numerous times without being scattered. This yields a semiclassical
account of the large orbital magnetoresistance in compensated semimetals
with ballistic carriers like Bi. The cyclotron orbits are interrupted at the edge
of the sample (in green). When reflections are specular, magnetoresistance
is canceled in this region. b In this semiclassical picture, the excess of
conductance when the field is parallel to a surface arises thanks to
additional conduction along dissipation-free edges. c In a larger magnetic
field, the cyclotron edge is narrower and the difference between bulk and
boundary conductivities is larger. Therefore, the conductivity profile is
expected to evolve with increasing magnetic field. It is sketched for two
different possibilities: (i) the conductivity inside the cyclotron edge does
not evolve with depth (solid black line), and (ii) hybridization leads to a
smooth variation across the cyclotron edge (red dashed line).
Experimentally, the relative conductivity excess does not change
above 0.2 T.
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enhance the difference in the conductivity of the bulk vs. edge.
One may argue that these two tendencies may approximately
cancel out generating an additional conductivity which does not
vary much with the amplitude of the field. However, a perfect
cancellation would be mysterious given the difference in the
evolution of the magnetoresistance and the cyclotron radius. In
addition, how to explain the indifference of the angular width of
the peak to the magnitude of the magnetic field? The observation
implies that the current profile has remained the same despite a
50-fold shrink in the size of the cyclotron radius.

The second observation is the absence of this phenomenon in
Sb. One may be tempted to invoke a possible difference in surface
rugosity. However, there is no evidence for such a difference. In
addition, it is unlikely for a quantitative difference in surface
quality to totally erase the effect and make the outcome
qualitatively different.

The contrast between Bi and Sb can be traced to a fundamental
feature of their electronic properties involving the symmetry of
their band structure.

Band inversion and topological invariants: Bi vs. Sb. The third-
neighbor tight-binding model conceived by Liu and Allen6 gives a
successful account of the electronic band structure of bulk bis-
muth and antimony, as documented by numerous experiments.
The model quantifies hopping energies between first, second, and
third neighbors with unprimed (V), primed (V 0) and double-
primed (V″) parameters, respectively. The crystal lattice has two
sub-lattices, i.e., the unit cell includes two atoms. The third
neighbor of the original atom is the closest neighbor on the same
sub-lattice and both atoms reside in the same monolayer. The
three first and the second neighbor atoms belong to a different
sub-lattice and lie in other monolayers above and below the
original atom (see Fig. 2a). The 14 adjustable parameters of the
model were chosen to give the best agreement with experiment.
An additional parameter was spin–orbit coupling (SOC), λ, which
was taken to be 0.6 eV for Sb and 1.5 eV for Bi. This model gives a

reasonable account of the Fermi surface pockets of electrons and
holes and the direct and the indirect gaps of Bi and Sb6.

In 2007, Bi1−xSbx alloys were identified as the first bulk
topological insulators17,18,46, based on an important difference
between Sb and Bi band symmetries. The starting point of this
identification was the band inversion at the high-symmetry L-
point in the bulk Brillouin zone, found in this tight-binding
model, as well as in previous works47,48. The symmetry of the
wave function at the L-point can be classified into symmetric (Ls)
and antisymmetric (La) with respect to space inversion, where the
eigenvalues of parity operator are +1 for Ls and −1 for La. As one
can see in panels a and b of Fig. 7, in bismuth the conduction
band at the L-point is symmetric and the valence band is
antisymmetric, while the inverse is true in the case of antimony.

There are 8 high-symmetry (one Γ, one T, three X, and three L)
points in the Brillouin zone (Fig. 7c). They remain invariant
under inversion and time-reversal operators. At Γ-, T-, and X-
points, there is no difference in parity invariants between Sb and
Bi. On the other hand, there is one for the L-points. Kane and
collaborators argued that the difference in parity invariants at the
L-points leads to a Z2 topological invariant dichotomy between
the two systems. As a result, at zero magnetic field, topology of
the system is trivial in Bi and non-trivial in Sb18.

Let us briefly discuss what drives this band inversion. Both Bi
and Sb crystallize in the A7 rhombohedral crystal structure,
which can be assimilated to an assembly of two distorted FCC
sub-lattices. As seen in Table 2, there is a significant difference
between tight-binding parameters of Bi and Sb. Vppσ is the
hopping energy of sigma bonding of p-orbitals of the first
neighbors and V 0

ppσ is the same quantity for second neighbors.
One can see that their relative difference is much larger in Sb than
in Bi6. As a consequence, the Peierls gap is larger in Sb than in Bi.
The larger gap hinders the band crossing and the reversal of Ls/La
hierarchy.

In a conventional Peierls transition, the energy of the
symmetric band is lower than that of the antisymmetric
band49,50. (An intuitive picture of this hierarchy is sketched in

Fig. 7 Band inversion due to spin–orbit coupling. Band structure of a Bi and b Sb. In Bi, the gap between conduction and valence bands at the L-point is
small and the hierarchy between them is inverted from the ordinary hierarchy under the Peierls transition. The upper band is the symmetric Ls and the
lower is the antisymmetric La. c The Brillouin zone and its high-symmetry points. d, e Energies of Ls and La as a function of the magnitude of SOC for Bi and
Sb. The effective λ for Bi and Sb yielding the best fit to experiment are mentioned in Table 2. The energy hierarchy Ls/La is altered by SOC in Bi, whereas it is
not in Sb. All these calculations were carried out by using the Liu-Allen’s tight-binding model6.
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the next subsection.) This is exactly what happens in Sb.
However, the SOC can alter this energy hierarchy. In Fig. 7d
and e, we plot the energies of the conduction and valence bands at
the L-point for Bi and Sb as a function of the magnitude of SOC
using the Liu-Allen model. The conduction and valence bands of
Sb are hardly affected and the energy hierarchy is unchanged by
the SOC. On the other hand, the hierarchy is inverted by the SOC
for Bi. This hierarchy alternation happens only in Bi, because the
band gap (i.e., the lattice distortion) is much smaller and the SOC
is larger than in Sb. Actually, the bands of Sb would be inverted if
the SOC were unrealistically large (~20 eV).

Interestingly, the Ls and La bands are distinguished by the
parity inversion18,51.

Parity and symmetry of the wave functions. The gap opening at
the L-point originates from the Peierls distortion3,52. The real-
space image of the wave functions of conduction and valence
bands are depicted in Fig. 8 49,50. Peierls distortion can be
understood as a dimerization, where the lattice is distorted to
generate pairs as seen in Fig. 8a. (Each dimer corresponds to a
unit cell of Bi or Sb. Two atoms in the dimers are the first nearest
neighbor with each other (Fig. 2a). There are three Peierls chains
crossing at each atom in the rhombohedral structure.) The wave
functions of a single dimer are given in terms of the bonding and
anti-bonding orbitals. The wave function of the symmetric band
(ψs) is given by the periodic array of bonding orbitals, whereas the
wave function of the antisymmetric band (ψa) is given by that of
anti-bonding orbitals (Fig. 8b). It is clear from Fig. 8b that, in
absence of dimerization, the energy of ψs is degenerate with that
of ψa. (If one removes the dashed boxes from Fig. 8b, one finds
that the two wave functions are equivalent in an infinite system.)
Dimerization lowers the energy of ψs compared to ψa, because the
energy of bonding orbitals should be lower than that of anti-
bonding orbitals. The magnitude of the energy gap between ψs
and ψa is determined by the degree of dimerization, which is
roughly given by the difference between the intra- and inter-
dimer hopping, i.e., the difference between Vppσ and V 0

ppσ . It is
evident from Fig. 8b that ψs is symmetric and ψa is antisymmetric
for the space inversion, where the inversion center of the crystal
locates at the bond center in the dimer.

Now, let us consider the reflection of cyclotron orbits at the
boundary with these wave functions. We only consider specular
reflection normal to the surface for the sake of simplicity.
(Although the incidence angle is not restricted to be normal in
general, normal reflection is expected to play a major role.) By the
normal reflection, the wave vector of electrons changes as k to−k,

which corresponds to the parity operation P. The parity operation
results in Pψs=+ ψs and Pψa=− ψa18,47,48. The sign of the
antisymmetric wave function is changed by the reflection at the
boundary (Fig. 8) only for ψa. Therefore, naively, one expects a
qualitative difference in boundary reflection between ψs and ψa.
Further theoretical investigations are required to shed light on
this subject.

Electron topology at the cyclotron edge. The static skin effect
picture29,30 is a semiclassical approach which does not take into
account the phase of the electrons’ wave function. The inter-
ruption of cyclotron orbits was framed in a specular-diffusive
dichotomy. If the reflection is perfectly specular, momentum is
conserved and there is an additional contribution to conductivity.
The effect will weaken if the reflection becomes partially diffusive.
However, reflected electron waves can interfere with incoming
waves. The electronic Fabry interferometers employed in two-
dimensional electron gases53 are an eloquent demonstration of
this fact.

In a quantum treatment of the interruption of the cyclotron
orbits by sample boundaries, it is crucial to consider the fate of
the electron wave function and its phase following a mirror
transformation. As we saw above, quasi-particles residing in the
electron pockets have opposite symmetries in Bi and in Sb. The
symmetric conduction band of bismuth, in contrast to the
antisymmetric band of Sb, allows a constructive interference upon
a mirror reflection at the boundary. However, it remains to be
seen how this difference survives in presence of quantizing
magnetic field.

Even in the simple isotropic case, large-index Landau wave
functions have a non-trivial angular distribution in real space54,
which is to be affected by the zero-field anisotropy of the Fermi
momentum. The anisotropic cyclotron orbits of Bi surface states
have recently become accessible to experiment, thanks to
scanning tunneling microscopy studies12.

It is tempting to draw an analogy between the present context
and Floquet systems in which topological protection is provided
by a periodic perturbation31–33. At zero magnetic field, the
electronic surface states of a solid are distinct from bulk states by
the abrupt interruption of the lattice. There is another distinction,
which emerges at high magnetic field. The surface states are
periodically disturbed by cyclotron orbits of the bulk. This leads
to a spatio-temporal discrete translation symmetry55,56. An edge
atom at a given position and time is not instantaneously
equivalent to its neighbor. One of the two may be perturbed by
an electron from the bulk in its cyclotron orbit, in contrast to the
other. On the other hand, the two atoms remain equivalent if the
temporal periodicity is taken into account. In other words, the
discrete symmetries of space and time become intertwined:
ð r!; tÞ ! ð r!þ a!; t þ 2π

ωc
Þ. Future studies will tell if this analogy

plays any role in explaining our observation.
One of the motivations of the present study was the theoretical

proposal that bismuth is a higher-order non-trivial topological
system23. This was put forward to explain the origin of ballistic
transport in Bi nanowires detected by superconducting proximity
studies28. Note that the boundary ballistic transport detected in
our experiment is two-dimensional and does not appear to arise
from one-dimensional channels expected in the case of
topologically protected hinge states23.

In conclusion, we found that in bulk crystals of bismuth, there
is a robust contribution to conductance when the magnetic field is
aligned parallel to a two-dimensional boundary of the sample.
The absence of this effect in antimony implies that the difference
in symmetry of the conduction band has a significant outcome.

Table 2 A comparison of bismuth and antimony.

Parameter Bi Sb

d1 (Å) 3.5120 3.3427
d2 (Å) 3.0624 2.9024
μ 0.2341 0.2336
α 57∘ 19′ 57∘ 14′
Vppσ (eV) 1.854 2.342
V0
ppσ (eV) 1.396 1.418

Vppπ (eV) −0.600 −0.582
V0
ppπ (eV) −0.344 −0.393

V=V0ðσÞ 1.33 1.65
V=V0ðπÞ 1.74 1.48
λ (eV) 1.5 0.6

The nearest-neighbor distance, d1, and the second nearest-neighbor distance, d2, in Bi and Sb.
They are longer in Bi where atoms are larger. But, the relative distance between the two sub-
lattices, μ and the rhombohedral angle, α are almost the same. On the other hand, the tight-
binding parameters in Sb and in Bi are different6.
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A satisfactory explanation of our results is missing and remains
a challenge for theory. While the ‘static skin effect’ explains the
existence of boundary conductance in a macroscopic crystal, it
fails to explain its absence in antimony as well as the robust
behavior of the conducting channel in presence of strong
magnetic fields. We note that the semiclassical ‘static skin effect’
has not yet been formulated in a quantum-mechanical frame
incorporating the known contrast between the parity of the Bloch
waves in Bi and in Sb at the L-point. We argued that the latter
may affect reflection at the crystal boundaries. To the best of our
knowledge, this has not yet been addressed by theory.

Our result has implications for several puzzling observations
previously reported in bismuth. The loss of threefold symmetry in
transport measurements9,10 finds a natural explanation. It may
also be invoked to explain the loss of symmetry seen by
thermodynamic probes11. The anomaly caused by the evacuation
of a Landau level is a van-Hove singularity with a cut-off due to
disorder and finite size. The latter correlates with the shape of the
sample. This would imply that the finite size cut-off of the van-
Hove singularity may be different for different field orientations.
Thermodynamic measurements on samples with different shapes
and different sizes will be instructive to check this. Finally, our
observation may indicate that boundaries of a bismuth crystal in
presence of magnetic field provide a topological barrier. This
would provide a possible solution to the puzzle of distinct
chemical potentials between twinned crystals of bismuth7.

Methods
Bi and Sb crystals were commercially obtained through MaTecK GmbH, which
oriented and cut them to the desired shape and dimensions. The sample surface
was not polished and did not go through any other specific treatment. The
experiments were performed in two different locations (Ewha University and
ESPCI) and with two different set-ups. A home-made set-up was used in Ewha
University and a Quantum Design PPMS was used in ESPCI Paris. In both cases,
resistivity was measured with a standard 4-wire configuration and electrical con-
tacts were made with silver paste. In order to ensure the homogeneity of charge
flow, current electrodes were applied to a thick layer of silver paste (Dupont
4929N) covering most of the end surfaces of the prism except for a small circular
area in the center. Then a small island of silver paste was created in the center and
voltage electrodes were placed on it. At Ewha University, magnetoresistance was
measured with an AC method with a typical current of 100 μA at frequencies
between 13 and 17 Hz. For resistivity measurements as a function of temperature, a
DC method was used with a typical current of 1 mA. In Paris, measurements were
performed using currents between 1 mA and 5 mA and the resistivity option of the
PPMS in AC drive mode (50 Hz square wave excitation).

Data availability
All data generating the plots presented in this study can be obtained from the
corresponding author upon request.
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