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Abstract

The diversity among bacteriophages depends on different factors like ecology, temperature

conditions and genetic pool. Current study focused on isolation, identification and diversity

of phages from 34 sewage water samples collected from two different wastewater treatment

plants (WWTPs), King Saud University wastewater treatment plants (KSU-WWTP) and

Manfoha wastewater treatment plants (MN-WWTP) in Riyadh, Saudi Arabia. Samples were

analyzed by PCR and Next Generation Sequencing (NGS). Siphoviridae, Podoviridae and

Myoviridae families were detected by family-specific PCR and highest prevalence of Myovir-

idae 29.40% was found at MN-WWTP followed by 11.76% at KSU-WWTP. Siphoviridae

was detected 11.76% at MN-WWTP and 5.88% at KSU-WWTP. Lowest prevalence for

Podoviridae family (5.88%) was recorded at MN-WWTP. Significant influence of temporal

variations on prevalence of Myoviridae and Siphoviridae was detected in both WWTP and

MN-WWTP, respectively. Highest phage prevalence was obtained in August (75%), fol-

lowed by September (50%). Highest phage prevalence was recorded at a temperature

range of 29–33˚C. Significant influence of temperature on the prevalence of Myoviridae

phages was detected at MN-WWTP. Four bacteriophages with various abundance levels

were identified by NGS. Cronobacter virus Esp2949-1 was found first time with highest

abundance (4.41%) in wastewater of Riyadh. Bordetella virus BPP1 (4.14%), Dickeya virus

Limestone (1.55%) and Ralstonia virus RSA1 (1.04%) were also detected from samples of

MN-WWTP. Highest occurrence of Bordetella virus BPP1 (67%) and (33.33%) was

recorded at KSU-WWTP and MN-WWTP, respectively. Highest Bordetella virus BPP1

occurrence was recorded in September (50%) followed by August (40%). The findings of

study showed new insights of phage diversity from wastewater sources and further large-

scale data studies are suggested for comprehensive understanding.
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1. Introduction

Bacteriophages were identified with a potential capacity and specificity to infect certain bacte-

ria in various environments [1, 2]. Bacteriophages are known as the most widely distributed

population with 1031 phages and over a hundred million species frequently found in contami-

nated waters such as sewage water [3]. Different varieties of phages were reported in ecosys-

tems of various locations and found related to bacterial host diversity [4, 5]. For instance, 8.52

genetically different Escherichia coli per 10 E. coli isolates showed the great rate of E. coli diver-

sity that mainly led to great phage diversity [6]. Moreover, bacteriophages play a key role in

bacterial evolution by phage infection [7].

DNA amplification and sequencing have been used as a reliable and sensitive tool for

molecular characterization of bacteriophages [8]. Over a 95% of bacteriophages considered to

carry double-stranded DNA as their genetic material and infect over 130 bacterial genera [8].

Bacteriophages with enormous genome distribution among their hosts have the ability to

evolve along with their host cell evolution. Furthermore, phages genome variations studies

could help us to fully understand the evolutionary stages [9]. Whole genome sequencing is

considered as a reliable tool to identify bacteriophages [10]. However, next generation

sequencing (NGS) is currently known as the most accurate genome sequencing method for

sequences determination and provides data that can be compared with published genetic data-

bases. This data comparison could be utilized to detect mutations, genetic variations and evo-

lutionary stages by phylogenetic analysis [11].

On the other hand, temperature variations could affect the phage diversity in different habi-

tats [12, 13]. Moreover, other environmental factors could lead to dependent and independent

biological changes resulting in microbial diversity [14–16]. Furthermore, population density is

another significant factor that affects microbial diversity and consequently phages population

[17]. Impact of environmental changes on phage diversity and abundance has been reported

during wastewater treatment processes [18]. Therefore, the current study aimed at detection of

bacteriophage families from wastewater samples by using family-specific PCR analysis and

deep molecular characterization of bacteriophage isolates by means of metagenomics approach

for the assessment of phage diversity.

2. Materials and methods

2.1. Water sampling

A total of 34 untreated wastewater samples were collected with a frequency of one sample

per week from KSU-WWTP (24˚43’33.8"N 46˚36’27.9"E) and MN-WWTP (24˚35’12.0"N 46˚

43’53.0"E) in sterilized 500 ml safety containers during August—November, 2020 (i.e. seven-

teen samples from each WWTP). Temperatures were recorded on sample collection days from

the accuweather (https://www.accuweather.com/en/sa/riyadh) for Riyadh region, Saudi

Arabia.

2.2. Concentration of bacteriophages

Bacteriophages were concentrated by PEG precipitation method [19]. Briefly, 200ml of sample

was mixed with 25ml of glycine buffer, centrifuged at 8000 ×g for 30 minutes and supernatant

was filtrated by using 0.22-μm syringe filter. PEG 80g/L and NaCl 17.5g/L was added to the

200ml filtrate, stirred at 100 ×g at room temperature for 10 hours and centrifuged at 13,000 ×g
for 30 minutes. The pellet was dissolved in 1ml of phosphate buffer saline (PBS) and stored at

-80˚C.
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2.3. Bacteriophages nucleic acid extraction, PCR amplification and

electrophoresis

Phage DNA was extracted by PowerViral1 Environmental RNA/DNA Isolation Kit (MO BIO,

Carlsbad, CA, USA), following the manufacturer’s instructions. A total of 50-μL PCR mixture

including 25 μL 1X Phusion Master Mix (Thermo Fisher Scientific, USA), 200-nM forward

primer, 200-nM reverse primer and 5 μL template DNA was prepared. PCR was performed

with initial denaturation at 98 ˚C for 30 s, followed by 40 cycles of 98 ˚C for 10 s, Tm ˚C

(Table 1) for 30 s and 72˚C for 30 s, and final extension at 72 ˚C for 10 min. Amplicons were

resolved on 2% agarose gel and results were analyzed. The procedure of viral recovery effi-

ciency from water samples was established in our laboratory with a detection limit of 10 copy

per single run [19].

2.4. Library preparation and sequencing

Illumina Nextera XT library preparation kit was used to prepare DNA libraries. DNA Libraries

was quantified by Invitrogen Qubit assay (Thermo Fisher Scientific, USA). DNA libraries were

sequenced by using Illumina HiSeq platform targeting 4 million read pairs (pair-ended 2 x

150bp) per sample.

2.5. NGS sequence analysis

Unassembled sequencing reads were directly analyzed by bioinformatics platform as described

by [23–25] for multi-kingdom microbiome analysis and quantification of organisms’ relative

abundance. The system utilizes curated genome databases and a high-performance data-min-

ing algorithm that rapidly disambiguates hundreds of millions of metagenomics sequence

reads into the discrete microorganisms.

2.6. Prevalence of bacteriophage families and species in WWTPs

The prevalence of bacteriophage families in water samples was determined by PCR and calcu-

lated according to the following formula: Prevf ¼
Cp
T �100, where Prevf is the prevalence of bac-

teriophage family, Cp is the count of PCR positive samples per family and T is the total number

of tested samples. Relative abundance of NGS detected phages was calculated according to the

following formula; number of phages-specific sequences divided by the total number of

obtained sequences by NGS (for PCR-positive samples).

Table 1. PCR primers used in phage isolation.

Gene family Amplicon size (bp) Tm (˚C) Sequence Reference

G23 major capsid protein Myoviridae 500 54 CTF-F: GAYHTIKSIGGIGTICARCCIATG [20]

CTF-R: GCIYKIARRTCYTGIGCIARYTC

DNA Polymerase 476 50 DGF-F: GCWGGTGCWTATGTHAARGAACC [21]

DGF-R: CCWGASARAGTAATKGCYTCWGC

Major coat protein 1278 56.3 MCF-1F: CTGGTCGTGTTCAGCAGACT [22]

MCF-1R AGCCATAAGAGCAGGATCGC

Major coat protein Siphoviridae 459 56.4 MCF-2F: GCGTGATGGTTGGGATGGTA

MCF-2R: GACGCTCAATCTGACGACCA

Podoviridae 774 56.4 MCF-3F: CCGCGATTGCGAGCATTAAA

MCF-3R: CGGTCTGAATGTTCACCGGA

https://doi.org/10.1371/journal.pone.0273343.t001
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2.7. Statistical analysis

The variables, including family level, temporal level (August—November), water source

(KSU-WWTP and MN-WWTP), and meteorological condition (include the temperature

ranges: 18–22 ˚C, >22–26 ˚C,>26–29 ˚C, >29–33˚c and >33), were analyzed. One-way anal-

ysis of variance was performed to test the significant impact of temperature ranges and tempo-

ral variations on detected phage families and prevalence of both WWTPs. The relationships

between both sampling locations (dependent variables), and temperatures and temporal varia-

tion (independent variables) were fitted using linear curve fitting. Pearson’s correlation coeffi-

cient matrix was conducted to assess the potential relationships between the phage positive

samples detected by PCR and phages sequence abundance obtained by NGS. All the statistical

analyses were performed by using the XL-STAT statistical package software (Ver. 2019, Excel

Add-ins soft SARL, New York, NY, USA).

3. Results

3.1. PCR-based detection of bacteriophages in WWTPs

Siphoviridae and Podoviridae families were detected with amplicon sizes 459 bp and 774 bp,

respectively (Fig 1). Moreover, Myoviridae was detected with different amplicons sizes 476 bp

(Fig 1A), 500 bp (Figs 1 and 2, S1A, S1B, S1D and S1E and S2B Figs), and 1278 bp (S1D Fig).

3.2. Prevalence of phage families in WWTPs

Bacteriophages’ prevalence results varied according to water source and detected phage fami-

lies. MN-WWTP depicted the highest prevalence of all phage families. Moreover, Myoviridae
was recorded with highest prevalence of 29.40% among all families in MN-WWTP in compari-

son to KSU-WWTP (11.76%). Siphoviridae prevalence recorded 11.76% in MN-WWTP and

5.88% in KSU-WWTP whereas Podoviridae depicted lowest prevalence (5.88%) in

MN-WWTP and no prevalence was recorded at KSU-WWTP (Fig 3).

3.3. Temporal variations influence on bacteriophage prevalence

Phage prevalence was affected temporally that showed the highest phage prevalence in August

(75%), followed by September (50%). However, no bacteriophages were found during months

of October and November. Myoviridae was detected with highest frequency (75%), whereas

Siphoviridae and Podoviridae were recorded with lowest frequencies (25%) in August. Further-

more, higher phages prevalence recovered in August in comparison to month of September

from MN-WWTP. Podoviridae was detected only in August with 25% prevalence in

MN-WWTP (Fig 4). Significant influence of temporal variations on prevalence of Myoviridae
and Siphoviridae was found in both WWTPs and MN-WWTP, respectively (Table 2).

3.4. Temperature variations impact on prevalence of PCR detected phage

families

The highest prevalence of phage families was found at the temperature range>29–33˚C. How-

ever, phages were undetectable at�29˚C. Moreover, Myoviridae showed highest prevalence at

>29–33˚C in MN-WWTP (67%). Siphoviridae and Podoviridae displayed highest prevalence

of 33% and 17%, respectively at>33˚C. Greater frequency of Myoviridae and Siphoviridae was

observed in MN-WWTP in comparison to KSU-WWTP at>33˚C (Fig 5). Significant influ-

ence of temperature on prevalence of Myoviridae family was detected in MN-WWTP

(Table 3).
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Fig 1. PCR product of raw water samples from MN-WWTP. (A) Lane 1: DNA ladder (100–2000 bp), Lane 2:

negative control, Lane 3,4: negative samples, Lane 5: 476 bp (Myoviridae, DGF primer), Lane 6: 459 bp (Siphoviridae,
MCF-2 primer), Lane 7: 500 bp (Myoviridae, CTF primer) and Lane 8: 774 bp (Podoviridae, MCF-3 primer).

https://doi.org/10.1371/journal.pone.0273343.g001
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Fig 2. PCR product of raw water samples from KSU-WWTP. Lane 1: DNA ladder, Lane 2: negative control, Lane

3–6 and 8: negative samples, Lane 7: 500 bp (Myoviridae, CTF primer).

https://doi.org/10.1371/journal.pone.0273343.g002
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3.5. Phage species relative abundance results

3.5.1. NGS-based sequence relative abundance in PCR-based positive samples. Four

bacteriophages were found with various abundances by NGS-Sequencing. Cronobacter virus

Fig 3. Prevalence of phage families in WWTPs.

https://doi.org/10.1371/journal.pone.0273343.g003

Fig 4. Temporal prevalence of phage families in WWTPs during four-month period.

https://doi.org/10.1371/journal.pone.0273343.g004
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Esp2949-1 was detected with the highest abundance (4.41%) only in M1 sample collected from

MN-WWTP (Fig 6). Ralstonia virus RSA1 displayed the lowest sequence abundance of 1.04%

in MN-WWTP raw water (Fig 6). Moreover, highest correlation was observed between K1 and

K5 samples collected from KSU-WWTP. Bordetella virus BPP1 sequence abundance showed

the highest correlation to KSU-WWTP samples (K1, p = 0.004 and K5, p = 0.007) and M8 sam-

ple collected from MN-WWTP (p = 0.012, Table 4).

3.5.2. Occurrence of phage species in WWTPs. KSU-WWTP showed the highest occur-

rence of Bordetella virus BPP1 (67%, Fig 7). Bordetella virus BPP1 was found significantly cor-

related to KSU-WWTP influents (p = 0.001). On the contrary, MN-WWTP depicted higher

bacteriophage occurrence of 16.6% for Ralstonia virus RSA1, Cronobacter virus Esp2949-1

and Bordetella virus BPP1 (Fig 7).

Table 2. The significance of the influence of temperature on prevalence of phage families in wastewater treatment plants.

Phage family Sampling Area R2 RMSEϮ Equation

Myoviridae MN-WWTP 0.896� 0.592 MN-Myo = 4–1.1�M‡

KSU-WWTP 0.8� 0.316 KSU-Myo = 1.5–0.4�M

Siphoviridae MN-WWTP 0.8� 0.316 MN-Sipho = 1.5–0.4�M

KSU-WWTP 0.6 0.387 KSU-Sipho = 1–0.3�M

Podoviridae MN-WWTP 0.6 0.387 MN-Podo = 1–0.3�M

KSU-WWTP - - - - - -

MN-Myo: refers to Myoviridae phages detected in MN-WWTP,
Ϯ: RMSE denotes the root mean squared error, that is an absolute measure of fit.
‡: M denotes month,

�: significant correlation.

https://doi.org/10.1371/journal.pone.0273343.t002

Fig 5. Frequency of phage families across different temperature ranges in WWTP.

https://doi.org/10.1371/journal.pone.0273343.g005
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3.5.3. Temporal-based relative abundance of NGS-detected phage species. Bordetella

virus BPP1 was detected with the highest occurrence amongst phage species in September

(50%) followed by August (40%). Moreover, all four-phage species were detected in August.

Whereas Cronobacter virus Esp2949-1, Dickeya virus Limestone and Ralstonia virus RSA1

were absent from September to November (Fig 8). Furthermore, significant influence of tem-

poral variations on phage sequence abundance was detected only in case of Bordetella virus

BPP1 (p = 0.015).

4. Discussion

Phages are vital for renewal of organic matters, provisions of nutrient supply cycles, serve as

genomic reservoirs and drive the bacterial diversity. Several studies has investigated the occur-

rence of bacteriophages in various water sources [2, 26, 27]. Moreover, bacteriophages

Table 3. The significance of the influence of temperature on prevalence of phage families in wastewater treatment plants.

Phage family sampling Area R2 RMSE Equation

Myoviridae MN-WWTP 0.8� 0.73 MN-Myo = -5+0.2�T‡

KSU-WWTP 0.5 0.73 KSU-Myo = -2.6+0.1�T

Siphoviridae MN-WWTP 0.5 0.73 MN-Sipho = -2.6+0.1�T

KSU-WWTP 0.5 0.365 KSU-Sipho = -1.3+0.05�T

Podoviridae MN-WWTP 0.5 0.365 MN-Podo = -1.3+0.05�T

KSU-WWTP - - - - - -

MN-Myo: refers to Myoviridae phages detected in MN-WWTP,
‡: T denotes temperature,

�: significant correlation.

https://doi.org/10.1371/journal.pone.0273343.t003

Fig 6. Relative abundance of phage sequence in NGS-defined sewage samples. M1: first sample from MN-WWTP, M8: eighth

sample obtained from MN-WWTP, K1: first sample obtained from KSU-WWTP and K5: fifth sample obtained from

KSU-WWTP.

https://doi.org/10.1371/journal.pone.0273343.g006
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detection has been considered as important indicator for fecal pollution [28]. Therefore, moni-

toring of bacteriophage in water, of particular interest, WWTPs has become a routine work for

control of fecal contamination associated concerns [22]. For instance Al-jassim has detected

bacteriophages from domestic water treatment plant in Jeddah, Saudi Arabia [29]. Likely, we

detected several bacteriophages in MN-WWTP and KSU-WWTP in Riyadh, Saudi Arabia.

Bacteriophages’ prevalence results varied according to the detected family and water site. A

recent global viral abundance study showed Microviridae to be the highest abundance phage

family across the globe, followed by Siphoviridae, Myoviridae, and Podoviridae [30]. Unlikely,

our study found Myoviridae family to be the most abundant phage family that could be due to

Table 4. Pearson’s correlation matrix of different phage species in positive samples.

CV-Esp DVL RV-RSA1 M1 M8 K1 K5

BV-BPP1 -0.333 -0.333 -0.333 0.502 0.988 0.996 0.993

CV-Esp - -0.333 -0.333 0.602 -0.329 -0.332 -0.331

DVL - -0.333 -0.458 -0.329 -0.332 -0.331

RV-RSA1 - -0.647 -0.329 -0.332 -0.331

M1 - 0.507 0.506 0.507

M8 - 0.998 0.999

K1 - 1.000

BV-BPP1: Bordetella virus BPP1, CV-Esp: Cronobacter virus Esp2949-1, DVL: Dickeya virus Limestone, RV-RSA1: Ralstonia virus RSA1. Significant correlation values

are displayed as bold numbers. Pearson’s correlation was found highest among positive samples from KSU-WWTP, while Bordetella virus BPP1 sequence abundance

showed the highest correlation to samples from KSU-WWTP and M8.

https://doi.org/10.1371/journal.pone.0273343.t004

Fig 7. Occurrence of bacteriophages in NGS samples in WWTPs.

https://doi.org/10.1371/journal.pone.0273343.g007

PLOS ONE Molecular diversity and abundance of bacteriophages in wastewater

PLOS ONE | https://doi.org/10.1371/journal.pone.0273343 August 18, 2022 10 / 15

https://doi.org/10.1371/journal.pone.0273343.t004
https://doi.org/10.1371/journal.pone.0273343.g007
https://doi.org/10.1371/journal.pone.0273343


geographic variations [31]. Our study focused on limited country data in comparison to the

global study [30] that excluded our study area. Korf, et al. reported the higher existence of

Myoviridae as compared to Siphoviridae that agrees with our findings [32]. Whereas Jurczak

found more Siphoviridae abundance as compared to Myoviridae, and reported the least Podo-
viridae abundance in coliphages from sewage [33]. The disagreement with Jurczak findings

could be owing to the water sources, types and spatial differences. Phage families prevalence

was influenced temporally, with highest prevalence detected in August, followed by September,

which partially agrees with a previous study that characterized coliphages form River Nile and

five wastewater drainage during summer and winter seasons [22]. Moreover, the latter study

detected three different types of phages found related to Myoviridae, Podoviridae and Siphovir-
idae families that is in line with our findings. Furthermore, A study of viral communities of

Lake Baikal indicated the dominance of different families like Myoviridae, Siphoviridae and

Podoviridae that supports our results [34]. Other study has recorded relative abundance of

34% and 26% for Siphoviridae and Myoviridae, respectively in wastewater treatment plant sam-

ples [35]. The discrepancy of the latter study findings is owing to geographical and meteoro-

logical differences.

The phage prevalence was found affected by temperature conditions being entirely unde-

tectable at�29˚C. Similarly, bacteriophages abundance was reported elsewhere to be highly

influenced by the environmental conditions and the presence of host cell [30, 36, 37]. For

instance, the abundance level of Cyanobacteria was found increasing with temperature rise,

resulting in the increase of the associated phage community that supports our results [38].

Moreover, viral communities in the latter study were found dominated by dsDNA viruses’

families like Myovirdae and Siphoviridae in agreement with our study.

In the present study, four bacteriophages were detected by NGS-Sequencing with various

abundances. Cronobacter virus Esp2949-1 was detected for the first time in Saudi Arabia and

was recorded with the highest abundance. Likewise, Lee, et al. has detected the same Esp2949-

Fig 8. Occurrence of bacteriophages monthly in NGS samples.

https://doi.org/10.1371/journal.pone.0273343.g008
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1 phage in sewage samples in South Korea [39]. Cronobacter phage was also identified in 12

raw wastewater samples in Yangzhou, Jiangsu, China with 10 variants showing greater diver-

sity among phage strain level [40]. Unlikely, our findings revealed a single Cronobacter phage

strain, Esp2948-1. However, population density, life style and living standards can lead to

phage diversity [31]. Bacteriophages are known of their significant ability and specificity to

infect defined bacteria including pathogenic bacteria in a wide range of environments. Crono-

bacter virus Esp2949-1 could be utilized as a potential virulent agent against neonatal and

infantile pathogen Cronobacter sakazakii, known to cause enterocolitis, meningitis and septi-

cemia outbreaks globally [39, 41]. Bordetella virus BPP1 was the second abundant phage in

our sequenced samples. Bordetella virus BPP1 was previously detected in WWTPs in Jeddah,

Saudi Arabia with the lowest abundance that disagrees with our findings [42]. In contrast,

other Bordetella phages (CN1, CN2, FP1, MW2, and LK3) were isolated from surface water

from Serbia, Georgia, Hungary Egypt, Switzerland and Turkey. The Bordetella phage strain

variations may be attributed to difference of water sources and spatial considerations [43]. The

BPP1 phage is a close relative to Bordetella bronchiseptica phage vB_BbrP_BB8 that is known

for its antibacterial application against Bordetella bronchiseptica [44] recognized to cause respi-

ratory infections [45]. On the other hand, Ralstonia virus RSA1 displayed the lowest sequence

abundance of 1.04% in MN-WWTP influents and least sequence abundance in KSU-WWTP

influents. However, Trotereau, et al. isolated Ralstonia phages from more than 50% of different

environmental samples [46]. Despite the significantly low abundance of Dickeya virus Lime-

stone and Ralstonia virus RSA1 in our samples, it indicated the probable low abundance of

their hosts which are potential plant pathogens including Dickeya solani (causing blackleg and

soft rot of potato) [47] and Ralstonia solanacearum (causing bacterial wilt of tomato) [48]. The

high diversity of phages among different isolation times and areas can affect the isolates quality

as well as quantity due to environmental pressures [13, 31, 37].

In conclusion findings of present study will help in understanding of phage composition,

diversity and ecology from complex wastewater sources.

Supporting information

S1 Fig. PCR product of raw water samples from MN-WWTP. (A) Lane 1 and 9: DNA ladder

(100–2000 bp), Lane 2: negative control, Lane 3–8, 10–13 and 15–16: negative samples, Lane

14: 704 bp amplicon (Myoviridae, obtained by MGF primer), (B) Lane 1 and 9: DNA ladder,

Lane 2: negative control, Lane 3, 5–8 and 10–16: negative samples, Lane 4: 500 bp amplicon

(Myoviridae, obtained by CTF primer), (C) Lane 1 and 9: DNA ladder, Lane 2: negative con-

trol, Lane 3–8 and 10–15: negative samples, Lane 16: 459 bp amplicon (Siphoviridae, obtained

by MCF-2 primer), (D) Lane 1 and 9: DNA ladder, Lane 2: negative control, Lane 3–8, 11–13

and 15–16: negative samples, Lane 10: 1278 bp amplicon (Myoviridae, obtained by MCF-1

primer) and Lane 14: 500 bp amplicon (Myoviridae, obtained by CTF primer), and (E) Lane 1:

DNA ladder, Lane 2: negative control, Lane 3–6 and 8: negative samples, Lane 7: 500 bp ampli-

con (Myoviridae, obtained by CTF primer).

(PDF)

S2 Fig. PCR product of raw water samples from KSU-WWTP. (A) Lane 1 and 9: DNA lad-

der (100–2000 bp), Lane 2: negative control, Lane 3–7 and 10–16: negative samples, Lane 8:

459 bp amplicon (Siphoviridae, obtained by MCF-2 primer), (B) Lane 1 and 9: DNA ladder,

Lane 2: negative control, Lane 3–5, 7–8 and 10–16: negative samples, Lane 6: 500 bp amplicon

(Myoviridae, obtained by CTF primer).

(PDF)
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